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Abstract
I prove that the solutions of the phase field equations, on a subsequence,

converge to a weak solution of the Mullins-Sekerka problem with kinetic un-
dercooling. The method is based on energy estimates, a monotonicity formula,
and the equipartition of the energy at each time. I also show that the limiting
interface is (d — 1)- rectifiable for almost all t with a square integrable mean
curvature vector.

Key Words: phase transitions, monotonicity formula, Ginzburg-Landau equa-
tion, mean curvature flow, phase-field equations.
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1 Introduction.
Phase field equations for solidification were introduced by Caginalp [7, 8], Collins
& Levine [14], Fix [18] and Langer [23], and studied by Caginalp [8], to treat
several phenomena not covered by the classical Stefan problem. These equations
are for the temperature deviation 6 and the phase field >̂, consist of a heat
equation

(1.1)

and a Ginzburg-Landau equation

?) + te, (1.2)

where c, £, fc, /?, A and v are positive constants and W is a double-well potential
whose wells, of equal depth, correspond to the solid and liquid phases.

Recently several thermodynamically consistent models have been developed
in FVied & Gurtin [19], Penrose & Fife [26], Wang et.al [31] and in references
therein. In particular, [19], [26], and [31] allow the latent heat t to depend on
the order parameter (p.

The main goal here is to rigorously study the global-time asymptotics of
(1.1) and (1.2) in the limit e I 0 for

c , f c= l , /? = A = c, i / = i , t = e{<p). (1.3)

For specificity, I will use the following functions:

However, my analysis can be modified to analyze any potential W with two
wells of equal depth and any function £ of the form,

wherei? > 0 is an arbitrary smooth function. In particular, the choice I = W
would simplify some of the analysis, see Remark 4.1 below.

In [7], [14], and [18], it is formally argued that the solutions of the Ginzburg-
Landau equation (1.2) form a sharp interface whose normal velocity depends
linearly on the mean curvature of the interface and the temperature deviation
at the interface. To describe this result precisely, let (0€,ip() be the solution
of the phase field equations with parameters consistent with (1.3) and assume
that (0%v?6) converges to (0, v5)- Since the two minima of W are ±1 , it is easy
to prove that \<p\ = 1 almost everywhere. Let F(t) be the interface separating
the two regions fl(t) = {<? = - 1 } and {<p = 1}. Then (6, ft) solves the heat
equation,



| ) . , (1-5)

coupled with the geometric equation at the interface F(£),

V = -K-0, (1.6)

where xn is the indicator of the set $7, while V and K sure the normal velocity
and mean curvature of the interface T(t), respectively. A derivation of these
sharp interface equations from thermodynamics as well as an exhaustive list of
earlier references are given in Gurtin's book [20, Chapter 3], In 1964, Mullins &
Sekerka [25] studied the linear stability of a related system of equations obtained
by replacing (1.6) by the Gibbs-Thompson condition: 6 = —A'. They showed
that planar interfaces are unstable under some perturbations, thus explaining
the dentritic growth observed in solidification. I refer to equations (1.5), (1.6)
as the Mullins'Sekerka problem with kinetic undercooling.

My chief result is that, in the limit, 0,Q = {<p = — 1} solve the Mullins-
Sekerka problem with kinetic undercooling. This result is global in time and I
do not assume the existence of a solution of (1.5), (1.6). Therefore I also provide
an existence result for this limit problem, extending a previous result of Chen
& Reitich [12] for local-time existence. To the best of my knowledge, the only
other globed results are due to Almgren & Wang [3], and Luckhaus [24]. They
proved the global existence of weak solutions for the heat equation (1.5) coupled
with the Gibbs-Thompson condition: 0 = — K.

There are two essential difficulties in the analysis of (1.5), (1.6): a solution
0,fi of (1.5), (1.6) can start out smooth and yet, in finite time, the boundary
of fl may develop geometric singularities, and 6 may blow up pointwise (see
remark 3.1 below). These difficulties also complicate the analysis of convergence.
Since 6 is unbounded, 0€ does not converge to 6 uniformly. Hence I cannot use
the convergence results of [4], which discusses the convergence of (1.2) with a
given continuous temperature field. Also, the approach of [17] is not directly
applicable to the phase field equations, as they do not have maximum principle
and there is no a-priori weak theory for the limit equations. [17] studies the
asymptotics of the Cahn-Allen equation, obtained by setting t = 0 in (1.2),
via sub and supersolutions constructed from the weak solutions of the mean
curvature flow.

I overcome these difficulties by utilizing the energy estimates in Section 2.2,
and a monotonicity result in Section 5. This monotonicity result is an extension
of the Ilmanen's result [22] for the Cahn-Allen equation which originates from
the Huisken's result for smooth mean-curvature flows [21]. My main observation
is that the geometric equation (1.6) is not simply a perturbation of the mean-
curvature flow and, therefore the monotonicity result should use the energy



related to the system (1.5) and (1.6). The main technical difficulty is then to
show that, in the limit, the discrepancy measure

IA * c

is non-positive. For the Cahn-Allen equation, the negativity of £€ follows im-
mediately from the maximum principle. For the phase field equations, however,
it follows from a series of estimates obtained in Section 4. In later sections,
following Ilmanen [22], I prove that the weak* limit of £c is indeed equal to zero.

I close this introduction with a brief survey of related results. (1.1), (1.2)
with c = 8 = 0, £ = 1 is the Cahn-Hilliard equation. Recently the conver-
gence of the Cahn-Hilliard equation to the Hele-Shaw problem was proven by
Alikakos, Bates & Chen [2] using a spectral estimate of Chen [11]. In contrast
to this paper, they assume the existence of a smooth solution to the limiting
problem. Briefly their method is to construct approximate solutions for the ue-
problem" that are close to the smooth solution of the limit problem. They then
use the spectral estimates to bound the error terms. Also, Stoth [29] studied the
asymptotic limit of the phase field equations with radial symmetry. Indepen-
dently, a radially symmetric problem in an annular domain with one interface
was studied in [10]. Asymptotics of the Cahn-Allen equation, obtained by set-
ting £ to zero in (1.2), have been studied extensively. An exhaustive list of
references related to the Cahn-Allen equation can be found in my paper [28].

This paper is organized as follows. In the next section I outline the back-
ground and state the main results. In Section 3, several elementary estimates
are obtained. A gradient estimate is proven in Section 4; this estimate implies
that £€ is non-positive in the limit. In Section 5 I derive a monotonicity re-
sult which I use in Section 6 to prove a clearing-out lemma. I then establish
the equipartition of energy in Section 7. In that section I also show that the
Hausdorff dimension of the interface is d — 1. I complete the proofs in Section
8.
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2 Preliminaries

2.1 Equations

For a scalar u, set

and

W » = ± ( u 2 - 1 ) 2 , /(u) = W'(u) = 2u(u2 - 1) , (2.1)

3h(u) = u--u3, g(u) = h'(u) = (l-ui)=y/2W(Jj. (2.2)

In this paper, we study the phase field equations with the above functions. Then
the heat equation (1.1) and the order parameter equation (1.2) with parameters
as in (1.3), (1.4) are,

<p\ - Aip€ + ^W'(<pe) - iy(v?€)0c = 0 , in (0,oo) x 1Zd , (OPE)

8\ - A0€ + g(<p€)<p\ = 0 , in (0. oo) x ftd . (HE)

For e > 0, let (̂ >%0€) be the unique, smooth, bounded solution of the phase
field equations satifying the initial data

We assume that

I Vl(x) | < 1 , Vx € Ud . {A\)

Then since W'(±l) = y(±l ) = 0, by the maximum principle we have

For a real number r, let g(r) = tanh(r). Then

q" = W'(q), q' = v^H^) = g(q), (2.3)

and q is the standing wave associated to the reaction diffusion equation with
nonlinearity W. Since \<p€\ < 1, we can define z€ by

v ( , ) 9 ( ) z« = £ g - V ) . (2.4)

Then zf solves (observe that g(<pe) = g{q(ze/e)) = q'(z(/e) and 9" = 2(̂ >V)i



2.2 Energy
For a Borel subset A C Tld, define

Then by direct differentiation and integration by parts we obtain,

dt

If we assume that

jj€(0;nd) < C r , €>0. (A2)

then we have

ft r
fi€(t;Kd) + *{<Pt)2 + \V0€\7dxdt < C{ , c,f > 0. (2.5)

Jo Jnd

(Assumption (A2) can be relaxed as in [28]). We localize the above estimate in
the following way. Let xp be any positive, smooth, compactly supported function.
Then,

Here we used the fact that for any positive C2 function,

Hence there is a constant C(^), independent of e, such that the map

is non increasing.



