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1 Introduction

In this paper we show that viscosity solutions to curvature evolution equa-
tions may be obtained as limits of minimizers for I -limits of inhomoge-
neous, anisotropic singular perturbations for certain nonconvex variational
problems. We consider the energy

I(u):= /Q W (u(z))dz

where (2 is an open, bounded, strongly Lipschitz domain of RN, v :Q — R",
and W supports two phases, i.e. W has two isolated (global) minimum points
a and b. The minimization of the energy E(.) subject to fixed volume fraction
6,0 < 6 < 1, admits infinitely many solutions which are piecewise constant
measurable functions of the form u = x4a + (1 — x4)b, with meas(A) = 6
meas(§2). In search of a selection criterion for resolving this non-uniqueness,
we fix an initial phase-a configuration, Ag, and we introduce the family of
perturbed problems

It (v) :=/QW(u(z))d:c+./062A2(::,Vu(:c))dz+/nefh(z,u(z);.40)dz:

where €,h > 0, 8" Ao is the reduced boundary of Ao (see Section 2) and
A(z,.) has linear growth. A particularly interesting example of the last
contribution to the total energy is given by the density

d(z,i‘Ao))

fo(z,u;Ag) := |u = x4.(z)a — (1 = x4,(z))bPg ( (1.1)
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where d(z,8*Ag) denotes the signed distance from z to 9" 4.
In order to study the behavior of minimizing sequences, we rescale the
energy to obtain

EM(u; Ag) :=/ﬂ%W(u(z))da:+e/ﬂAz(z,Vu(:z))d:c+/nfh(z,u(:r);Ao)dz.

Using the results by [BF] with f, = 0 (see also [Mo)] for the isotropic, scalar
case, [Bo] and [OSt] for the anisotropic scalar case and [Ba), [FT], [KoSt] for
the isotropic, vectorial case), we identify the I'(L!) -limit of { E*(.; A)}¢>0,as
€ — 0,

fB'AﬁQ H(:L‘,I/(x))dHN_l(l‘) +fQ fh(l‘,u(IE);Ao)dl'
ifu=x4a+(1-x4)d
Jn(u; Ag) = and Per(A) < +o00

400 otherwise,

where H is given by
H(zo.v) = inf { || WIEl) + A%(a0, VE(w))dol€ € AW
Aw) ={ee H(QuRM|E(y)=aifly-v=-1 &y)=bify-v=1]
and £ is periodic with period one in the directions of vq,... ,uN_l},

{v1,...,VN=1,v} forms an orthonormal basis of RN and S, is the strip
N 1
S, =4y€eR ||y-u|<-2- .
In the above A®(z,.) stands for the recession function of k(z,.), given by
A(z,t
A®(z,y) := limsup Az, ty)
t—400 t
and AN-1 is the N — 1 dimensional Hausdorff measure. Denoting by
u_',-‘,,,1 =axgn + (1- Xah,, )b

the minimizer of Jy(.; A;‘) obtained as L! limit of a sequence {vz,h} of mini-
mizers for {E(., A;?)}c>o, then {u;‘ 1} generates a (generalized) minimizing

2

I



movement u(t) := ax4, + (1 — x4,)b in the sense of De Giorgi [DG2] and
we prove that, in accordance to De Giorgi’s conjecture, the boundary of A;
moves with normal velocity

V=20(Ky+a), (1.2)

where @ is an increasing real function, a is a function depending on the
derivatives of the inhomogeneous, anisotropic surface energy density H and
K g is the (anisotropic) curvature of

Ft = aAt,

associated to H.

Our results hold globally in time, past possible singularities that may
arise in the evolution {I';};50 even for smooth initial data I'g. We conclude
that the notion of minimizing movements may indeed unify problems in the
calculus of variations and in particular it can relate singular perturbations
and their I'-limits to generalized curvature flows. A prototypical example,
capturing many important features of this class of equations, is the motion
by mean curvature, i.e. where

N-1
V=k= Z Ki,
1=1

V is the normal velocity of the interface I'y and «,,...,k,—; are its principal
curvatures.

As noted earlier, surface evolutions depending on their curvature tensor
can start out smooth and yet at a later time they may develop singularities,
change topological type and exhibit various other pathologies. A great deal
of work has been done recently in order to interpret the curvature evolution
of surfaces past singularities. Here we will be using a combination of the so-
called level-set and distance-function approaches. For a detailed description
of all approaches, their relationship, as well as their consequences, we refer
to the papers cited below and references therein.

The level set formulation represents the evolving surface as the level set
of an auxiliary function solving an appropriate nonlinear partial differen-
tial equation. This approach has been extensively developed by Evans and
Spruck in [ES1] in the case of motion by mean curvature and, independently,
by Chen, Giga and Goto (see [CGG]), who considered evolutions of the type
of (1.2). In both works, the analysis is based on the theory of viscosity



solutions to fully nonlinear second order parabolic equations, which were
introduced by Crandall and Lions in [CL] and Lions in [L]. For a detailed
overview of the theory of viscosity solutions as well as a complete list of
references (until at least 1991) we refer the reader to the User’s Guide [CIL]
by Crandall, Ishii and Lions.

The distance-function approach, introduced by Soner in [S] and later
extended to very general situations by Barles, Soner and Souganidis (see
[BSS]), is a more intrinsic one. It describes the motion in terms of the
properties of the distance function to the evolving surface. For the precise
relation between the two approaches, as well as their consequences, we refer
to [BSS].

The generalized mean curvature evolution {Ft}tzo, defined in the vis-
cosity sense, starting with a given closed surface Iy C RN exists for all
t > 0. The sets obtained from the level set approach are uniquely defined
as opposed to the ones obtained by the distance function, unless there is no
interface fattening. The last issue is rather intriguing and we return to it
later in the paper. Finally, the generalized mean curvature evolution agrees
with the classical differential-geometric flow, as long as the latter exists.

These notions of generalized motion have been proven in several occa-
sions to be the right way to extend the classical motion past singularities.
One of the most definitive results in this direction was obtained by Evans,
Soner and Souganidis (see [ESS]), who proved that the generalized mean cur-
vature motion governs the asymptotic behavior of solutions to the following
semilinear reaction-diffusion equation (Allen-Cahn model)

1
u;\—Au’\+:\-2-W'(u’\)=0 in RN x (0,00),

in the limit as A — 0%, where W is a double well potential with wells of
equal depth. In a statistical mechanics framework Katsoulakis and Sougani-
dis studied the asymptotic behavior of Ising particle systems with dynamics
of Glauber-Kawasaki type ([KS1]) and simple Glauber with long range inter-
actions ([KS2]), obtaining again after appropriate rescaling of the stochastic
system, generalized mean curvature evolutions, past possible singularities.
The work on this paper had just started before the conference on ”Surface
tension and movement by mean curvature ” was held in Trento in July,
1992. There, discussing with DeGiorgi [DGF] we realized that it could be
extended to a more general framework. During that same conference [ATW]
announced their results on the time evolution of A,, starting directly from
the I-limit Jy(.; Ao), assuming that H is homogeneous and f, is given by
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a multiple of (1.1) with ¢ = 1 and proved that such evolutions agree with
classical smooth flows starting with smooth initial data. Our methods differ
from those of [ATW] except in what concerns the regularity properties of the
reduced boundaries " A;‘ +1 (see Theorem 3.5). The proof of this regularity
result presented here is that of [ATW], and by completeness, as well as
for convenience for those readers less familiar with concepts from geometric
measure theory, it is included in the Appendix.

The paper is organized as follows: in Section 2 we recall some results
on functions of bounded variation and sets of finite perimeter as well as
the integral representation for the I-limit of {E*}5¢ in the case where
fn = 0. Furthermore, we introduce the notion of viscosity solutions and
discuss some of their fundamental properties. In Section 3 we determine
the T-limit J; of {E"}cs0 in the general case, we construct a minimizing
movement associated to minimizers for J, and in Theorem 3.6 we deduce
the Euler-Lagrange equation satisfied by each of these minimizers, namely

M o%H
Sfu(z,b; A;‘) - fulz,q; A;‘) = Ky(z,v(z))+ Z ax_ay‘(a:,u(:r))
i=1 Ll

h.1 at z. This result relies

for a.e. z € Q2 and where v(z)is the normal to 9" A}
heavily on the apriori knowledge of smoothness properties of the interfaces,
Theorem 3.5. In Section 4 we prove that a minimizing movement is contained
in the unique viscosity solution {I';};>¢ of (1.2); if such a solution has no

interior then the minimizing movement coincides with the viscosity solution.

2 Preliminaries

In what follows Q C RN is an open, bounded, strongly Lipschitz domain,
n,N > 1, {e1,...,en} is the standard orthonormal basis of RN and M™*VN
is the vector space of all n x N real matrices. ¥ A € M™*N then ||4] :=

\Vir(AT A).
Given v € SN-1 := {z € RN | |x| = 1}, we denote by Q, an open
unit cube centered at the origin with two of its faces normal to v, i.e. if

{n1,...,vN-1,v} is an orthonormal basis of RN then
1 1
Q,:= {zelRN [1x-yl< 3 |x-v|< §,i=1,...,N—l}.

Definition 2.1 ([DG1]) Let J,Jo : L}(;R") — R be a family of func-
tionals. We say that Jo is the T(L'(Q) limit of J, if
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i) given any u € LY(Q; R™) and any sequence {u.} such that u, — u in
LY(Q;R"), then
Jo(u) < lim(i)ixf Je(ue);
€=

ii) for every u € L'(Q;R™) there ezists a sequence {u.} such that u, — u
in L}(2;R™) and Jo(u) = lim  J(u).
€¢—0 ’

We recall briefly some properties of functions of bounded variation and
sets of finite perimeter. For more details, we refer the reader to Evans and
Gariepy [EG], Federer [F], Giusti [Giu] and Ziemer [Z)].