2,3 Subsequence
Using the above monotonicity in a diagonal argument (see [22, Section 5.4] for
details), we construct a subsequence, denoted by e again, a family of Radon
measures /i(t, •) and /x(t, •) satisfying

P(t,-)-*fi(t,-),l'€(tr)->ti(t,') V*>0, (2.6)

in the weak* topology of Radon measures. Now for a Borel subset B C [0, oo) x
Ud, define

fi{B) = JJfi(t;dx)dt, fi(B) = JJii(t;dx)dt,
B B

and
T^sptp , r(t) = ap*/i(*;.), t>0.

We will show that the f-section, I \ , of T is essentially equal to T(t), see Section
7 below.

The energy estimate (2.5) yields that

sup ||0e(*,-)IU*<*') <oc.

Hence there are a subsequence, denoted by €, and an L2 function 6 such that

0€ -> 0 in weak L2((0, T) x 7ld), (2.7)

for every T > 0. We will show that the above convergence is in fact in the strong
topology (see Section 4, below). Moreover, by the arguments of Bronsard and
Kohn [6], this sequence can be chosen so that, for every T > 0,

h(<p€) -4 h{<p) = - ^ in Ll
ioe, V€-><P a.e. , (2.8)

where <p is a function of bounded valuation and |<^(f,x)| = 1, for almost every

2.4 Initial data and assumptions
In addition to (Al), (A2) we assume that,

II V*S « « , < 1 , (A3)

sup 6 || D2zl ||oo< oo , (A4)
0<€<l



sup sup t^M£< oo,

where BR(X) is the sphere centered at x with radius R. We also assume that,

i \U +1| e<0 |U + v^ [II v&s IU}

SUp {€3 || DVS IU +62 || D2*S Hoc} < 00 . (A7)
0<€<l

Observe that since for 1 < p < oo,

(A6) implies that
sup H^II^A'tpXoo. (2.9)

0<€<l

Finally we assume that there is 6Q € L2(TZd) such that

6Q -> ô in L2-strong. {AS)

There are functions satisfying (A1)-(A8). Indeed if 6Q = #o is a smooth,
compactly supported function, then #o satisfies (A6), (A7) and (A8) trivially.
Suppose that To is a bounded, smooth hypersurface in 7ld. Let d(x) be the
signed distance of x to To and let d be an appropriate modification of d outside
of a tubular neighborhood of To such that all derivatives of d up to order three
are bounded and 2|d| > |d|. Then z€ = d satisfies all the above conditions.

Finally we note that the term \fl appealing in (A6) is not essential. Indeed
if (A6) holds with e" for some v > 1/2, then we can prove the same results with
minor changes.

2.5 Main Results
Our main result states that the "limit" of {0€,<p€) solves (1.5), (1.6). However
the boundary of the set {lim^>* = 1} is not necessarily smooth and a radial
example with one interface shows that the classical solutions of (1.5), (1.6) may
not be poitwise bounded, see Remark 3.1 below. Hence a weak formulation of
the Mullins-Sekerka problem, (1.5), (1.6), is needed in order to state our main
result.

Fix T > 0. Let /i(t,dx) be the limit of fi€{t,dx) and T{t) be the support of
/i(t,-). Whenever /i(t;) is ( d - l)-rectifiable (c.f. [22, Section 1.7] or [27] ), we
say that fj{t;) has a generalized mean curvature vector



if for all smooth, compactly supported vector field Y(x), H satisfies,

tr(DY(x)P(t, x))»(t, dx) = - / Y(x). H(t,

where P(t,x) is the projection on the the tangent space Tzn(t,-) of fi(t;) at
x. Here the left hand side is equal to the first variation of the varifold V^(lt.)
corresponding ( d - 1)-varifold V^. j (c.f. [22, Section 1.7], [27]).

Our main regularity result is;

Theorem 2.1 (Regularity) For almost every t > 0,̂ i(£, •) is (d—1) rectifiable
and has a generalized mean curvature vector H(t,x). Moreover for every T > 0,

\H\eL2((0,T)x1Zd;dfi).

Definition of rectifiability requires the existence of the tangent plane Txfi(t, •).
However, a weak formulation of (1.6) requires not only the tangent plane but
also the normal vector. Therefore to describe the limit of the phase field equa-
tions we have to introduce yet another measure, m% that keeps track of the
normal direction. At this point we should point out that the mean curvature
vector is independent of orientation and therefore in [22], and in [28], f*(t,-) is
enough to describe the asymptotic behavior of the Cahn-Allen equation.

Let Sd~~l denote the set of all d-dimensional unit vectors. For (f,x,n) €
[0,oo) xTld x Sd~l, define

dm<(t,x,n) =

where VQ € Sd~l is arbitrary and S^* j is the Dirac measure located at vc. Since
Sd~l is compact, there is a further sequence, denoted by e again, such that dm*
is weak* convergent. By a slicing argument (c.f. [15, Theorem 10, page 14]) we
conclude that there exists a probability measure iV(f,x, •) on Sd~l such that as
e tends to zero, we have

dm€ -±dm = dtn(t;dx)N(t,x;dn).

Theorem 2.2 (Convergence) There is a normal velocity function

v(t,x,n) € L2((0,T) x 7Zd x Sd'1 -> Kl;dm), T>0

satisfying

(6t-A0)dxdt= f v(t,x,n)N(t,x;dn)dv(t,x), (2.10)
Js*-i



and

I nv{t,x,n)N(t,x,dn) = -H{t,x) - 6(t,x) [ nN(t,x,dn) (2.11)

for dfj-almost every (£,x). Moreover,

for djj-almost every (t,x), i.e., there are measurable functions a(*,x) € [0,1]
and v(t,x) £ S**""1 satisfying,

N(t,x;dn) = a(t,x)<S{l/(

and

for dp-almost every (*,x).

In (2.10), (2.11) we interpret

/ v(*,x,n)7V(*,x;dn), / nt>(f,x,n)N(*,x;dn), / nN(t,x;dn)
JSd-i JSd-i JSd-\

as, respectively, the normal velocity, the normal velocity vector and the outward
unit normal vector of the interface. Then clearly (2.11) is a weak formulation of
(1.6). One dimensional considerations suggest that the term %(xn)t appearing
in (1.5) is there is formally equal to Vdfi. Hence (2.10) is a weak version of
(1.5).

The definition of the generalized mean curvature vector and the orthogonal-
ity of the sptN(t,x,-) to Tzn(t, •) imply that (2.11) is equivalent to

[Y - n(v + 0) + DY : (/ - n 0 n)] dm = 0,

for any compactly supported, smooth vector field Y(t,x). We also note that
(2.10) implies that the distribution (6t — A'0) is indeed a Radon measure which
is absolutely continuous with respect to n(t,dx)dt. In Section 8, t>(£,x,n) will
be constructed as the limit of — z\{t,x).

In the case of the Cahn-Allen equation, radially symmetric examples indicate
that N(t, x, dn) may not be a Dirac measure. This corresponds to the "piling-
up" of the interfaces. However it is not clear that if N(Q,x,dn) is a Dirac
measure whether N(t,x;dn) has to be a Dirac measure maybe expect on a
set of lower dimension. Stoth [30] proved this result for the limit of radially
symmetric Cahn-Hilliard equations.

Our final result is a Brakke [5] type inequality satisfied by the limit inteface.
This inequality is a straightforward extension of Brakke's definition of a varifold
moving by its mean curvature and it may be useful in proving further regularity
of the limit interface.



Theorem 2.3 (Brakke type inequality) For any compactly supported smooth
function <j>(x), and t > 0, if

d:=limsup <f>(x)((i(s;dx) - ft(t;dx)) > -oo,
s-+t s — t J

then /*(£,•) restricted to {<p > 0} is (J— l)-rectifiable with a generalized mean
curvature vector H(t,*). Moreover

d < - JJ <j>(x)\H(t,x) + 6(t,x)n\2 n(t;dx)N(t,x;dn)

82(t,x)dx (2.12)

- j j D<t>(x) • [H(t, x) + n6(t, x))n(t; dx)N(t, x; dn).

3 Elementary Estimates
In this section we obtain several elementary estimates using the heat kernel
representation of the solutions. Let

G(T,0 = (4;TT)-* eXp(-HL), (T ,0 € (0,oo) x Ud.

Since h! = g, using the heat equation (HE) and integration by parts we have,

6<(t,x) = A<(t,x) + B((t,x) (3.1)

where

)))(x)dr,

H<(t,x) =

and * denotes convolution in the x-variable.
For T > 0, let || • ||OC,T denote the norm in L°°((0, T)x7ld). All the constants

in this and later sections depend on T but we will suppress this dependence in
our notation. Also all constants independent of c will be denoted by K. We
should warn the reader that this constant may change from one line to the next.

10

B*(t,x) = f (GT(r,-)*(H<(t,-)-H<(t-T,
Jo



Lemma 3.1 There is a constant K independent o/O < € < 1 satisfying,

e || V<p€
 ||OO,T < K , (3.2)

| |^Hoo,T<A'[l + |ln6|], (3.3)

Proof:
1. Fix T > 0 and set

m€{T) = e || V<p€ Hoo.r, n€(T) =|| 0€ W^T ,

Then

and the order parameter equation (OPE) can be rewritten as,

2. Fix {t,x) € [0,T] x Tld. Then for any a € (0,t], (OPE) yields

Jo
Observe that for any r > 0,

V? || VG(T, •) 11!= (IT)-* / \y\ e-M'dy = A'.

Therefore,

1 r<T 2K{e> + €i
[VG(r,.)*/£(t-r,.)](x)dt < U ^ 2

Also if c = t,

|(VG((T,.) * p«(t - a,.))(«) | = \(G(t,.) * V^)(x) | < ||

3. Now use the above inequalities with o = e2 A f to obtain,

i€(r)), if t > e2,

(t,x)| < 7 ( € || V^J Hoc +2(2 +en'(T))], if t < e2

11



Since by (A3) e || Vip(
0 (!«,< K, we conclude that,

m<(T) < K[l + m'(T)).

4. Let A\Bf be as in (3.1). Then,

l^(«,x)| < Halloo+2.

For<re(0,t],

(3-4)

<2 f\\Gr(T,-)\\dT.
Jo

Observe that

Hence

r(r,.)||i< (*)-* f d^\y\2)

< A'ln(-).
o

Since AG = C?r, and Vif = 9^<p€, by integration by parts we obtain,

r(T, •) • (H((t, •) -Hl{t- T, •

/ VG(r, x - y) • \VH{t, y) - VH(t - r, y))dydi

< f
Jo

o JnJ

< —

5. Estimates obtained in step 4 and (3.1) yield,

|*c(«,x)| < || 91 IU +2

Choose a = £2 A t to obtain

<(T).

(3.5)

Combine (3.4), (3.5) and use (A6) to obtain

12



Hence (3.2) and (3.3) holds for all e > 0 satisfying

2Koe < 1 <* € < €0 = (l/2A'o).

For 1 > € > €0, (3.2), (3.3) can be proved easily. I

Remark 3.1.
0€ is not necessarily uniformly bounded in £. Indeed consider the Mullins-

Sekerka problem with radial symmetry and one interface. If the radius RQ of the
initial interface is sufficiently small and the initial temperature 0o is sufficiently
large, then we can show that the radius R(t) of the interface becomes zero at
a finite time T. Moreover, \O(R(t),t)\ behaves like |ln(T - t)\ as t tends to T.
Since the phase field equations with radial symmetry known to approximate
the Mullins-Sekerka problem [29], this example shows that 0C is not uniformly
bounded in €.

Next we will use the above elementary technique to obtain uniform bounds
fore 2 |DV | and£|V0<|.

Lemma 3.2

sup {e2 [|| I>V IUr + II Vj llocr] + e || W \UT} < oo. (3.6)
0<c<l

Proof:
1. Differentiate the (OPE) to obtain

FJ = -^w"WXi

Using (3.2), (3.3) we conclude that

for some constant K. Set

W(T) = 62 || D V IU.T, W(r) = e || V6< IU.T .

Then we use (A4), (3.2) as in step 1 of Lemma 3.1 to obtain,

n f (D < A-[l + £5f(r)]. (3.7)

Observe that (3.3), (3.7), and (OPE) yield

€2 || tf|U,T<A'[l + «r(D] . (3.8)

13



2. Let A(,B(, be as in (3.1). Then,

VA'(t,x) = (G(t,•) * V(e<0 + H«(0, •) - #<(*, •)))(*),

V2?<(*,*) = /"(VG r(r, •) * [H<(t, •) - ff«(* - r, 0])(*)<*
JO

Fix (t,x) € [O.T] x ftd. In view of (A6) and (3.2) we have

t,z)\ <|| vef
0 IU + 2 £

Alsofor«7-€(0,tAl],

T, •) * (H<(t, •) -H<(t- r, .))](x)

< 2 jf |, VGr(.,) Mr < jf Kr-Ur < K ( ^

3. By integration by parts in the r-variable, we obtain,

(\VGT(T,-) * [H<(t,') ~ H<(t-T,-)])(x)dT
Jo

< \VG(a, •) * [H<(t, •) - H'(t - a, .)1)(*)| + | f\vG(r, •) * H\{t - r, .
Jo

< ^= \\H<(t, •) -H'(t- a, .)|L + T ||VG(T, OH, | | ^ I L , r dr.

3. Combine steps 2 and 3, and choose cr = e2 A t to obtain,

As in the last step of the previous lemma, the above estimate together with
(3.7) and (3.8) imply (3.6) for sufficiently small e < e0. But for e > e0, (3.6)
holds trivially. I

Assumption (A7) and the arguments of Lemma 3.2 yield,

14
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sup {63||DVMIOC,T + €2|p20e||oo,r + ^ l
0<€<l

Lemma 3.3 For any 1 < p < oo, T > 0,

< oo. (3.9)

sup \
c<l, t<T

Proof:
1. For any 0 < € < 1, 0 < t0 < tx < T, we have,

to
\ti(V*)\\V\\dxd8

\s:
Recall that (/i'(<^))2 = 2W{ip€). Hence the energy estimate (2.5) yields,

\\H€{tu.)-H€(tOr)\\i <ClJu=T*.

Since \H'\ < 1, we have

2. Let A£, B€ be as in (3.1). Then by (2.9) and the previous step we have,

3. By the first step,

< K (
Jo

dr.

15



We close this section by proving the strong convergence of the sequence 6€.

Proposition 3.4 0€ converges to 6 strongly in Ljoc((0,oo) x TZd).

Proof:

1. Let 6 = 0C — 6€ where 6€ is the unique solution of

0,C-A0€ = O, (0 ,oo)xf t d

with initial data 0€(O,z) = 0Q(X). Then (A8) implies that 0€{t,-) converges to

strongly in L2(1Zd).
2. By integration by parts, we write 0 = ̂ >C)1 H- ̂ >c>2 where

<p<*(t,-) = fGr{T,-)*[H<(t,-)-H<{t-T,-)]dT

Jo

Clearly (2.8) implies that ipc<1 (i, •) converges to

converges to

For t, a > 0, set S = min{a, £}. Then it is easy to show that

Js

2 [*

strongly in X^fTC^). And by step 1 of the previous lemma,

|| [\GT(Tr)*[H<(t,-)-H<(t-T,-)]dT)\\2
Jo

< /f/'i||^(f,.)-^(^r,.)||!/2^,

Jo T

< K(6y/4 < Ka1'4.

A similar argument shows that

*, •) — ip(t — T, •)]^TI|2 < KoXl*.