Definition 2.2 A function u € L1(Q;R") is said to be of bounded variation,
u € BV(Q;R"), if for alli € {1,...,n},7 € {1,...,N}, there ezists a finite
measure p;; such that

J o) 5@ = - [ plais(a)

for every ¢ € CX(). The distributional derivative Du is the matriz-valued
measure pu with entries p;;.

Definition 2.3 A set £ C Q s said to be of finite perimeter tn Q (of
finite perimeter, when @ = RN) if xg € BV(Q), where xg denotes the
characteristic function of E. The perimeter of E in § is defined by

Perg(FE) := sup {/Edjv o(z)dz | o € CHORN), @< 1} .

Theorem 2.4 [Isoperimetric Inequality]
If E is a bounded set of finite perimeter in RN then

Ln(E) < C(N)Pergn(E)¥=1
where Ln stands for the N -dimensional Lebesque measure in RN,

Definition 2.5 If E is a set of finite perimeter, we say that z¢ belongs to
the reduced boundary of E,zo € 0"E, if there ezists vg(zo) € SN~ such
that

i) Perp(z,,)(E) > 0 for all € > 0;

.o . 1 - .
it) (1_1.151+ TeasBEe) fB(zo,() Dxg = —vg(zo), and vg(zo) is called the mea-
sure theoretic unit outer normal to E at zo.
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Theorem 2.6 [Structure theorem for sets of finite perimeter]
If E has locally finite perimeter in RN, then

i) O°F = olj Fy, UG where HN=Y(G) = 0 and F} is a compact subset of
k=1
a C'—hypersurface ;
ii) Pers(E) = HN=Y(8*E N A) for every Borel set A C RN.

Theorem 2.7 [Generalized Gauss-Green Theorem]
If E C RN has locally finite perimeter then

/ div p(z)dz = / ¢-vpdHN Y (z)
E 8*E

for all o € C}H(RN; RN).

Definition 2.8 Let E C RN be a set of finite perimeter, zo € RN. The
(N = 1)-upper density of 0*E at z is defined as

, HN-1(8*E n B(zo,¢))
«N-1 = —— 9
0 (0"E,z9) .-llcnlgl;xp a(N — 1)eF-1T

where a(N — 1) := HN"Y(Bgn-1(0,1)).
It is possible to prove that if zo € 0" F then
¢*N-1(0"E,z0) =1.

Lemma 2.9 If E is a set of finite perimeter then

diam F
<
Ln(E) L N

Per(E).
Proof Fix zo € E. By the Gauss-Green Theorem (see Theorem 2.7)
LN(E) = [ div(z=z0) 7.
= % Joep(z = 20) - vE(x)dH N1 (2)
< ¥(diam E) 5. dHN-(2)
= f(diam E)Per(E),
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where we have used Theorem 2.6 (ii). ]

Let E be a set of finite perimeter, zo € RN and let
m(r) := HN"Y(8"E n B(zo,7)).
If E was smooth, e.g. if E was a polyhedral set, then
m'(r) = AN-Y(L,)

where L, is the boundary curve of §*FE N B(zo,r). Suppose that zo € extE
and let 2§ =projs-gxo. If we consider the cone

Ce = 21 x (8"E N B(zo.7)) =

= {Az;+ (1= Az | z € "EN B(ao,7), A €[0,1]}

where z; = 0z + (1 — 0)zg, 6 € (0,1), we see that due to the isoperimetric
inequality in RN~ (see Theorem 2.4)

lim HN=Y(@"Co\ (87E N B(zo, 7)) < C(N - 1)[m(r))¥=2
and so, there exists 6 € (0, 1) such that
HN-Y9°Cy \(0"E N B(zo,7)) < 2C(N = D[m/(r)|¥=2.  (2.1)

Note that
Co = (z0 X (0"E N B(20,7)) \ (z0 X 01.Cs)

where 07 C stands for the lateral surface of Cg. In this case, 3*(E U Cp) =
0*E\(30*E N B(zo,7))UX where X = 0;Cq = 0"Cg\(0"E N B(zo,7)) is the
lateral surface of a cone satisfying, by (2.1),

HN=Y(X) < C'(N = 1)[m/(r)] 772, (22)

If o €int E then the cone Cp will be interior to the polyhedron and
(?"(E\Cg) = 0‘E\(8‘E n B(Io,‘l‘)) ux. if Zg € 8‘E, let Ty =20 — TVE(IB())
and it is easy to verify that

8" (E\Cs) = 8"E\(0"E N B(z0,7)) U X
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and that (2.2) is satisfied. We conclude that for every zo € RN there exists
a set Q (where Q = EU Cy if 29 € extE and Q = E\Cy if zo € E) such
that EAQ C B(zo,r),

0" (EAQ) C (0"E N B(zo,7)) U KX,
HN-Y(X) < C'(N - 1)[m! ()7,
3*Q C X U (8"E\B(zo,1)).
Here, and in what follows, we use the notation
AAB :=(A\B)U(B\ A).

The analogue of this property for arbitrary sets of finite perimeter may be
stated as follows.

Lemma 2.10 There ezists a constant C = C(N — 1) such that if E is a set
of finite perimeter, o € RN, m(r) := HN-1(0"E N B(zo,7)) and m(r) > 0
for all v > 0, then for Lia.e. > 0, HN-1(8"E N 8B(z¢,7)) = 0 and there
ezists a set of finite perimeter Q such that

QAEC B(l‘o,‘r‘),
0" (EAQ) C (0"E N B(zo,7)) U X,
HN=Y(X) < C(N - 1)[m!(r)] 7=

and

8"Q C (8"E\B(zo,7))U X.

The proof of this result relies heavily on geometric measure theory, and
so we only sketch the proof following [ATW].

Using slicing properties of integral currents by Lipschitz functions (here
we use the slicing of 8*F by p(z) :=|z — z¢), for L1a.e. 7 > 0, we have
that 9(8"E N B(zg, 7)) is an integral N — 2 current (see [F], 4.3) with mass

M(8(8"E 0 B(zo, 7)) < C1(N)m!(r).

As 8[0(3"E N B(zo,r))] = 0, there exists a N — 1 integral current X with
0X = 3(0"EN B(zo,r)), supp X C convex hull 3(8" E N B(zo, 7)) such that

HN-Y(X) < Cy(N)[M(8(0"E N B(zo,r)))|¥=2
< Ca(N)[m!(r)) 7= (2.3)
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where we used a result by Federer (see [F] 4.2.10 and also [A2]) ensuring
the existence of X satisfying the isoperimetric inequality (2.3). It suffices to
consider the cone

C =29 x (0"E N B(zo,7)) \ (z0 X X).

The following necessary condition for lower semicontinuity can be found
in Reshetnyak [R] (see also Goffman and Serrin [GS] and [Fo)).

Theorem 2.11 Let f € C(2x SVN=1) be a nonnegative function and eztend
f(z,-) as a positively homogeneous of degree one function. If

[, F@ve@)dHN (@) < liming f(z, v, (2))dHN " (2)
8*EnQ 400 s

9*E

whenever E,, E are sets of finite perimeter such that Ly(E,AE) — 0,

n—+400
then f(z,-) is convez for every z € Q.

Let W : R® — [0,400) and A : @ x M™*} — [0,400) be continuous
functions satisfying the following hypotheses:

(H1) W(u) = 0if and only if u € {a,b};

(H2) there exists a constant C > 0 such that
Sl ~ C < W(w) < C(1+ luP)

for some p > 2, and for all u € R";

(H3)
é”A” - C < A(z,A) £ C(1+ ||4])

forallz € Q,4 € M™*N,
Let A% : Q x M™*N — [0,+00) be the recession function of A, i.e.

A*®(z,A) := limsup M—)

t—+00 t

In addition, we assume that

10
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(H4) there exist 0 < m < 2,C’, L > 0 such that

A%(z,tA)

(A°°)2(1,A) - 12

LA
SO

for all (z,A4) € @ x M™*N and for all t > 0 such that t||A|| > L;
(H5) for all zo € Q2 and for all € > 0 there exists § > 0 such that

| A%(z0, A) — A%(z,A) |< €C(1 + ||A])

whenever |z — z¢|< §;

(H6) for every h > 0, fr : @ x R* x {A C RN | A is measurable} —
R is a bounded, Carathéodory function (i.e., for any A, f(-,-,A) is
measurable in the first variable and continuous in the second one)
such that

| fa(z,us A) |< ga(LN(A))1 + [uf)
for all v € R" and some g, € L{X.(IR);

(H7) fi(z,a;A)=0ifz € A, fa(z,b;A)=0ifz ¢ A.

We consider the family of anisotropic singular perturbations
EMu, A) := / [-l-VV(u(z)) + cA2(a:,Vu(:c))] dzx +/ fu(z,u(z); A)da
QL Q

for €,h > 0. Heuristically, we want to show that as h,e — 0%, minimizers of
E!" will converge in some sense to a piecewise constant u with two phases, a
and b, and the interface separating the two phases moves by mean curvature,
ie.

u =|Vu| ®(Ky)

where Ky is the mean curvature of the interface associated to a possibly
anisotropic surface energy H and @ an increasing real function, related to
f (see Sections 3 and 4 below).

An example of functions f} satisfying (H6) and (H7) for which this prop-
erty is satisfied is given by (see Section 4)

e, 15 4) =] = axa(2) = B0 xa) P g (A2TA))

h
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and d is the signed distance function (see (2.13)).
Let v € SN-1 and define

A): ={ee FI R n{|x-v|< kR [€(y) = aifly v = -3,

€(y)=bif y-v = ] and £ is periodic with period one
in the remaining directions vy,...,uN_1},

where the boundary values of £ are understood in the sense of traces. Recall
that a function £ is periodic with period one in the direction of v; if

€(y) = £(y + kvi)
forall ke Z,ye R*n{|x-v|< i}.
We define the inhomogeneous, anisotropic surface energy density
H(zo,v0) :=inf{fo, M W(E(y))
4y (A=) (20, VEW)dy | M > 0,6 € A(wo)}.