16



Therefore for all a, T, R > 0,

limsup \\P -
0

where
6(t,x) = *(t,x) + -

An elementary argument very similar to the proof Proposition 3.4 shows
that the map

f-H|e'(*,-)ll2
is uniformly Holder continuous in € € (0,1]. However this fact will not be used
in our analysis.

4 Estimate of \Vz€\.
Main result of this section is,

Theorem 4.1 For T > 0, there exists a constant K* = Km(T) satisfying

|V*<(t,z)|2 < 1 + v^A"(l + |*((*,*)|), (4.1)

for all (t,x) £ [0,r] x Tld, and 0 < € < 1.

Proof of this estimate will be completed in several steps. Before we start our
long analysis, let us briefly explain the main idea. Set

Using the equation (ZE), we obtain

w\ + £\w( + R'(t,x, w() - 2V6e • Vz' < 0 , (4.2)

where for ip € C2(R.d),

C\xl>{x)= - 4lp({tx)

In [28, Section 8], we obtained pointwise estimates for a differential inequality
obtained by setting the last term involving V9€ in (4.2) to zero. Here we start

17



by using the technique developed in [28]. By (3.6) we first crudely estimate
that,

|2V0€ • Vz€\ < 2||V0f||oofT u* < —w€,

on t < T, w€ > 1. Then the proof of Proposition 8.1 in [28] yields that w€ is
uniformly bounded in c.

Then our next step is to obtain a uniform bound for e \z\|, see (4.8) below.
Using these estimates, we obtain a bound for |V0€| which is slightly better
than (3.6). Finally, we use this new estimate of |V#C| in (4.2) together with an
argument similar to the ones used in [28] to obtain (4.1).

Remark 4.1. In the phase field equations if we choose

g = 2W = (q')\

then w satisfies,

w\ + C\w€ + R<(t,x,w() - 2q'W • Vze - -q"0lw€ < 0 ,

Then the proof of the estimate (4.1) simplifies greatly. Indeed an attendant
modification of the proof of Proposition 4.1, below, yields this estimate.

As in Section 3, we fix T > 0 and all constants depending only on T will be

denoted by K.

Proposition 4.2 There is K = K(T) satisfying

\Vz€(t,x)\2 < A'(l + \z€(t,x)\), (t,x) e [0,T] x 1ld. (4.3)

Proof:
1. Fix T > 0 and set

tfo = 2 sup

Then
w\ + Cw€+R€(t,x,w€)<0. (4.4)

In the next several steps we will construct a "supersolution" to (4.4).
2. Let ZQ > 0 be the point satisfying,

18
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Then z<> behaves like € |ln e| as € tends to zero. Indeed

€-+0£|lne| 8*

Now define

h

where

f iC<r2 + l , | r |<*o ,
<(0 = \

[ (Ko + l)[|r| - «o] + ftc(*o), | r | > * o ,

A'o + 1

Observe that ht is continuously differentiate with Lipschitz derivatives. Finally
we set

3. We directly calculate that

> h'(z€)\z<-&z']-h"lz€)w€-£2-W

hl{z)w + h((z)6.

Observe that h( > 1, |/i'J < A'o + 1 and

Halloo = C< , lim «C€ = 0. (4.5)

Hence

/ > -yh't{w* + 1) + ±q'W - ZS-W - C(w< - (Ko + l)||<Hloc,r.

4. Suppose that
|*€(*,*)|<*o.

(The opposite case will be discussed in the next step). In this case we have
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Since <p€h'e > 0, W > 1, we use (3.3) to obtain,

> —TQ W — — W — Cft^ —

, 4 KQ X

> Ct{W-w%

for sufficiently small e > 0.
5, Suppose that |*'(*,:r)| > z0. Then

and

for sufficiently small € > 0. Therefore

Since q' > 0, we have

We now use (3.3) and (4.5) to conclude that / > 0 on {w€ > W}.
6. In steps 3, 4 and 5, we proved that for every T > 0 there is 60 = *o{T) > 0
satisfying

Wt + £W + I?(t,x,W) > C€(W-w(),

on (0,T) x Tld fl {u;€ > H7} for all 0 < e < co(T). Also in step 1, we showed
that

w\ + £u;c + R€(t,x, W) < 0, (0,T) x 1ld.

Since W > 1 > u;c(0, x), by the maximum principle we conclude that W > w€ on
(0, T) x TZd. See the proof of Proposition 4.2 in [28, section 8] for the application
of the maximum principle in a very similar situation.
7. Since

M*)<(ffo +i ) |* | + i,
we have,

wl < W = 1 + ht(z') < 1 + (A'o + 1)(|*'| + 1).
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Our next step is a crude estimate of \zl\. We will obtain a better estimate
in Lemma 4.4.

Lemma 4.3 For 0 < c < 1 we have,

\z\{t,x)\<^, (t,x)e[0,T}xnd. (4.6)

Proof: 1. For a > 0, set

n = {(t,x)e[0,T)xKd : |£ii£l|>a}.

By (3.6) we have,

l̂ l = ̂ '(7))-1b!l < jiq'ij))-1.

Hence on the complement of fl,

2. Set v = z\. Differentiate (ZE) to obtain,

vt - Av + 1?-Vz€ • Vi; + ^q'(j)(\Vz€\2 - l)i; = 6\. (4.7)

3. For Ki > 0, let

We will show that for appropriately chosen A'i and Q, V is a supersolution of
(4.7) in n. Indeed in Q,

€||0'||oo.T ~ 2 sup q'(r)(r + 1)}

2 sup q'(r)(r + 1)}.
r>Q
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Since q'(r) is exponentially small for large values of r, (3.3), (3.9) imply that
there are K\ and a such that

/ > | | 0 , € |UT in ft,

for all sufficiently small e. By redefining K\, if necessary, we may assume that

inf V = £i.(l + a) > - £ - r = sup |^|.

4. We proved that there is £o > 0 such that for 0 < e < €o, V is a supersolution
of (4.7) in fi. Moreover V > v on 5fi. Therefore by the maximum principle,

V > v, in ft, e < eo-

Hence by step 1

for all 0 < 6 < £o. And for €o < € < 1, the above estimate is easy to prove.
Above arguments also yields the same bound for — z\ .
5. Set

n = {kcl>i}, v = £(i + o-

Then on [0,T] x7ldn(l,

Vt - AV + 1£-Vz€ • Vt> + 2^(£)(|Vz€|2 - l)t>

for sufficiently small e. Also by step 4, V > \v\ on 9n. Hence (4.6) follows from
the maximum principle. |

Next we will improve (4.6).

Lemma 4.4 There is K = K(T) satisfying

|*f(t,*)| + |DV(t,*)| < * (1 4- |*f(*,*)|), (M) € [0,r] x ^ . (4.8)
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Proof: Fix T > 0. All the constants in this proof depend on T. Set

1. In view of (4.3) we have

(l^(*,y)l + 1) < e^"-vl (|^(t,x)| + 1).

Also (4.6) implies that there is K* satisfying

< (i + ^ I j c ^ ' — ' d ^ M J I + l). (4.9)

2. Fix {to,xo) € [0,T] x nd. For any h e (0,*0 A 1], (ZE) yields,

zf
ZiZj(to,xo) = a + b+c,

where
a = (GXi(h,-)*z<t.(t0-h,-)(x0)

b = / {GIj(7V)*0*j(fo-r,-))(zo)dr,

c = f (Gx,(T,.)*F^(to-r,-))(xo)dT,
Jo

3. If /i = t0, by (A4) we have

When h< t0, (4.3) and (4.9) imply that

M <

1 + ^f-j (1 + |*«(«o,xo)|]
1'2 Jf e i^'M |VC?(/i,u»)|du;
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4. By (3.6) we have

5. Differentiate F€ to obtain,

VF€ = 4 V ( —)V*C(1 - |V*€|2) - — D2z^

Definition of ke, (4.3) and (4.9) yield,

Therefore

for some C*. Without loss of generality assume that C* > 1.
6. Choose

h = min{*o,e2 [4(1 + A'*)3(l + I^Uo^

Since h < €2, we have (1 -f ^ ) < (1 + A'*) and therefore

\c\ < 1 ^

and by step 3,

M < j ( l + K')2C'(1 + \z<(to,xo)\).