In [BF] it was shown that
F(L_’-()Q))

I( ot JO (24)
where
L(w) ;=/ W (u) + eA¥(z, Vu(z))dz, u € H'(Q;R™)
Q€
and
Jo0 ana H(z,v(z))dHN-1(z) if u(z) = axa(z)+ b(1 — xa(2),
Jo(u) := Perq(A) < +00

400, otherwise.

As remarked by Gurtin [Gu2], the assumption that the two potential wells
of W have equal depth involves no loss of generality, as we can always add
an affine function of u to the functional E*.

In the isotropic, scalar-valued case,i.e. u: 2 — R and A = || - ||, the
I'(L}(Q))-limit of I,Jo, was studied by Gurtin [Gul], [Gu2] and Modica
[Mo). This result was generalized by Owen and Sternberg [OSt] and by
Bouchitté [Bo] to anisotropic functions A with linear growth such that A2 is
convex. The isotropic vector-valued case, v : 2 — R™(n > 1) and A = || - ||,
was studied by Kohn and Sternberg [KoSt], Sternberg [St] and by [FT).

12
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We remark that, as Q is a strongly Lipschitz domain, Perg(A) < 400 if
and only if Per(A4) < +00. Also

Proposition 2.12 i) H(z,v) is continuous for every v € SN-1;

it) H(z,-) is convez, positively homogeneous of degree one for every r €
Q;

11i) there ezist a,3 > 0 such that
a< H(z,wv)<p
for every (z,v) € @ x SN-1,
Proof

i) The proof can be found in [BF], Proposition 2.8.

ii) Due to Theorem 2.11, it suffices to prove that if Ex, E have finite
perimeter, Ln(EyAE) Mwt 0, then
—+00

/ H(z,vp(c))dHN " (z) < lim inf H(z,vg, (2))dHN " (2).
*ENQ k—+

—+00 JI*ENQ

Indeed, by part ii) of Definition 2.1 and by (2.4), for every k € N there
exists ux € H!(Q;R") such that

1
lluk — axex — 8(1 = xg, )|l < z

- 1
La(w) - [ Hwp@)dHN (@) < 1,
k

for some ¢, — 0%. Then u; — axg + b(1 — xg) in L! and by Definition

k—+o0

2.1 (i) and (2.4)

Joegng H(z,vg)d AN

IN

liminf I, (ux)
oo
= lltinlgof Jor g H(2,vE,(2))dHN ") (2).

iii) It is easy to see that (H3) yields

13



1
Zl4ll < A=(z, 4) < ClA.
Hence, given & € A(v) defined as £o(z) := (z - v)b+ (1 -

H(z,v) < [o, W(ko(y)) + (A%)*(z, VE(y))dy

b—a
2

< Jo, W(Eo(¥)) + C2 || Véol(y) |I? dy

1
=2 [W(tb+(1-t)a) + 252 + C? |6 - a 2] at
= 0.

On the other hand,

H(zv) = infeeai oo | MWE) 7 Az, VEW))dy

4% — || VE&( d
> M) \/ (€W) & L IVew) |l dy
= & _nf /Q CN\/W e(y IVEw) || dy

because if 7 € A(en) then £(y) := n(Ry) € A(v) where v = RTen,R is a
rotation, @), = RTQCN and

Jou VIWEWNIVEW) Il dy = frrq,, VR || Vi(RYR || dy

= Jo., W(n(z) Il Va(z) | da.

\%
E
=

By results in [FT],

o:= infeeuien) Jo., VWE®W)) Il VE(Y) Il dy
1
= inf{f2 VW (g(®)) |g'(t)] dt | g is piecewise C?,

(1) = e () =)

which is the geodesic distance between a and b with respect to the Rieman-
nian (degenerate) metric associated to vVW. Thus a > 0. ]

Now we recall the level-set definition of generalized curvature evolution

with normal velocity
V=&(Ky+ a(z,v)) (2.5)

14
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where @ is increasing, H(z,-) is as before, homogeneous of degree one, and
convex, Ky is given by (3.12) in Section 3, v is the unit normal to the
interface and also V2H € C(RN - {0}). In addition

2H(z,
az,1) = E T (26)

Given a closed set Ty C RN, n > 2, choose h € UC(RN), where UC(2)
denotes the space of uniformly continuous functions defined on 2, satisfying

To = {re RN :h(r) = 0} (2.7)

and consider the curvature evolution PDE associated to H and &

= vule (oo {u v (g ) 74 +o (e o) }) =0 @9

in RN x (0,00)
u(z,0) = h(z) in RN. (2.9)

In the particular case of motion by mean curvature, ®(r) = r and
H(z,y) = |y|, the above equation reduces to

Du® Du\ ., ] _ . n
Uy tr[(I IDul? )D ul=0 in R" x (0,00). (2.10)

We consider the closed sets
= {r € R" : u(r,t) = 0}, t>0 (2.11)

and expect that {T't};>0 is the evolution by the curvature rule (2.5) starting
from Ty (see [AG], [Gu3], [Gu4]). As we mentioned in the introduction,
such evolving surfaces may start out smooth and yet develop singularities
at some later time. However we can define weak solutions of (2.8) (hence
surfaces I';) using the notion of viscosity solutions:

Definition 2.13 i) A function u: RN x [0,00) — IR is a viscosity subsolu-
tion of (2.8)-(2.9) if for all smooth functions ¢ : RN x [0,00) = R and all

local mazimum points (zo,tp) of u* — @,

¢t(107 tD)_
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1 Vo(zo,10)
Vé(z0,10)| @ (m {ux [vm (xo,m) V2 4(z0,t0) |

+a (zo,%) }) <0 f Veé(zo,t0) #0,

¢i(z0,20) <0 otherwise

and

u(-,O) <h
ii) A function u : RN x [0,00) — IR is a viscosity supersolution of (2.8)-
(2.9) if for all smooth functions ¢ : RN x [0,00) — R and all local minimum
points (zg,10) of u. — @,

&:(zo,t0)—

1 2 V(zo,10) 2
IVé(zo,10)|® (|V¢(-’Eo,io)| {tr [V H (a:o, |V¢($o,to)|) V7 é(20, o) ]

Vé(zo,t0) .
e (IO, |V¢(zo,to)|> }) 20 i Ve(zo,t0) # 0,
@1(z0,20) > 0 otherwise

and
u('s 0) 2 h.

i11) If a function u is both a viscosity sub- and supersolution then we say
that u is a viscosity solution of (2.8)-(2.9).

In the latter definition we used the notation u* and u. to denote the upper-
(resp. lower-) semicontinuous envelopes of a function u, defined as

w'(z) = lim  sup{u(y): |2 -yl < 1)

and
u.(2) := lirr%) inf{u(y): |z -y| < r}.

It was proved in [ES1] for (2.10) and in [CGG] for a more general equation
(see also [BSS] for a mild relaxation of the assumptions of [CGG] and [ES1]
and [IS] for noncompact hypersurfaces) that the initial value problem (2.8)-
(2.9) admits a unique solution v € UC(R™ x [0,00) ) (see [BSS], [CGG],
[ES1), [IS] for the relevant proofs, comments etc.). In particular the following
theorems hold.

16
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Theorem 2.14 [Comparison Principle)
Let u and v be, respectively, viscosity sub- and supersolutions of 2.8 in RN x
[0,T) for some T > 0. If u*(0,z) < v.(0,z) then u* < v, in RN x [0, T].

This result, together with Perron’s method (see [CIL]), yields:

Theorem 2.15 There ezists a unique continuous viscosity solution of (2.8)-

(2.9) .

The soi::ion of (2.8) describes a geometric evolution of level sets, there-
fore the evolution should be invariant under any arbitrary relabelling of the
initial level set. Indeed, the following theorem, which will be used subse-
quently, can be proved along the lines of [ES1, Theorem 2.8].

Theorem 2.16 Assume that u is the viscosity solution of (2.8) and let ¥ :
IR — R be a nondecreasing function. Then

v:= U(u)
is the viscosity solution of (2.8) with v(0,z) = ¥(h(z)).

We conclude with the distance-function definition of generalized mean
curvature evolution. Let ', P and R C RN x [0,00) be such that

TUPUR=RN x[0,00) and TNP=TNR =0, (2.12)

define I'; to be the t-section of I' and let d(z,t) be the signed-distance be-
tween z and I'y, i.e.

dist(z,I'y) (z,t) € P,
D(z,t) = ¢ ~dist(z,I;) (z,t) € R, (2.13)

0 (z,t) €T,

with the understanding that dist(z,I;) = oo for all z if I'y = @,and where
dist(z, A) denotes the usual nonnegative distance from z to the set A.

We say that {I';};>0 is the (distance function) generalized motion by
mean curvature starting from Lo if (D V 0)* is a supersolution and (D A 0).
is a subsolution of (2.8) (see [S] and [BSS]). Here, and in what follows, we
use the notation

a Vb := max{a,b}, a A b:= min{a,b}.

17



In the case where I is defined by (2.11), it turns out that the two
definitions given above are equivalent if and only if there is no interface
fattening, i.e. if and only if the set

Usso(Te x {t})

has empty interiorin RN x [0, 00) (see [BSS], [S), etc.). Here, as it is standard
in the literature, we say that intl; = @, where I'; = {z| u(z,t) = 0}, if
given u(z,t) = 0 there exist sequences z, — z, y, — z, such that

u(zp,t) >0, u(y,,t) <0 forallm € N.

If there is interior, then there is no uniqueness in the distance function
approach but rather a minimal and maximal front (see [S] for the details).
Whether interior develops or not is a rather intriguing issue; we refer to
[BSS] for a detailed discussion and a general sufficient condition yielding no
fattening.