Therefore,

I <.,(*•>,*o) | < ; (1+ | z((t0,x0) \)[K + \

Now (4.8) follows from the above estimate and (ZE).

We continue by improving the |V0€| estimate.

Lemma 4.5 For every (t,x) € [0,T] x Tld, we have,

*,x)| < K (4.10)
% n~ ^€[€ + ( | z^ar ) |Al ) ] ' V }

for some constant K = K(T).
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Proof: Fix (to,xo) € [0,T] x Hd and set

t^ l^(to,aro)| A

If P€ < 1> (4.10) at (to,xo) follows from (3.6). So we may assume that p€ > 1.
1. For€,A >0 , set,

O€,x = [to - €2Xp\t0 + €2Xp€] x f l ( , B€ = {|x - xo| < £Ap€}.

We claim that there exists A = X(T) > 0 satisfying,

Use (4.3) and (4.8) to construct a constant K = K(T) satisfying,

for all s, t < T. Now suppose that for some (r, y) € 7£d+1, we have

We use the previous estimate with (s,y) = (to,xo) and (t,x) = (fo + €2T,xo + ey)
to obtain,

Since €p€ < 1,

€JiT(|r| + \y\) > In ( l + f \ > In

Hence for A = 1/8A',

2. As in the proof of Lemma 3.2, for any 0 < a < £0,

where
a =

b = /0(VGr(r,.)*|F(«0,-)-H ((to-v)])(io)dT,

= I\VGT{T, •) * [J-T(«0, •) - H*(«o - r, -)])(xo)dT.
7o

c I
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We choose
a = min{to,€2\p€}.

3. Assumption (A6) implies that

Also when to >€2Xp€ we have

However if to < e2Ap£,
{0} XB<C Oe,A

and by (3.2) and step 1 we have

< 7«'(y). Vy€B'.

Hence,

= \(G(t0,•) • VH<(0, .

'(-)~dy+ /
6 € J-R.1-B'

< jW(j) + JG(l,

Since to < e2Xp( and pe > 1, we have,

. K

Indeed, we can estimate the above quantity by a function decaying faster than
the square root, but this sharper estimate will not improve the final estimate.

Next, we estimate |(VG(*o,-)) * #c(*o,#))(*o)| exactly the same way to ob-
tain,
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4. Since ||VGT(r,

5. By integration by parts in the ^-variable, we obtain,

\c\ <

Since a < €2Xp(,

f'(VG(T, •) * g(<p<(t0 - r, .))tf («o - r,
Jo

+ \(VG(a, •) * [H'(t0, •) - H<(t0 - a, -)])(*o))|

Therefore for any y € Be,r € [O,cr] by (3.6) we have,

|ff<(^(to - r,y))^(t0 - r,y)| < |^ |9' (y) < ^ ( y ) -

Proceed as in step 3 to obtain,

< I" I \VG(T,xo-y)\I±q'(£-)dT+ f f \VG(T,xo-y)\^dT
Jo JB' e 2 Jo Jn*-B> e

Also if a =

Finally if a = £o> then by step 3 we have,

\(VG{c,•) * [ir«(«o,•) - H'(to - a,•)]) (xo)|

= |(G('o,-)*[Vtf£('o,-)-V#<(

6. Combine steps 3, 4 and 5 to conclude that

. K
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We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1 This proof is very similar to the proof of Proposition
4.2.
1. Let ZQ be as in Proposition 4.3,i.e.,

Set
K< = (*o)

Since q'(r) decays exponentially, we have

Um - j^ - r = I, Urn (6 |lne|)3/2 K( < oo.
e|lne| 8 *-+ov ' "

(4.11)

2. For a real number r, set

M<

Observe that fe is continuously differentiable with Lipschitz continuous deriva-
tives.
3. For IC > 1 define,

In the next three steps, we will show that for K* large enough, W is a "super-
solution" of (4.4).

Let £, R€ and w€ be as in Proposition 4.2. Then,

fl [z\ - Az€ + ^-w€) - y/lICfl'w*

^'(7)^} - 21 w<| w:
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4. We split the estimate of / into three cases:

(a) | * ' | < * o , (6) | * € | € [ * o , l ] ,

We start with case a. Since ZQ = €(q')~x(€1/4),

By (4.11) we also have

V~e\K(z()\ = y/iKt \z*\ <

for some constant K. Since / £ V > 0,

Using (3.3), (3.6), (4.11), and the fact that W > 1, we construct e0 = eo{T) > 0
such that,

/ > ^K'K\(W - w(), €<eo,t<T,

for any R" > 1.
5. Suppose that \z(\ > 1. Then for sufficiently small e,

/<V = b'l > \.

Moreover, f?(ze) = 0 and by (4.10),

Since q' > 0, we have:

So if jfif* > 2/?, (3.3) implies that / > 0 on {w€ > W} for all sufficiently small
€.

6. Finally we consider the case \z€\ G [̂ o, 1]- In this case, for sufficiently small
€ > 0, we have,

Moreover by the construction of /€ ,

/«'(l*'l)<i, /T(O < o, =»-/c'V > o.
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/ > - 7 = = ^ + 1) - KWIUT - -^=

Ve\z I V€\z€\

Since € < z0 < \z€\ < 1, by (4.10) we have,

We now have,

Hence on {w€ > W}, / > 0 provided that A'* > 2I< and 6 is sufficiently small.
7. Combining steps 3, 4 and 5 we conclude that for Km > 2A\

/ > v^AT*A'c(W - w€) on {u;€ > IF}

for e € (0,€0]. Since by (A3) 1^(0,x) > 1 > |V^ | 2 , the maximum principle
implies that W > w€ for e < €o» (see [28, Section 8] for the details of this
applications.) Also

/ e ( r ) < | r | + / c ( l ) < | r | + 4.

This proves (4.1) for all e < e0. For € > e0, (4.1) follows from (4.3). |

The following lemma will be useful in the next section.

Lemma 4.6 Suppose that there is a bounded open set O C (0, oc) x lZd satis-

/?=liminf inf

Then for every (s, y) € O,

Uminf |^ ( 5 '
(

Proof:
1. Since O is compact, there is €o > 0 satisfying

V(s,y)€(5, e < eQ .

Since <p€ is continuous and h(<p€) is convergent in L]oc we have either

, V(s,y)€O, €<€», (4.12)

or
V(«, y) € A e < £0, (4.13)
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2. Multiply (ZE) (of Section 2.1) by c to obtain,

2VP€(|VZC|2 - 1) = £ { - z \ + Az€) + eO€.

In view of (3.3),
lim€||flc||oo,r = 0.

Set
z*(t,x)= limsup z€(s,y),

( ) ( )
zm(t,x)= liminf z€(s,y).

c->0,<«,y)-*(«,«)

Now, pass to the limit in the above equation to obtain,

| Z ? * . | - l > 0 in 0 if (4.12) holds, (4.14)

\Dz*\ - 1 < 0 in O if (4.13) holds,
The above inequalities are to be understood in the viscosity sense [13]. The
details of this limit argument is given in [28, Lemma 4.1].

For («,y) eO set

d(s,y) = inf {\yf - y\ : (s,y') ^ 0 } if (4.12) holds,

cf(5,y) = - i n f { | y / - y | : («,y')€<?} if (4.13) holds.

Then cf(s,y) solves (4.14) in the viscosity sense and by the comparison results
for the Eikonal equation [13] we obtain

z*(s,y) > d{s,y) if (4.12) holds,

**{s*v)<d{8,y) if (4.13) holds.

5 Monotonicity formula
In this section we obtain an extension of the monotonicity formula of Ilmanen
[22]. Ilmanen proved his formula for solutions of the Allen-Cahn equation (i.e.
(OPE) without the 0C term). Ilmanen's formula itself is an extension of the
Huisken's formula for smooth manifolds moving by their mean curvature [21].

For x,x0 € Ud , 0 < t < t0, let
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Then,

Pt-[2(t0-t)

(X ~ XQ) ® (X - Xp)

— J p '
where / is the identity matrix and ® is the tensor product. For t > 0 and a
Borel set A C 1ld, let fi€(t;A),fi€(t;A) be as in Section 2.2 and define,

e{t; A) =

p{t,x;to,xo)/j
c(t;dx).

Theorem 5.1 There is a constant Cd, depending only on the dimension, such
that

(5.1)^a(*;to,*o)< ,, / p(f,x;fo^o)e^^) + 7 = = .
at i\lQ — tj Jfii y/to — t

Proof: Fix (to,xo). We suppress the dependence on (to,Xo) in our notation.
1. Using (OPE) and (HE) we calculate,

ptp + J

= y Pi? - j ^ p • vpv; - y* e(^)2p+y ̂ ^

32



Since

J [ptf + Vp • Vv>« (*A^ - £w V ) )

2. Let v = v€ be as in Section 2.5, i.e., when |V(^€| ^ 0,

and set

T =

Then,

and

Since ^c + /ic = € |V<^€|2 c?x, we have

T =

Let fc be the second term appearing in the expression at the end of step 1, i.e.,

Integration by parts and the identity £* + /i' = e |Vv?'|2 dx, yield

k =
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where for two symmetric matrices M,N , M : N =trace MN. Explicit formulae
for the derivatives of p imply that for any unit vector v we have,

Hence

J r?(t;dx).

3. Recall that He = h(<p() and VH( - V<p(g{<p(). By integration by parts we
obtain

f Vp • V<p(g(<pe)0( s - f [ApHc6( +H'Vp- V0(]

By steps 1 and 2 we have,

where

4 Since \<pe\ < 1, \H(\ < 2/3 < 1. Hence

• - / •

< i

+ T
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5. To estimate J, we observe that

Since

X-lQ

- [2(to-t)

P I

\H<\ \B'\p

2(«o-«) 2(to-t)

we have

where

Hence

\APH<e<\<
- 0

J < I C{t,x)pdx

6. Combining the previous steps, we obtain (5.1) with

= i(T)1^ / [|y| - 1 + 2 |y|2)2]
J

The monotonicity formula together with the gradient estimate (4.1) yield
the following,

Corollary 5.2 For any T > 0, there exists a constant K = K{T) such that for
any x0 £ Tld, and 0<t<r<tQ<Twe have,

Moreover as € tends to zero we obtain,

a(r;to,xQ) < a(t;*o;£o) i — t— s/tft — n . (5.3)

35



Proof: Since

(4.1) and (5.1) yield,

d 1 f 1 z€

~ra<(0 < "7 r / P—(q'(—)) K*y/e(l + \z€\) -f

Observe that

7r(Qf(—))2dx < 7T(Q'(—J)2!1 + |V2£|2]c?x = ii€(i
2eK v e / y ~ 2ev^ v e n l ' ' J p v

and

^ "" r>o ""

Hence

and consequently

— t J y/t0 —

Now an application of Gronwall's inequality yields (5.2). |

6 Clearing-out
In this section, we follow the proof of [28, Theorem 5.1] to prove an extension
of the cleaning out lemma proved in [22, 28].

Theorem 6.1 For every T > 0, there are positive constants 77, V > 0, depending
on T, such that if

J (6.1)
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for some t,to,£o satisfying

(to-t
m)<t<to < T , (6.2)

then there exists a neighborhood O of (to,xo) such that

liminf \z€(s',y')\>0, V(«,y)€O. (6.3)
(#',y')-+(«,y) c-fO

/n particu/ar,
). (6.4)

Proof: Suppose that (6.1), (6.2) hold for some rj,tm that will be chosen later
in this proof.
1. Holder's inequality yields,

Jp(t,x;to,xoW(t,x))2dx <

for any 1 < p < oo, where p1 is the conjugate of p, i.e.

i + i-i.
P P

Since
\\G(T,-)\\P.<K(P)T-£,

Jp(t,x;to,xoW(t,x))2dx < K(p)(to-t)$
{i-i)\\(e<(t,.))2\\P.

Choose p = d + (5, use (3.10) to obtain

Jp(t,x;to,xoW(t,x))2dx < K*(t0 - t ) \ 0 < e < 1,

for some constants K* and 7 > 0.
2. Continuity of p and the convergence of /ic to fi, implies that there are a
constant €0 > 0 and a neighborhood U of (to,xo) such that for all e < €0 and
(s,y)eu,

t<s-e2,

and

J p(t,x;s,y)ii<{t;dx)<2i1.

Step 1 yields,

a<(t;s,y) = J p(t,x;s,y)[n((t;dx) + i(^(t,
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Here €o may depend on 17, t and U.
3. Use (5.2) with (*o>£o) = (s>^) an<^ ** = $ — £2 to obtain,

-ir) V«;:

Ksfl

Since e~2K>ft converges to one as e approaches to zero, there is 0 < €0 <
satisfying

/ s - t \ A v / ?

( — ) ^ 2 ' c ^ 0 ' (*.

Then by step 2 we have,

a € ( s -e 2 ; s ,y ) < 4r; + 7 f ( s - 0 7 +

for all (s, y) € 17 and 6 < 60- Set

Recall that for any (5, y) € t/, we have f < s — e2 < s. Also for any (s, y) € t/,
and ty to satisfying (6.2) we have (s — t) < 2t*. Now choose t* = tm(rj) so that

IC(s - 0 7 + 4A'v
/^:rf < IC{2Cy + 4A'v^F < 77.

Therefore,
a ( s - 6 2 , s , y ) < 5r7, (s,y)eU, e < e0.

Recall that the above estimate is obtained under the assumption that (6.1)
holds with Mo satisfying (6.2) with t* = ^(77).
4. Let B€(y) be the sphere centered at y with radius 6. For any x € Bc(y),
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for some constant K+. Therefore,

/i€(s-€2;Bc(y)) < min p(s - e*,:r;s,
L*€B€(y)

5. Define
0 =lim inf inf \tp€ (s, y) | .

(6.5)

Let c be any number sufficiently close to one, say J. In this step we will show
that for a carefully chosen 77, we have p > c = 5.

Suppose that /? < | - Then there are €„ -* 0 and (sn,2/n) € U satisfying

\ipin(sn - c2 ,yn) | < I =» |zc-(«B - €2 ,yn)| < en^"

Using (4.1) we construct A'o,no, independent of r;, such that for all n > n0 we
have

!*«-(•„ - 62
n,x)| < en[q-\l) + Ko], Vx € Bln(yn).

Therefore W(^(sn - e»,x)) > W ^ - H J ) + A'o)) for all x € B£n(yn), and
n > no. Hence for n > no, we have,

> f ±W(<p">(en - el,x))dx
JB.n(yn) «n

where Wd is the volume of the d dimensional unit sphere. Now choose

j 1 ( l ) + I<o)), (6.6)

where Km is the constant appearing in (6.5). With this choice of 77, (6.6) con-
tradicts (6.5). Hence p > 7/8.

So we have proved the following. Let rj and t* be as above, and suppose that
(6.1) holds for some £,*o satisfying (6.2). Then there exists a neighborhood U
of (to,xo) such that

/?=liminf inf. \ip€(s,y)\ > 1
<"+° ( ) € i / 8

Now Lemma 4.6 implies that (6.3) holds on any open set O satisfying O C U.
Let O be such an open set. Then by Lemma 4.6,

liminf inf |z c(s,y) |>0,
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and (4.1) yields

< JJ kW(T)?V + Kyf€(\ + \z<\))dxdt.

Now it is easy to show that fi€(O) converges to zero as e tends to zero. Hence
(6.4) holds. |

7 Dimension of T and Equipartition of Energy

Let T and T(t) be as in Section 2.3. Then it is immediate that

r c tuo W x r(0.

Suppose that (to,xo) 0 r. Then there is a neighborhood U of (to,xo) such that
U H r = 0. Therefore

lim / p(t,x',to,xo)n(t;dx) = 0,

and by Theorem 6.1, (to,xo) satisfy (6.4). Hence,

r= u {t}xr(t).

Let F( be the f-section of T. In this section we will first estimate the Hausdorff
dimension of Tt (cf. [16]). Then we will show that f£, defined in Section 5,
converges to zero. Hence proving the equipartition of energy. Our arguments
closely follow Sections 6, 7 and 8 in [22].

The following follows from [32, Theorem 5.12.4].