3 TI'-limit and generalized minimizing movement
for E"

Let A C 2 be a set of finite perimeter, ¢,h > 0, and set
E'(u; A) = /ﬂ [-i—W(u(:c)) + €A2(.’c,Vu(x))] dr + /Q fa(z,u(z); A)dz
where v € H}(;R").
Theorem 3.1 The ['(LY())-limit of E! as ¢ — 0% is
Jor Lo H(z,v(2))dHY Y (z)+  Jq fa(z,u(z); A)dz

ifu = axr +b(1 - x1),
Jr(u; A) == Per(L) < +00

+00, otherwise.
Before proving this theorem we show that

Lemma 3.2 Let h > 0 be fized. If ve € H'(;R") is such that v, — u in
L'(Q;R™) and if
limsup E*(v; A) < 400 (3.1)

e—0+

18



then
u(z) = axp(z) + b(1 - x1(z))
for some set of finite perimeter L C 2, and

ve — u in LP(Q;R").
Proof For a subsequence, and by (H2) and (H6), we have

lim / IW(v)dz < +00

and so by Fatou’s lemma
/ W (u(z))dz < limsup/ W (v (z))dz = 0, (3.2)
Q e—0t [9]

i.e.
u(z) = axp(z) + b(1 — xr(z))

for some measurable set L. As shown in [BF], Proposition 3.1, Step 1, if
Per(L) = 400 then
lir(l)n+ I(v) = +00

contradicting (3.1), thus Per(L) < 4o00. Moreover, by (H2)

lve = ufP < Cllvel? + |ulP]
< C'[W(ve) + 1]

and so, extracting a subsequence for which v(2) — u(z) a.e. z € E, by
Fatou’s Lemma we obtain

C'LN) = [q hm mf {C'[W(ve(2)) + 1] = |ve(z) — u(z)|P} dz
< hm(l)nf/ {C'[W (ve(z)) + 1] = |ve(z) — u(z)|?} dz
C'Ly(®) ~ bm sup / |ve(z) - u(z)Pdz

f

where we have used (3.2). Hence

| ve — u"LP(QR“) -, 0.

19



Proof of Theorem 3.1. Let u € L}(;R"), uc € H'(;R"),ue — u in

LY(Q;R") with
Um(i)ng(h(u(; A) < +oo.
€~

By Lemma 3.2
u(z) = axr(z) + b(1 - xr(z)) ae z€Q
with Per(L) < 400 and

| ue —u ||L1u(_-’—(;+ 0.

By [BF] (see (2.4))
lim(i)l}f I(ue) > Jo(u)

and by Fatou’s Lemma, (3.3) and (H6)

lim /th(:c,ue(z);A)dz=/ﬂfh(x,u;A)d:c

e—0+
and we conclude that

Jn(u;A) = Jo(u) + Jq fa(z,u;A)da
li{r_ll(i)gf{lc(u() + /;) fru(z,u; A)dz}

.. h
htr_r_l.éx}fE( (e)-

IN

(3.3)

Conversely, choose v, € H!(Q; R") such that v, — u in L! and I (v) —

Jo(u), Jo(u) < +00. By Lemma 3.2

ve — uin LP
e—0+

and so by Fatou’s Lemma, (3.3) and (H6)

/;fh(a:,vc(:r);A)dz (3+Afh(x,u(z);A)dx

and we deduce that

Ef('vc;A) = Ie('l)c) + fﬂ fh(z,v((z);A)dz
ot Jo(u) + Jq fu(z,u; A)dz

= Ji(u; A).

e—0t

We recall De Giorgi’s notions of minimizing movement and generalized

mintmizing movement.
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Definition 3.3 [DG2] Let S be a topological space, F : (1,4+00) X Z X S X
S — RU{+00}. We say that u is a minimizing movement associated to F
and S, u € MM(F,S), if there ezists w : (1,4+00) X Z — S such that for
allte R

u(t)= Jim_w(), ()

andif \>1,k€Z
min F(\, k,5,w(A, k) = O,k w(d, &+ 1), w(), k).

Definition 3.4 [DG2] Let S be a topological space, F : (1,400) X Z X S X
S — RU{+oc}. We say that u is a generulized minimizing movement
associated to F and S, u € GMM(F,S), if there ezist w: (1,4+00)XZ — S
and a sequence {\;};eN such that lim;_ 4o Ai = +00 and for allt € R

u() = lim_w(h, )
andif A\>1, ke Z
melg F(Ak,s,w(A k) = F(A k,w(A k4 1),w(A k).

We use the notation [z] := max{z € Z | z < z}. In our context,
associating the set of finite perimeter L to the function of bounded variation
u(z) := axp(z) + b(1 — xr(z)), we consider S := {A C Q| Per(4A) < +o0}
and we set

Ln(LAA) ifk<0

-7:(’\1 k’LvA) = f3°LnQ H(I’V(I))dHN—l(I)

+ fq f%(a:,aXL +b(1-x1);A)dz  if k> 0.

In the case where

d(z,B'A))

e, us 4) =] w = axa(@) - 1 - xa(e)) P g (22

then for k > 0

FOkLA) = Jy(axs+(1-xw)b4)
/a o @ (@) EN " (a)

+ [ axa(a) +5(1 - x2(2))) - axa(2) - (1 - xa(2)) I x

21



g(Mdist (z,8%A))dHN " (z)
N-
/a_m H(z,v(z))dHN Y (z)

_ - - N-1
./AALIb a P g dist(z, 8" A))dHN"(2). (3.4)

X

This was exactly the functional considered in [ATW], with g(¢) := t and
H=H®).
Fix Ag C Q,Per(Ag) < +00. Using the Direct Method of the Calculus

of Variations, it is easy to see that E’ch( s Ao) admits a minimizer v((';l). It is

a well-known fact that minimizers converge to minimizers of the I'-limit.

Proposition 3.5 {‘Uf?,z}(>o admits a subsequence {vr(,?})t},po such that
(0) 0) . Q- RN
Uy h n:6+ uy,’ in L°(Q;R"),

up) = axn(z) + b(1 = x48(2)), Per(4}) < +o0
and uio) minimizes Jy(-; Ao). In addition, setting
uo(2) = ax4o(2) + b(1 - x4,(2)),
we have

Jh(uﬁo);Ao) < Jo(uo).

Proof By Theorem 5.2 in [BF], as Ic(vf?h)) remains uniformly bounded in ¢

there exists a subsequence {'US'?’),'}”>0 such that

0) .
'"7(,(,)1): i ug ) in L'(;RM).

By Lemma 3.2
ugo) = ax n + b(1 - XA;‘)’ Per(A}) < 4c0.
Due to Theorem 3.1, given u = axr + d(1 — x1),Per(L) < +o00, let v, €
HY(Q;R™), v — uin L' and E*(ue; Ag) — Jin(u; Ao). Then
Tn(u®; 40) < lim inf E(v%); Ao)
< li,,rﬂéﬂf Ef,‘(v,,;Ao)

= Jn(u; Ao)
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hence ugo) minimizes J4(+; Ao). Finally,

Jh(uff’);Ao) < Jn(uo; Ao)
= Jo(uo)
since, due to (H6), [ f(z,uo(z); Ao)dz = 0. .
Construction of a Generalized Minimizing Movement:

. L 1
We consider a minimizer 'vf,z for E(-; A?) and, as before, for some sub-
sequence

o) =, ull) = axup+b(1-xay), Per(4}) < 400, u minimizes Jj (- A7),

and
In(up ;AR < Jn(u; 4B
= Jo(u))
< Ju(wl; Aq)
< Jo(uo).

Recursively, we construct a sequence of minimizers { vc(j,z} for ER(-; A;‘) such
that (for some subsequence)

vEJ,Z s uglj) in L'(Q;R"),
ui])(x) = axA;;“ +b(1 - xA;.“),Per(A?“) < o0,

uﬁlj) minimizes Jp("; A;‘),

In(ud); Y < gV, Al
= Jo(ui ™)
< Jp(uP; Ak )
< ... < Jo(uo). (3.5)

By Proposition 2.12 iii), H(z,v(z)) 2 a > 0 and so by (3.5) and as
l[uilloo < max{lal, 18]},

sg’? "u;lJ)”BV(Q;Rn) < +00. (3.6)
J'
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With F(Ak,L, A) defined as in (3.4), we set

w(h () = o, e w (%J) = uf).

By (3.6), and after extracting a diagonal subsequence, we find a sequence
{M\i}ien such that lim;_ 4o A; = +00 and for every ¢t > 0 in a countable
dense subset of (0,+00)

w(As () = U()in LY (Q;R"), U(t) € BV(;RD).

In addition, as uy) € {a,b}a.e., then
U(t) = axa, +b(1 - xa,), Per(4;) < +o0.

Hélder regularity results obtained in [ATW)] guarantee that the convergence
holds for all t > 0.

Note that u € GM M (F,S),i.e. uis a generalized minimizing movement
associated to F (see Definition 3.4) since

min  F(\k LwAk)=  min  Fk Lyl
Per(L)<+4 oo Per(L)<+o0 x
1
= i Mk, L A}
Per(rlr})lg+oo F k+1 )

1 1
= F(\k Agya Abyr)
= F(\k,w(Ak+1), w()k)).

De Giorgi [DG2] conjectured that 8* A; moves along its mean curvature (see

also [ATW]). In order to justify this conjecture, we begin by determining
the Euler-Lagrange equation satisfied by the minimizers A;-‘ 41 Of

L€ S Ja(L;iAY)i=  [ypng H(z,v(2)dHN ()
+  Jo fa(zaxc(z) + b(1 - x1(z)); AM)dz
= [pernn H(z,v(2))dHN ! (2)
o Jn(z,a; Ab)de

+ fA",‘\L fr(z,b; A;‘)d:r.
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For simplicity of notation, in the sequel we consider a set of finite perime-
ter Ag and a functional

. N- T I
L J(L):= /Mm H(z,v(z))dH ‘(::;)+/L\A0 f(z,a)d +/A0\Lf(a:,b)d

where f satisfies (H6) and (H7), Per(L) < +00 and

(H8) H € C3(Q x (R™\{0})),H(x,") is convex, positively homogeneous of
degree one, H > 0;

(H9) there exists a, > 0 such that
a< H(z,v)<p
for every (z,v) € @ x SN-1,
Note that the surface density H that we obtained in the I'-limit of the
functionals E satisfies (H8) and (H9) (see Proposition 2.12) when A = A(v)

(and so H = H(v)).
Also, as H(z,-) is homogeneous of degree one

H(z,ty)=tH(z,y)forallt >0 (3.7)

hence, differentiating this equation with respect to y, we have
OH OH
—-—(z,ty) = — .
oy () = (@) (38)

i.e. %%(a:,-) is homogeneous at degree zero. If we differentiate (3.7) with
respect tot at t = 1 we get

OH
3‘5(2,!/) -y=H(z,y) (3.9)
thus
LN LT P
ie.