Theorem 7.1 Let <p be a smooth function in BV(7ld) and n be a positive Borel
measure satisfying,

= sup

Then there is a constant Kd, depending only on the dimension d but not on
and (f, such that

I /
<p(x)fi(dx)

We continue with an estimate of the dimension of the interface.
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Proposition 7.2 For every T > 0 there is K(T) > 0 such that

S(r;BR(x))<K(T)Rd-\ (7.1)

H^iTrDBnix)) < K(T)Rd~\ (7.2)

for all 0 < e < 1, R > 0, 0 < r < T.

Proof:
1. Theorem 7.1, (A5) and (A6) imply that

<(0;to,xo) = Jp(0,x;tQ,a<(0;

for some constant AT, independent of 6.
2. Energy estimate (2.5) yields

S(r;BR(x)) <f(r;Rd) < d < Rd'\

UR> (Ci)^ = RQ. Hence (7.1) holds for all r > 0 and R > RQ with constant
K(T) = 1.
3. Fix 0 < r < T,€ < R < RQ, and x0 € TCd. Then for t0 > r,

li'(r;BR{x0)) < {i<(r;BR(x0))

< [ inf p{r,x;to,xo)]-la€{r\to,xo)
x€BR(x0) (73)

= (4n(t0-

Choose to = r + R2. Then t0 < T + Rl = T.. By step 1, and (5.2) we obtain,

A dr

Since R > £, there is AT = A'(T) satisfying

ot(r;t0,x0)<K, 0 < £ < 1, r < T,

41



with t0 = r + R2. Then (7.3) implies,

>)) < (47r)^ei /if fl*"1, €<R<R0.

Hence (7.1) holds for all R > e.
4. In this step we study the case 0 <R<e. (3.2) yields, that for 0 < r < T,

»<(r;BR(x0)) =

Since R < 6, i ?^" 1 < ii^""1. This completes the proof of (7.1) for all R.
5. (7.2) follows from Theorem 6.1 and the proof of [22, 6.3]. |

In the remainder of this section, we will prove that f€ converges to zero. Our
proof is a direct modification of Sections 7 and 8 in [22].

Let rj be as in Theorem 6.1. Define

:limsup f p{t,x',s,y)n{s;dy)
8it

Then Section 7 in [22] implies that there is S > 0 satisfying,

Hd~2+s(Z^) = 0 for a.e. t € [0, T]. (7.4)

Let fc be as in Section 5. For a Borel set A C [0, T] x Ud define

¥(A)= f £€(t;dx)dt.
JA

Since |£€| = /i% by passing to a further subsequence we assume that f€ converges
to a Borel measure £ in the weak* topology of Radon measures.

Proposition 7.3 £ = 0.

Proof:
1. For € > 0. Let
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where for a real number 6, (6)+ = max{6,0}, b = max{-6,0}. Then

{c = i / - Ac.

2. (4.1) and the proof of Corollary 5.2 imply,

, 0 < £ < 1, (7.5)

for any A C [0, T] x Tld. Hence v* converges to zero, and A€ converges to — f.
3. Fix (s,y) € [0,oo) x Tld, and 0 < a < s. Integrate (5.1) on [0,s - a]. Using
(7.5) and the exponential decay of p we let e go to zero to obtain,

a (s - (7 ; s ,y ) -a (0 ;s ,y ) < - / / — —p{t,x;s,y)\(t;dx)dt
JQ Jnd 2(s - t)

+2Cd{y/s-

Above inequality and step 1 of Proposition 7.2 yield,

o JK* 2(5 - t)

Fix T > 0 and integrate the above inequality against p(s; dy)ds and then use
(2.5) to obtain,

/ / / / «7Jo Jn<< Jo JK' 2(s -

< /
Jo

for some constant C(T) depending on T.
4. Fubini's theorem and the monotone convergence theorem enable us to send
a to zero to obtain,

Jo Jnd Jt Jn* 2(5 - 1 ) ' ' ""

Hence

/ p{t, x; 5, y)fi(a; dy)ds < C(x, t) < 00 (7.6)

for A almost every (*,z) € [0,T] x TCd.
5. Fix (t,x) such that (7.6) holds. For a € (t, t + 1] define,

0 = ln(s - t)
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Then (7.6) implies that

/ hit + e^dpKoo. (7.7)

We wish to prove that
lim his) = 0.
sit

Clearly (7.7) implies that h(t + e^) converges to zero on a subsequence. We will
now use the monotonicity of h to prove the convergence on the whole sequence.
6. Following [22], for 7 € (0,1] we choose a decreasing sequence Pi -+ —00 such
that

Thenforany/?€[ft ,A-i) ,

= J

Use (5.3) to obtain,

^ a(t + c^; t + 2e^,x) + Cd \V2eP - c^ -
(7.8)

Also the previous identity with /? = /?, yields,

7 > h(t + c f t) = Q(< + e*; t + 2e^,x). (7.9)

7. We claim that for any S > 0 there is 7(<5, T) > 0 satisfying

a(to;to+Rux)<(l + 8)a(to;to + RQ,x) + 6, (7.10)

for all 0 < t0 < T + 1, x € ftd and 0 < RQ < Rx < (~f(6) -f l)/?o. This
result follows from (7.1) and it is stated in [22, Lemma 3.4(iv)]. We postpone
the elementary proof of (7.10) to the next step and complete the proof of the
proposition.

We use (7.10) with,

to^t + e13' Rl=2el3-e0i, Ro = efii.
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Then

for some constant K. So if # 7 < 7(<S), (7.8), (7.9) yield,

Above holds for all S > 0 and 0 < 7 < 7o(£). Now pass to the limit i -4 00,
7 —• 0 and then S —¥ 0, to obtain,

lim /i(s) = 0,

for every (t,x) satisfying (7.6). Hence above holds for A-almost every (t,x). On
the other hand, (7.4) and (7.1) imply that

lim sup h(s) > 77 > 0
Bit

for //-almost every (*,x). Since A = — £ < < /x, we conclude that A = — £ = 0.
8. In this step we will prove (7.10). Recall that

111a(*o;*o + r,x0) = J f ^ J e"1 1 1^ fi{to;dy).

Without loss of generality we take xo = 0. Set fi(dy) = /i(f0; ̂ y),

For any 0 < a < 1,

For S > 0
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where

Since by (7.1), fi({\y\ < R}) < KRd~l, and the integrand is radially symmetric,
by integration by parts we obtain,

JA W*T)J IT

By a change of variables,

for sufficiently small S.

8 Passage to the limit.
For (t,x) € [0,oo) x Tld and 0 < e < 1 recall that

( if |V^€(t,x)| = 0,

where i/0 € S''"1 is any unit vector. Let A C [0,oc) x 7ld x S**""1 be a Borel
subset. Set

m€(^) = - f z\{t,x)dm€.
JA

We stcirt with the following lemma.

Lemma 8.1 For any T > 0, a > 0 t/iere are constant KQ = A'(T, a), A' =
K(T) such that for any Borel set B C Hd, we have

sup / / (1 + \z€(t^x)\)Qfi€ (t;dx)dt < Ji*Q(l-f |B|), (8.1)
o<c<i Jo JB

(zi(t,x)f n<(t;dx)dt <K{1 + V~e\B\). (8.2)
o JB
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Proof: Set

Energy estimate (2.5) yields,

[
Jo JB
F

Jo

f (1 + \z<\)Q S(t;dx)dt

where flc denote the complement of ft. Observe that for any r > 1,

(l + r ) ° - l <ar max {l, (1 +r ) 0 " 1 } < ar(l + r) a .

We use the above inequality and (4.3) to obtain,

[(1 + |*«|)° - l]/i«(t;<fc) = [(1 + |2'|)° ~ 1] j - e (9'(7))2(l^^l2

(l + |2'|)a+1(<z'(7))2

<Ka sup
<

sup
<

= C'(a) < oo.