——az—H—(z )uxr = 0 for every j=1,...N (3.10)
ay]ayk TYYIWk = Yi=i,... . .

We introduce the concept of mean curvature of a surface I' C § with respect
to H. Suppose that T is a C? surface with a local parameterization I' =
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{(z',F(z')) | ' € D}, where D is a domain of RN-! and z = (z/,zn) €
IRN-1 x R. Then the normal vector to T is given by

< -VF,1>

T AFIVER

and the mean curvature is defined as

- -1 VF®VF
K :=d = —_—_—— R 2
f iv(v) TP tr [(I TV |2)D F]
_ -1 1 OF 0F O°F
= ATIVER [AF ~ TVFP) 3g, 92, azaazﬁ} (3.11)

where we have used the summation convention for repeated indices, greek
indices range from 1 to N — 1 and 4,5 € {1,...,N}.

Now if H satisfies (H8) and (H9), then the mean curvature of I' with
respect to H is given by

. _ 62H , , ' 32F !
Ky = ’8ya6yg(("‘ , F(2), < =VF(z'),1 >)6z03zﬁ(z)
= DIH- DG (3.12)

where I' = {G = 0}, and G(z) = zy — F(z'). Of course, when H(z,y) =| y |
then (3.12) reduces to (3.11).

The uniform ellipticity of equation (3.12) will be used to obtain regularity
properties for F which, in turn, will be helpful to deduce the Euler-Lagrauge
equations satisfied by a minimizer A of J(), with Per(A) < +oc. This
suggests the introduction of an additional hypothesis, not necessary if H(z, -)
is strictly convex:

(H10) H is elliptic, i.e. for every R > 0 there exists Ag > 0 such that

S 2 apegeam ¥
.9, % iS) 2 K
ij=1,-,N ayiayj i=1,-,N
LI#k i#k

for all z € Q,k € {1,...,N}, £ € RN and y € RN such that y; =
Lllyll < R.
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As it turns out (see [ATW], Theorem 3.8 and (3.4)) there is a regularity
result asserting that

Theorem 3.6 Let H satisfy (H8), (H9), (H10) and let f(z,u) = f(z,u; Ao)
verify (H6) and (H7). There is an open set U C R™ such that HN=1(8*A\U)
=0and 3*ANU is a C}(N - 1) dimensional submanifold of R* . If N = 3
then 8" A is a compact C' 2-dimensional manifold of R® without boundary.

As the proof of this theorem presented in [ATW] uses heavily notions of
geometric measure theory, we found it convenient for the reader less familiar
with those concepts to rewrite it analytically and include it in the appendix.

Theorem 3.7 Let H satisfy (H8), (H9) and (H10) and let f(z,u) = f(z,u; Aog)
satisfy (H6), (H7), f(-,b)— f(-,a) Lipschitz in a neighborhood of HN-"1a.e. z €
0"A. Then for HN=! a.e. zo € 0" A there ezists § > 0 such that

N 2
f(2,6) - f(z,0) = K + 3 i
=1

> Seom (3.13)

for every z € 3" AN B(zo,$).

Remark 3.8 Let ¥ : R — IR be an increasing, locally Lipschitz function,
and set

—sign t

o) = ) F(2,u) =] umaxa (2)=b(1= x40 (2)) P ¢ (d(m,a"Ao))

h
for some h > 0, where the signed distance to 9" A is defined as
dist(z‘,a'Ao), if z ¢ Ag
d(z,0"Ao) =
—dist(z,0%Ag), if z € Ao.

By Proposition 2.12 ii) H is convex. Moreover,

f(2,8) = f(z,8) = [x40(2) b= a P ~(1= xao(2)) | b~ a [] g (L5Ae)

= — |b—al|Psign d(z,0"A)g (ﬂﬂpl)
= ¥ (dgz,a'Ao))
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which, by Theorem 3.5 and if we assume that H is elliptic, is locally Lipschitz
for HN-'a.e. z € 8" A. Hence, by Theorem 3.6 and (3.13) we conclude that

d(z,0%A i
Y (..E_h__‘_’_).) = Ky + a(z,v)
where N ’
0*H
a(z,v) = ,
; 0z;0y;
and so d(z.8"
X A0) - 4 (44 + afz.v)
with
o=y,

Proof of Theorem 3.7. By Theorem 3.6, for HVN~la.e. 2o € 3*A we may
find 6,6’ > 0 and a C! function F : B'(0,6) C RN~! — R such that, for
some rotation R,

R(A-z0)N[B'(0,7)x(=6,8)] = {(z',zn) € B'(0,6)xIR | -6 < xn < F(x')}.

Without loss of generality, we may assume that R = I,z9 = 0. Let ¢ €
CYIR™;R™), suppy C B'(0,6) x (~&',6') and choose ¢ > 0 small enough so
that

wi(z) = 2 + ep(z)

is a diffeomorphism. Then by (H6)

0= Fle=o {fa'wf(A)nn H(y, v ()AHY 1Y) + [u(ana, f(¥,0)dy
+ on\wt(A) f(y’ b)dy}

(D N Teawr ) ) g
= oo {Jowiura (s iZeti A )

+ Juwe(a) F(y,0)dy + Jo f(y,b)dy — [, (a) f(v,0)dy

) PN ) 260 )
= =0 {fa-.mﬂH (), | [Dw ()" Tv(z) ]~

.| adjDw (z)v(z) | dHN-1(z)
+ [4lf(we(z),a) — f(we(z),b)] det Vwc(x)dz}.
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Now
adjDw(z)v(z)

Dw M(2)v(z) = = Duw,(z)

and d
p le=0 adj Dw,(z) = —Dep(z)T + divg(z)I.
Hence, using the homogeneity of H(z,-) and (3.8)-(3.12),

0= f? le=o {fa-mn H(w(z),adj Dw((x))dHN—l(x)
+ [4 [f(we(z),a) - f(w(z),b)]det Vw((l-)]dl-}

= fprann 32 (2,v(2))p(z)da
+ Jorangy B2, v(2) - (dive(@)] - DT (@) w(a)dH N (a)
+ /4 {[g‘f(z,a) - %ﬁ(z,b)] -p(z) + [f(z,a) = f(z,b))div ‘p(x)} dz

and as

Ja {[gﬁ(l‘»a) - gf(fvab)] -@(z) + [f(z,a) - f(z,b)] div ¢(x)} dzr
= [adivle(z)(f(z,a) - f(z,b))ldz,

by the Gauss-Green formula (see Theorem 2.7) we obtain
S5+ analf(z,b) — b(z,a)]p(z) - v(z)dHN-1(z)

= Joeann (2, v(2)) - p(z)dz
+ Jor an B (2, 1(2)) - (div @(2)I- DT (2)) - v(z)dHN (). (3.14)

For convenience we assume that F € C%(B'(0,6)) , although we will drop
this hypothesis at the end of the proof. By (3.8) we have

8H ., . .. <=VF('),1>
E((z , F(z')), ISR T

Writing the last integral in (3.14) in local coordinates and using (3.8)-(3.12)

we obtain
. N-1 _ 0 QI_ . N-
/6 @)~ f@ (- )N = /a T ( aya)(cp v)dHN-1

0’H - o
+/<'9‘Ann Oz N0y ‘14 || VF ||X(¢ - v)dH

) = %—g—((z',F(z')),< -VF(2')),1>).

y
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and if F € C1(B’(0,6) then

f@D) - fe,0) = g |G F)) < ~VF(E),1>)]

652}1 ((z',F(z"),< =VF(z"),1 >)6
2
a:ca/vgy ((z',F(z")),< =VF(z'),1>) (3.15)

in D'(B'(0,6)). As F is locally Lipschitz then ||< —-VF,1 >| remains
bounded and so, due to the ellipticity hypothesis (H10), we deduce that
(3.15) is an elliptic equation for VF. The hypothesis (H10) and classical
regularity results (see [LU]) imply that F € CV* and, as in [ATW)], differen-
tiating (3.15) once more with respect to z¢,0 = 1,..., N — 1, we obtain that
3"% is a solution of a second order linear elliptic partial differential equation

with Holder continuous coefficients, of the form

oF oF oF oF
-—Do,aa (23,-50—,V (—8—0-)>+b$,a V<60))=0

From Theorem 1.2, page 219 in.[Gi], we conclude that 45 € C1'? and so

0’H + 0’H i’?F_ 0°’H 0°F
0Ya0za  0yoOzn 0z, OyaOyp 0z,024

f("r’b) - f(z,a) =

_ 0*H OF + 0*H
0zNOy, 0z, OzNOYN

. N 9°H
B I‘H+i§1 oz;0y;

4 Minimizing flows are viscosity solutions

In this section we prove that a minimizing flow is a viscosity solution for the
corresponding curvature-type equation. Notice that this result is past the
possible singularities appearing in the solutions of such equations.

We recall the construction of the generalized minimizing movement, as
described in the previous section. Let 2 be any bounded set such that
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Ao CC Q. Given a time step h, we write [0,+00) = UR,[th,tk ;) where
th =0, t,_,_1 = th + h. Then

ug:/ ) u=axa, +b(1-x4,)in L'(Q;R")asj — +00
for some sequence h; — 0t, i.e.

X by 2 XA in L'(;R)

t J—<+oo
with
A:’ = Aﬁ/h] = A:‘ if t € [tt 7t1+1
We set A% = Ap, and as before the signed distance to 8 A" is given by
—dist(z,0"Al) ifz € AP
. a* Al = ) t t
dz,9°4;) = { dist(z,* A") if = ¢ AD
where, by Theorem 3.6, * A! is a compact C! (N —1) -dimensional manifold.
We define
Do(z) := —d(z,0"Ao), D"(z,t):= —d(z,0"AM).

In the case where H(z,y) = |y| and g is given as in Remark 3.8, the Euler
Lagrange equation derived in Theorem 3.7 becomes

~Dh(z,1 - h)
o(F5=2)

o[- ST o)

= [VDHz 1 [ VD*(z,1) |2
= ADh(z,1) (4.1)

for all z € 8”A} where the manifold is twice continuously differentiable.
Furthermore 9 is a locally Lipschitz, increasing function; note also that in
the second equality we have used the fact that | VD" |= 1.
Setting
Dyo(z,t) := —d(z,0™ Ay),

heuristically we expect (4.1) to yield Dy, as a solution of (2.10) and (2.9)
with h(z,0) := Do(z) (at least when ¥(r) = r), or for general H and v,

ue ~ |Vul® (g {tr [V2H (2, [ V2] +a (2, 84)}) = 0
in " x (0, 00) (4.2)

u(z,0) = Do(z) in R" (4.3)
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where, as before,

2
a(z,y) = Z aaH(;yfl , =971 is increasing

and where t* € (0,+00] is the extinction time for the level sets 'y = {z €
R" | u(x,t) =0}, i.e.

t":=sup{t | t>0 and T,#0}.

Here u : R™ x [0,400) — R is uniformly continuous and it is the unique
viscosity solution of (4.2), (4.3) (see Theorem 2.15).

Following the method introduced in [BP], we define the lower semicon-
tinuous envelope for { D"} 50,

D.(z,t): -hm)m(f )Dh(y,s)
z,t

h—0
and the upper semicontinuous envelope

D*(z,t) :=limsup D"(y,s).

(yvs)"’('r't)
h—0

It is clear that
D*>D, in R"x[0,+).

Let
T :=sup{t >0 | | D*(z,t)|,| Du(z,t) |< 400 in R™ x [0,t)}.
Now we state our main theorem.

Theorem 4.1 Let u be the unique viscosity solution of (4.2), (4.8). Then

{u<0}Cc{D" <0}, {v>0} C{D.>0}. (4.4)
If, in addition, int Ty = @ for all t € [0,t*), then
D*(z,t) = D(z,t) in {u < 0}, (4.5)
D*(z,t) = [D(z,t)]* in {u> 0}, (4.6)
D.(z,t) = D(z,t) in{u> 0} (4.7)
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and
D.(z,t) = [D(z,t)]. in {u< 0} (4.8)

where [D]* (resp. [D].) is the upper semicontinuous envelope of D (resp.
lower semicontinuous envelope) and

dist (z,Iy) if u(z,t)>0
D(z,t):= (¢ —dist (z,Iy) if u(z,t)<0
0 if u(z,t)=0.

Remark 4.2 Notice that the viscosity solution is always contained inside
the generalized minimizing movement. Moreover, in the no interior case, at
the points where the signed distance function D is continuous,

D*(z,t) = D.(z,t) = D(z,t),

the convergence of the approximating motion to the minimizing movement is
not only in L, but also locally uniform and finally the generalized minimizing
movement turns out to be a minimizing movement which coincides with the
viscosity solution.

The proof of Theorem 4.1 is based on a series of lemmas that we present
below.

Lemma 4.3 The function D,V 0 (resp. D* A0) is a supersolution (resp.
subsolution) of (4.2) in R™ x (0,t*] and

(D.V0)z,0) > (Do V0)z,0)inR"
(resp. (D* A0)(z,0) < (Do A0)(z,0) in R").
Lemma 4.4 The function D.( resp. D*) is a supersolution (resp. subsolu-
tion) of (4.2) in {D. > 0} N(IR™ x (0,t*)) (resp. {D* < 0} N (IR" x (0,t*))).
In addition
VD, |-1=0 in {D. > 0}n(R" x (0,t%)) (4.9)

(resp.1- | VD" |= 0 in {D* < 0} N (R" x (0,t*)))

in the viscosity sense.
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Proof of Theorem 4.1. We only present the proof in the case where
H(z,y) = |y|, the general statement being a straightforward adaptation of
our arguments. By Theorem 2.16, ¢(u) = uV 0 is a solution of (4.2) and so,
by the comparison principle (see Theorem 2.14) and Lemma 4.3

u(z,t)VO < D.(z,t)V0  in R" x [0,t).
In particular
(R™ x [0,t%)) N {u> 0} € {D. > 0} n (RN x [0,t")).
Similarly
(R" x [0,t*)) N {u < 0} C {D" < 0} n (RN x [0,t")).
Ifint I'; = 0 then
{u>0}={D. >0} and {u<0}={D" <0}

Indeed, suppose that D.(zo,t) > 0,u(zo,t) < 0. If u(zo,t) < O then
D*(zg,t) < 0 and this implies that D*(z¢,t) < 0. contradicting our assump-
tion. On the other hand, if u(zo,t) = 0 and as intI'; = ) then we may find a
sequence =, — zo such that u(z,,t) < 0. Thus D.(zn,t) £ D*(z,,t) < 0
and due to the lower semicontinuity property we conclude that

D.(zp,t) < liminf(z,,t) <0,
n—<400

again in contradiction with the assumption.
Since D(-,t) is a distance function, it satisfies

|VD|-1=0in{D > 0}n(R" x [0,t")). (4.10)
1- | VD |= 0 in {D < 0} N (IR™ x [0,t)). (4.11)

By the uniqueness (in the viscosity sense) property of the above equations
and by (4.9) we conclude that

D.(z,t) = D(z,t) in {D >0} Nn(R" x [0,t7])
and, in a similar way,
D*(z,t) = D(z,t) in {D <0} N (R" x [0,t"]).
Relations (4.6) and (4.8) are proved at the end of this section. ]
The proofs of Lemmas 4.3 and 4.4 use the preliminary results below,

Lemmas 4.5 and 4.7.
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Lemma 4.5 The function D, (resp. D) is a supersolution (resp. subso-
lution) of (4.2) in {D. > 0}N(IR" x (0, T]) (resp. {D~ < 0}N(IR"x (0, T])).
In addition

|VD.|-1=0in {D.>0}n RN x(0,T)) (4.12)
and
1- | VD* |= 0 in {D* < 0} n(R" x (0, T))

in the viscosity sense.

The proof of Lemma 4.5 is based on the fact that strict local minima of
D. are approximated by local minima of D*, precisely

Lemma 4.6 Let U C R¥ be an open set, ¢, : U — R continuous functions,
and let Y.(z) := liminf Yn(zn). Let 2o be a strict local minimum for iy,.
N—4+00

In—z

Then there ezist a subsequence ny — +00 and points of local minimum for
Vs Tn,, Such that z,, — zo.

This result is standard in the literature on viscosity methods. For com-
pleteness we include its proof in the Appendix.

Proof of Lemma 4.5. To prove that D, is a supersolution of (4.2), we
consider a smooth function ¢, we assume that (z¢.10) € {D. > 0} N (R" x
(0,T)) is a strict minimum for D, — ¢ and we prove that

‘Pt(antO)— ' V‘P(IO’tO) l X

< & ( 1 tr{[ _ Ve(20,10) ® Vp(zo, t0)
| Vio(zo, 20) | | Vo(zo,t0) |2

] V2<p(:c0,t0)}) > 0.
(4.13)

By Lemma 4.6, there are points of minimum (z,t;) € {D* > 0} for D" — ¢
(where we assume that a subsequence hx — 0% has been extracted), such

that (zp,ts) o (zo0,t0). We fix a time step h and we assume that t, €

[th,t¥, ) for some i = i(h) € N. Then

19

D!z, 1) = dist(z,d" At) =|z), — 2,
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for some zj, € 8" A} = 9" A}. According to Theorem 3.10 in [ATW], there

is a neighborhood of zj, where 8* A% is twice continuously differentiable. By
(4.1) we have

—D"(zp,th— h) _
: =

e — 1 VD*(zh,14) ® VD" (24, 14) N
‘Q(IVD"(zh,th)l“{[l' VD | D emtn)y )
(4.14)

We define
€(z,1) == @(z + zh = zn,t) = P(zhsth), £(2n,1h) = 0,
and we claim that
{€ >0} C {D* > 0} and D"(z,1) — &(z,t) > D"(zn,tn) — E(2n,tk) = 0.
Indeed, if there exists (z,t) such that £(z,t) > 0 and D*(z,t) < 0 ,(:{1112
(z4,t,) minimizes D* — ¢ we obtain
Dh(z + zh — 21,t) 2 p(z + Tk — 28, 1) + DM(2hsth) — @(2hsth)
= &(z,t) + Dh(zp,th)
and since £(z,t) > 0,
DMz + zp — z5,1) > DM(zhotn) =] zp — 24 | -
On the other hand, as D"*(z,t) < 0 we conclude that
| z4 — 24 |< DMz + 24 = 21,1) = DM(z,1) <| 2 = 21
yielding a contradiction. Also,
Dh(z,t) > D™z +zh — zh,)— | Th — 2n |
= DMz + zp — 2p,t) — Dh(z4,13)
> @(z+zh = 2nt) = P(zh,th)

= E(I’t)
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and this proves (4.13). Now, as in Theorem 2.2 in [ESS], we may construct
an increasing function ¥ : R — IR such that

¥({(z,1)) < D*(z,1), ¥(0)=0 (4.16)

in a (uniform in k) neighborhood of (z,ts). Furthermore, since |VD"|= 1,
by (4.16) and as £(zp,t;) = 0 = D"(24,13), we have that D — ¥ 0 £ has a
local minimum at (zx,t,) and so

v'(0) = 1, (4.17)

where we used the fact that D€(zp,t,) = Dp(zh,tn) and | Dp(zh,t4) |= 1.
By (4.14), (4.16) we obtain

—V(€(znth = h)) o
- >

! VD! (2, th) © VD (2, 14)] o2 1o
Zé(m tr{[l_ Ith(thih)P VD (zhsth)

and by (4.14), (4.17), letting h — 0 and using the fact that
VD"(zp,th) = VE" (2n,th) = Vep(zhsth)
with | Vo(z,t,) |= 1, we conclude (4.12):

@i(zo,t0) >

1 V(zo,t0) ® Vip(zo,t0)
21 Vpteoo) |12 ((remmriey {[1-75 e ]

X Vz‘P(l‘o,io)}) .