This proves (8.1). To prove (8.2), first recall that

fT f e(<p<t?dxdt= fT I \(z\f{q'fdxdt
Jo Jnd Jo Jn* *
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j
where q' is evaluated at {ze/e). Hence by (2.5) and (4.1) we have

- /" f 1 « 2 ' 2 ( <A
Jo JB 2e V /

< / T / jW)l(j')1ir*+ I* I l(zlf(q>f(\Vz<\2-l)dxdt
Jo J R ' < Jo JB *•* v '

< Cf + A ^ / / ^ (*«)2 («')2 (1 + |*'|) <**<ft

5(v»f)2d«A+ / T / ±lztf(q'f\z<\dxdt
* Jo JB *e\ Jo JB

By (4.6) and (2.5) we have

I <9\? + fT I 4(«')VlX|,.|>Jnd Jo JB
 e

<C;+ f f ^ sup rq'(-)dxdt
Jo JB € r>i €

Next we choose a subsequence, denoted by €, such that m€ and m€ converge
to m and m in weak*, respectively. By a slicing argument (cf. [15, Theorem
10, page 14]), we conclude that

t, x, n) = df fi{t; dx)N(t, x\ dn),

for some probability measure N{t,x,-) on Sd~l. Moreover (8.2) implies that

dm = t;(£, x, n)cfm

for some v € L2(dm).
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Proof of Theorem A.
Following [22, Section 9.3], for t > 0 let V£(t; •) be the unique varifold (c.f.

[27]) satisfying

and (V€(t; •)) is supported at (ve(t,x))± , i.e.,

V€(t;dxdS) = S{{l/t)x){dS)fi€(t;dx).

1. It follows from (2.5) that,

sup / / [e(<^)2 + IV0C|21 dxdt< ex*. (8.3)
0<e<l JO J l J

In this step, we will show that

rT r r 1 i 2

sup / / € — A<p€ + -TTI7 (V^€) dxdt <OO. (8.4)
0<€<l Jo i [ € J

Since ^2 = 2W, (OPE) yields that

€ —

(6€)2

Theorem 7.1 and (7.1) yield,

Hence,

<|2 + A' («f )2] dx dt.

Now (8.4) follows from (8.3) and (2.5).
2. For any smooth vector field Y the definition of V" and the definition of the
first variation (c.f. [27]), imply

SV((t;-)(Y) = f DY:SV((t;dxxdS)

= I DY:(I-vl®v€)nt(t,dx).
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Let T be as in step 2 of Theorem 5.1. Recall that

(/ - i/€ ® v€)fi€ = (1/ ® i / )£

We now proceed as in Theorem 5.1 to obtain,

6V<(t;.)(Y) = -

+ I DY:v€®v€d?

Hence

\6V<(t;.)(Y)\ < ^ ( v » « ) ] J

3. By Fatou's lemma and (8.4) we have

/ limmf /cf-A^ + I r ^

Hence for almost every * > 0 there is a constant K(t) < 00 satisfying

liminf fe | - A ^ C + ^T^ ' (p € ) l

Step 2 together with Proposition 7.3 yield,

liminf \6V<(t;.)(Y)\ < K(t) (J\Y\2/,(t;

for some constant K(t) < 00 for almost every t > 0.
4. Fix t > 0 such that /?(£) < 00. Choose a subsequence en such that V€n(t; •)
converges to a varifold V and

Km\6V<'>(t;.)(Y)\<

Then
| = lim \6V<"(t; -){Y)\ < ^(Oll^lloo. (8.5)

Also observe that
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Therefore by Allard's Rectifiability Theorem [1, 5.5(2)], (7.2) and (8.5), we
conclude that /i(t, •) is (d— l)-rectifiable. Moreover since a rectifiable varifold is
uniquely determined by ||V||, we conclude that V is equal to the varifold V^.)
defined in Section 2.5.
5, In the previous step we proved that for almost every t > 0, SV^t^) is (d — 1)-
rectifiable and

<liminf (je ( J 2 )- A ^ + ±W(<p<)^dx\ (J\Y\2/i («;

Hence for almost every t > 0,/i(f, •) has a generalized mean curvature vector
f,x) and

J Wt,x)\2n{t\dx) <lim ^WV)1 dx.

Step 2 implies that H € L2 (0,T) x TZd; dt x n(t;dx)), and for later use we
note that,

ffY-H(t,x)dtfi(t;dx) = -Virn ffeYV<p( I -A^ + ^W '(v?«)l dxdt,

(8.6)
for any compactly supported smooth vector field Y. I

Proof of Theorem B:
1. Let ^(t,x) be a smooth compactly supported function. Then the action of

the distribution 6t — A0 on $ is given by,

/ (*) = ff (0t - Afl) * dx dt = lim ff {0\ - &6€) * dx dt.

Then by (HE) we have,

/ ( * ) = - l i m ffg{<p€)<p€
t<i>dxdt

= -lim JJ±W(j))*zl9dxdt

= lim y/^dm^-lini /f $ z\d?

= ff v(t,x,n)*{t,x)dm- lim
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We claim that the second term in the last expresion is equal to zero. Indeed,
since |£e| < /i£, by Cauchy-Schwartz we obtain,

By Proposition 7.3 and (8.2) we conclude thatthe above term converges to zero
as e tends to zero. Therefore (2.10) holds.
2. Let Y be a compactly supported smooth vector field. The definition of
v(f,x,n) yields that

L(Y) =

= - l i m [Iz€
tv

€-Yfi€{t;dx)dt

= -lim Ifz\v€-Y^(q\£))2dxdt+\\m Uz^-Yd^dU

As in step 1, we can show that the second term in the above expression is zero.
Next we use the identities,

together with (OPE) and (8.6) to obtain,

lim / / ^(q'( j))2f«• YB'dxdt

+ lim fl eY • Vv?e \-Aip" + ^W'(<pf)] dxdt

Um
e-tO

dxdt

(8.7)
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3. In this step we show that E€ converges to zero. By (8.4) we have,

sptY

By (4.1) we have,

Hence

E<<K(Y) (jj f \
\sptY

Now by Proposition 7.3 and (8.1) we conclude that the limit of the above term
is zero.
4. In the next two steps we will show that 9 £ L]oc(dfi) and that the limit of I€

is equal to

In view of (2.5), there exists a sequence of smooth functions 9k satisfying,

lim \\9k - 0| |2 ,T = 0, sup | |V^||2 ,r < oo,

for every T > 0, where |H|p,r denote the I/p((0, T)xlZd) norm. Fix A > 0, T > 0.
Then by Theorem 7.1, (7.1) and (2.5), we have

\9k-9e\dt»(t;dx)< [ f [$\0k-0i\2 + ±
Jo Jnd l *A

< K[X\\6k - 6th,T\P(0k - 6t)h,T + j).

Hence 9 € L}oc(dfi) and
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Moreover 7(0) is well-defined and

1(9) = - JBrn̂  / / / * * " • Ydm.

5. Let 1(6), 0k be as in Step 4. Then,

I (9)-I1 = ll^(q'¥v'-Y(6(-ek)dxdt

- n

[ffn-YOk(dm(-dm)

f[fn-Y(6k-e)dm.

Since

Proposition 7.3

lim sup |
€-•0

1
€

and

I€ -

the

1(6]

2i/e -Ydxdt — n-Ydr

convergence of me to

1 < lim sup / / —
€.+o \JJ ^

+ \fffn-Y{

n<) = v€-YdC

m yields,

tf)2v'.Y{9<

-

-6k)dxdt

Recall that ^€ converges to 0 strongly in L2
loc (c.f. Proposition 3.4). So we

proceed as in Step 4 to obtain,

lim sup / / i {q1)21/ • Y (0€ - ^ ) dx dt

Umsup / / \0<-Ok\dtf(t;dx)
€-•0 JJ aptY

for any A > 0. Now let first /: and then A go to infinity to show that I1 converges
to I (9).
6. Combining the previous steps we conclude that

vn -Ydm = - ffUon + H) • Ydm,
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for any smooth vector field Y. |

Theorem C now follows from an attendant modification of Section 9 in [22].
Main tool in this proof is the following identity which is derived as in Step 1 of
Theorem 5.1. Let <j> be a compactly supported smooth function. Then,

<t>(x)f(t;dx) = -

-6 /

(8.8)
Since by (8.6)

If Y • (H + nO)dm = lim Jf eY - Vip'tfdxdt,

for any smooth vector field Y", (2.12) now formally follows from (8.6), (8.8).
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