The dual statements for D* follow along similar arguments. (]

Lemma 4.7 The function D. V 0 (resp. D* A 0) is a supersolution (resp.
subsolution) of (4.2) on R™ x (0,T].
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Proof Step 1.Given é > 0 we consider a smooth function ¢s : R — IR,
such that

s = 0 on (—00,6], o5 > 0in R, lims_o+ps(s) = s V0.

Define :
vs(z,t) := ps(Du(z,1)).

Let ¢ be a smooth function and let (zg,%) € IR"x (0, T) be a strict minimum
for vs — 9.

If D.(z0,t0) > 0, then D, V0 = D, near (zo,%) and so, by Lemma 4.6
and Theorem 2.16, we have that vs is a supersolution. We conclude that
(4.14) is satisfied by ¥ at (zo, o).

If D.(zo,%) < 0, due to the Lipschitz continuity of vs in = we have
vs = 0 in a small ball centered at zg. Thus

Vi(zo,t0) =0, VZ(z0,t0) <0
and to obtain (4.14) it suffices to prove that

¥i(zo,10) 2 0.

Set
vi(y, ) := ps(D"(y,5)).
We have
vs(z,t) =liminf v2(y,s)
(y,s').—-’o:c,t)

and so, by Lemma 4.6, 'vg — % has a local minimum at (z,t;) , where
(zh,tn) o (zo,%0). In addition, for each h > 0 there exists ¢« = i(h) such

that t, € t'»‘,t’~1 and
19 141
v,',-’(:vh,t) = vg(xh,th) forallt € [tf‘,t?“

and so

0 vg(zh,t) - vg(:z:h,th)

> P(zh,t) — (zh,th) fort >y, t€thth

from which we conclude that

Yi(zo,t0) > 0.
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Step 2. To prove that D, V0 is a supersolution of (4.2), we consider a smooth
function ¢ and we assume that (zo,%) € R" x (0, T) is a strict minimum
for D, vV 0 - 9.

By Lemma 4.5 we may find a sequence of strict local minima (zs,t5) €
R" x (0, T) for vs — ® such that (z,15) s (zo,t0)-

Applying Step 1 to (z5,t5), we conclude that equation (4.11) is satisfied
by % at (zs,ts) and due to the continuity of ¥, we obtain equation (4.11)
for 9 at (zo,10).

Step 3. Finally, we turn our attention to the endpoint {t = T'}. The state-
ment reduces to a standard observation in the theory of parabolic equations,
provided D, V 0 is bounded. In our context, we can always reduce to this
situation by considering a bounded, continuous, strictly increasing function
¥ and using Theorem 2.16 ensuring that ¥(D, V 0) is also a supersolution.
We conclude by applying ¥~! and, again,Theorem 2.16. .

From Lemmas 4.5 and 4.7 we conclude that Lemmas 4.3 and 4.4 will
follow, provided

D.(z,0)V0 > Dy(z)VO0 in RV,
D*(z,00A0 < Do(z)A0 in R" (4.18)
and
t*<T. (4.19)

The estimates (4.18) and (4.19) are an easy consequence of the following
result, proven in [ATW)] in a more general form (see Theorem 5.4 [ATW]).

Lemma 4.8 Let Ro,ho > 0,29 > 0 and let R, := [R% - 2(N —1)(t —t0)]"/2.
The following hold true:

i) if for all 0 < h < ho , B(zo0,Ro) C A} then
B(zo, Ry) C At ;
ii) if for all0 < h < ho, A} C B(zo,Ro) then
Ah ¢ B(zo,R)) ;

iti) if for all0 < h < hg, A} C [B(zo,R0)]C then
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A:l c [B(.’Eo, R!)]C

R?
foralltost510+-§mﬂ—l—).

We prove that
D*(z,0) = Do(z) in R". (4.20)

Since by definition D*(z,0) > Do(z), it suffices to show that D*(z,0) <
Do(m).
Define the set
A§ = {z : dist(z, Ao) < €}

and consider the signed distance D§ from the boundary of Aj. For all
z € [AY)°,
Ao = A§ C [B(z,¢)]°

and so by Lemma 4.8 iii) we have
A} C [B(z,e))

for0<t< 7(1v€_2-ﬂa where ¢ := [¢2 — 2(N - l)t]%. In particular

h € \\C
At c [B(.’l:, —\/_i)]

for all z € [45]€,0< t < 3-(753_—1-5. Consequently
€ €
Af C Ngragiel Bz, ﬁ)]c =: EY,

where Ag C E¢ C A§. It follows that

2
h < D§ <1< —
D"(z,t) < Dy(z) for 0—1‘4(N—-1)

which yields D*(z,0) < Do(z).
Finally, we turn to the proof of (4.19). Suppose that T < t*. By ( 4.20),
Lemma 4.5 and the comparison principle for viscosity solutions we have

{u< 0} C{D* <0}and {u >0} C {D. >0} (4.21)

for t < T. By definition of t* there exists zo € R" such that u(z,T) # 0;
suppose that u(zo,T) > 0. By (4.4)

D.(20,T)>v>0
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and
DMy, T) > % for all y € B(zo,Ro) ,0 < h < ho.

Hence B(zo, Ro) C A%

for0<t< ﬂﬁ—ﬂ Thus

DMz, T +t) > D(z, B(zo, R:)) (4.23)

B(zo, R;) C A%, (4.22)

for all z € IR™,0 < h < hg, from which we deduce that

D.(z,t), D*(z,t')> -0 (4.24)

forall z € R®, 0 < t' < T + gy,

On the other hand, choose M large enough so that T' < 2(—]’&1—) and zo € R"
is such that
Al C B(zo,M), for 0 < h << 1.

By Lemma 4.8 ii) we have
A% C B(zo,M7), 0<h<1
and once again, Lemma 4.8 iii) yields
A%y, C B(zo,(M71):) C B(z0,2M7)
for all 0 < t < 5Ly Thus
D"z,T +t) < D(z, B(z0,2M7))
for all z € IR, yielding
D.(z,t"), D*(z,t') < 400

2
for0<t'<T+ ﬂ—g{—ﬁ Therefore D,,D* remain finite beyond T and this
is a contradiction.

Proof of (4.6) and (4.8).
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As usual we prove only one of the statements, (4.8). Let (zo,%p) be such
that D.(zo,%0) = —¢ < 0 and u(zo,%) < 0. Due to (4.5) we have that

D.(zo,t0) £ [D"].(z0,t0) = [D]+(20,t0),

so it suffices to show that [D].(zo,%0) < D.(Zo0,%0).
We claim that '

dist(zo, {z : D.(z,t0) > 0}) > c.

Suppose that there exists z, such that D.(z;,%0) > 0 and |z — 23| < ¢ - 6,
for some 6 > 0. As in (4.22) and (4.23) we have that B(z;, Rs) C A", for
0 < h < hg,to < s <o+ €(z1) and for some R; > 0.

If we consider y € B(zo, %) then

dist(y,0"A}) < |y — ol + |zo — 1]
< %+c—6 =c- —g—,

from which we deduce that

é 6
Dh(y,s) > —c+§ for all (y,s) € B(zo,i)x[to,tg-{-e(:r])) and 0< h < hop.
This implies that

D-(l‘o,to) >c

which contradicts the hypothesis and the claim is proved.
As intI'y; = @, given a point y near zo and 6 > 0 there exists z; such that
u(z1,s) > 0 and
dist(y,T,) > |y — 7] - 6.
By (4.7) we have D, = D in {u > 0} and so D.(z;,s) > 0, from which we
conclude that

dist(y,{z : D.(z,8) > 0}) < dist(y,T'5)+ 6
and letting § — 0" we obtain
dist(y,{z : D.(z,s) > 0}) < dist(y,T;).

Also, given § > 0 and z2 such that D.(z2,s) > 0 and dist(y,{z : D.(z,s) >
0}) > |y — z2| — 6. By (4.4) we have u(z,,s) > 0 or else D*(z2,s) < 0 which
contradicts D.(z2,s) > 0. Since y is near zo and u(zo,s) < 0, we deduce
that

dist(y,T,) < |y — 22| < dist(y, Du(22,5)) + 6.
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Consequently

limsup dist(y,T';) =limsup dist(y,{z : D.(-,8) > 0}) > ¢
y—zo,slto y—zo,slto
h—0 h—0
and we conclude that

[D)u(z0,t0) =liminf D(y,s)

y—zo,8lto
=liminf [-dist(y,T,)]
y—z0,3]to
h—=0
S )
and so
[D].(xo,to) < -c= D.
which completes the proof. [ |
Appendix

Here we prove Theorem 3.5 and we follow exactly the proof given in
[AMT], although we try to avoid the use of geometric measure theory, hope-
fully rendering it more accessible to analysts.

We recall the statement. Let Ag be a set of finite perimeter and let

: I N-1 | .
J(L):= /a.mn H(z,v(z))dH (z)+-/;,\Ao f(:L,a)d:c-{—/Ao\L f(z,b)da

where H : Q@ x RN — [0, +o0) satisfies (H8) - (H10) (see Proposition 2.12),
f = f(z,u; Ag) verifies (H6),(H7)and Per(L) < +oc.

Theorem 3.5 If A minimizes J(-) then there is an open set U C R™ such
that HN-1(0*A\U) = 0 and 3*AN U is an open C'(N — 1) dimensional
submanifold of RN. If N = 3 then 0*A is a compact C! 2—dimensional
manifold of R® without boundary.

Note that by the Structure Theorem for sets of finite perimeter (see
Theorem 2.6)

0"A =‘_‘§_§)1 K;uG,
Hn_1(G) = 0 and K; are compa.ct subsets of C! manifolds. However, there

is no apriori guarantee that U K; is an open set.

Due to Theorem II1.3 of [Al] Theorem 3.5 will hold if we prove that
there exist C,é > 0 such that if 0 < r < § then
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(A)
H(z,va(z))dHN"}(z) <
(8°AnW)NQ

<(+r) [ B v@) dENIE),
e@ Anwiyna  ¢@°A)

(B) HN-Y(3*A A OA) = 0, whenever ¢ : R® — R™ is a Lipschitz
mapping, W := {z € R"|p(x) # x} CC N, and diam (WU p(W)) = r.

Proof of (A). Let ¢ : RN — R™ be a Lipschitz mapping, let W = {z €
RN|p(x) # x} be a bounded set, diam (W U ¢(W)) = r and we compare
the energy at A with the energy at ¢(A),

S H(z,va)dHN"Y(2)+ [ f(z,a)dz + [4,\4 f(z,b)dz <
3*ANQ A\Ao

< J  H(z,wpa)dHN'+ [ f(z,a)dz+ [ f(z,b)dz.
so(a'A)nQ ¢(A)\Ao Ao\A

Thus, by (H6)

[ H(z,va(z))dHN Y (z) < [ H(z,vp4))dHN " (2)
6*AnQ @(9*A)NQ

+ [ f(z,a)de+ [ f(z,a)dz— [  f(z,a)dz

w(A)\A A\Ao (w(A)\A)NAo

- I f(z,a)dz+ f f(z,b)dz+ [ f(z,b)dz
(A\Ao)\w(A) Ao\A A\p(A)

- J f(z,b)dz - / f(z,b)dz
(Ao\A)Np(A4) (A\p(4))\ 4o

- [ f(z,a)dz— [ f(z,b)dz
A\Ao Ao\A

< [ H(z,v(z)) dHN"Y(z)+
@(8°A)NQ w(A)

(A.1)
+6Ln(p(A) A A). esssup {l f(z,a)|+ | f(z,b) |}



However,

p(A) = B[(AAW)U(ANW)\(ANEW),
O"p(ANW) = p(*ANW)U(ANIW),
O"p(AA\W) = §(A\W)=(0"AA\W)U(ANFW)

and we conclude that
0"p(A) = p(0"ANW)U (3"A\W)
and so (A.1) reduces to

J  H(z,va(z))dH" Y (z) < S H(z,vya)(z))dHN ()
(8* ANW)NQ (0" APW)NG

+6CoLln(p(A) A A)

(A.2)
where
Co :=esssup {| f(z,a)|+ | f(z,b) [}.
€N
Asp(z)=zifa g W,
0" (W(A)AA)=0"ANWUp(d"ANW) (A.3)
and
P(A)DACWUpW). (A4)

Indeed,if y ¢ W,y ¢ o(W) and if y € p(A) A A, then either y € A\p(A)
or y € ¢(A)\A. In the first case we obtain

y€ A and ¢(y) # y (or else y € p(A))

and this implies y € W, contracting the assumption. If y € ¢(A)\A then
y = ¢(z) for some z € A and, as y ¢ W, we have

e(y) = y = v(p(z)).

Hence ¢(p(z)) # z, otherwise y = z € A, thus ¢(z) € W. We conclude that
¥ = o(p(z)) € p(W).
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Now, by (H9), (A.2), (A.3), (A.4) and Lemma 2.9 we deduce that

He @MV @) [ H@ v (@)
8*ANW)NQ @(3* AnW)NQ
+ £Co diam (W U o(W))[HN-18*"ANW) + HN-1(o(8" AN W))]

< / H(2, gy (2))dHV(z) + § 2 diam (W U (W U p(W)).
@(3*AnW)NQ

H(z,va(z))dHN1(z) + / H(z1vga)(2))dHN ()
@(3*ANW)INQ Y(8*AnW)NQ
where we have used the fact that W CC Q and so *ANW CC Q,
P(0"ANW) CC Q. Finally,

H(z,va(z))dHN(2)

(8* AnW)NQ
1+ &Sy _
< h H(z,va(z))dH" "} (2)
N o . ,
@(3* ANW)NQ
1
and setting C := ——S--C—q it follows that .
N a
1+r8&
TN <14
1- N?}Qr
whenever 0 < 7 < 215 [ |

Proof of (B). To prove that HN-1(5*4 A A) = 0 it suffices to show that
the N — 1 density ratios at points of 0" A (see Definition 2.8) are uniformly
bounded from below (see [F], [ATW] 3.1.3), i.e. there exist continuous func-
tions a,b : R® — IR such that if zo € 84, §*V-1(8*A,z0) > 0 then

1—”,\—,({% > a(p)

for every 0 < r < b(p), where

m(r) :== HN-1(8*An B(zo,1)).
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As =" (0*A,z0) > 0 and m(r) is an increasing function, we have
m(r) > 0 for all » > 0.

By Lemma 2.10 for a.e. + > 0 we have HN-1(8*A N 8B(zo,7)) = 0 and
there exists a set ¢ of finite perimeter such that

AAQ C B(zo,1),07(AALQ) C(0"AN B(zo,7)) U X,

HN-1(X) < (N = 1)[m'(n)] %

and
0°Q C (0" A\B(zp,7)) U X.
Then,
J  H(z,va(z))dHN"Yz)+ [ f(z,a)dz+ [ f(z,b)dz
8*ANQ A\Ao Ao\A
< [ H(z,vo(z))dHN-Y(z)+ [ f(z,a)dz+ [ f(z,b)dz
a* QNN Q\Ao Ao\Q

and, as H > 0, we have

[ < JxH@ve@)dBN @)+ [ |f(z,a)ldz
3*ANB(zo.7) ALQ
+ f |f(z.b)ldz
AAQ
< [ H(z,v0(2))dHN=1(2) + Ln(A L Q)Co
X

where Co i=esssup {l f(z,a )+ | f(z,b) |}. By (H9) and Lemma 2.9
z€
am(r) < BC(N - 1)[m!(r)] =
+$¢diam(A A Q){HN-1(8"AN B(zo,7)) + HN-1(X))

< BC(N - 1)[m!(M)¥= + $r{m(r) + C(N - 1)m!(r)¥53)

and so

2

1

Nl

m(r)

IA

m!(r)v=2 S0 (6 4 r G ) (1 - Gy
m/(r) ¥ CENg (14 5G8) (1- Q)™

1]2 2
ol
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Let rg := ;—V& = b(zg). If r < 1o then
m(r) < m'(r)%%C(N -1) (g + r%) g—

and %,17%9- 1 thus

Nl

m(r) < m/(r)FEC(N -1) (3£ +1)
where

We conclude that

- 1
(N = 1)m(r)F=T]" > ek
As m is increasing
(N - l)m(r)'f"— > 6
and so
mir) 2 [(N 1 C']
ie. N
oy [(N . 1)0] = a(ao).

For completeness, we include the proof of Lemma 4.6. We recall its

statement.

Lemma 4.6 Let U C IR¥ be an open set, ¥y, : U — R continuous functions,
and let P.(z) = limirolci: Yn(Zn). Let zo be a strict local minimum for iy,
n—

In—I

Then there ezist a subsequence ny — +0o and points of local minimum for

Yny»Tn, » SUch that T, — zo.
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Proof Let 7 > 0 be such that
¥.(z) > ¥.(z0) for all z € B(zo,7)\{z0} (A.5)
Claim 1. There exists a > 0 such that
Yu(z) > Yu(20) + a for every z € 0B(z20,7).

Indeed, if we can find z5 € 3B(zo,r) such that

Yu(z5) < Yu(z0) + 6,

we may assume that z5 — 2, € 0B(zo,r) and, due to the lower semiconti-
nuity of 1., we obtain

Ya(Zoo) < ¥u(20)

contradicting (A.5).
Now we choose, by definition of ¥*, a sequence z,, — zo such that
Yn(Tn) = Yu(z0) and | z, — 29 |< r . We write

{In}zc;l = A U B
where

A := {z, | 3y, € B(zo,r)suchthat y, is a point of local minimum foryp,

and ‘r’n(yn) < ‘Pn(l'n) }7
B :={za )35 \A.
Clavm 2. If z,, € B then there exists z, € 0B(zo,7) such that ¥,(2,) <
Trl)n(zn)~

If claim 2 was not satisfied, there would exist z,, € B such that ¥,(z) >
Yn(2z,) for every z € 3B(zg,7). On the other hand, as z,, € B there must
exist € € B(zo,r) such that.

¥n(€) < ¥n(zn)

or else z,, would be a local minimum for ¢,, contradicting z, € B. We
conclude that

¢ # {z € B(z0,7) | ¥a(2) < ¥n(zn)} C K CC B(zo,7)
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where K is a compact set. Therefore
¥n |k attains a local minimum atz, € K

such that ¥,(2,) £ ¥Yn(z,), contradicting z, € B. Hence the claims holds
true.

Claim 8 #B < +00.

Suppose that B has infinitely many elements. Then it is possible to
construct a subsequence z,, € dB(zo, ) such that, by Claim 2 and by (A.5)

1/’-(-730) < ¢m(zm) < 'd}m(xm)'

Letting z,, — 2o, € 0B(zo,7), by the lower semicontinuity of . and as
Yn(Zn) — ¥u(20), we deduce that

¥x(z0) = ¥(20)

contradicting (A.5). This proves Claim 3.
In view of Claim 3 we are able to extract a subsequence of points of
A, zy,, with corresponding local minima y,,, € B(zo,) such that

¢nk(ynk ) < Yn, (xnk)'

Again, assuming that y,, — yoo € B(zo,7), we conclude that

'/"(yoo) < lim ¢nk(3nk)

= ¥.(20)
and, by (A.5), this yields yo, = zo. ]
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