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1 Introduction

In this paper we show that viscosity solutions to curvature evolution equa-
tions may be obtained as limits of minimizers for T -limits of inhomoge-
neous, anisotropic singular perturbations for certain nonconvex variational
problems. We consider the energy

/(*):= / W{u{x))dx
Jo

where Q is an open, bounded, strongly Lipschitz domain of EtN, u : ft -* IRn,
and W supports two phases, i.e. W has two isolated (global) minimum points
a and 6. The minimization of the energy E(.) subject to fixed volume fraction
0, 0 < 6 < 1, admits infinitely many solutions which are piecewise constant
measurable functions of the form u = \Aa + (1 — \'>i)fc,w]th meas(yl) = 6
meas(fi). In search of a selection criterion for resolving this non-uniqueness,
we fix an initial phase-a configuration, >4o, and we introduce the family of
perturbed problems

/*(*) •= / W(u(x))dx+ f €2A\x,Vu(x))dx+ I tfh{x,u{x);Ao)dx
JQ JO JO

where e,/i > 0, d*Ao is the reduced boundary of Ao (see Section 2) and
A(x,.) has linear growth. A particularly interesting example of the last
contribution to the total energy is given by the density

A(x,«; Ao) := |« - XA0(x)a - (1 - XAoi'Ws ( d ( * ^ M o ) ) (1.1)



where d(x,d*A0) denotes the signed distance from x to d*A0.
In order to study the behavior of minimizing sequences, we rescale the

energy to obtain

E*(u;A0) := / -W(u(x))dx + e 2(z, Vu(x))dx + / fk(x,u(x); A0)dx.
JQ

Using the results by [BF] with fh = 0 (see also [Mo] for the isotropic, scalar
case, [Bo] and [OSt] for the anisotropic scalar case and [Ba], [FT], [KoSt] for
the isotropic, vectorial case), we identify the T(Ll) -limit of {£*(.; A)}€>o,as

Jh(u;A0) =

+00

where H is given by

n (Xo, ^J >zz ml

+ fQ
if w =
and

x); A0)dx
(1 - XA)b

< +CXD

otherwise,

{ R")| f (y) = a if y • v = - | , €(y) = b if y »/ = I

and ^ is periodic with period one in the directions of i/^,.. .,VN-I \,

,..., VN-I,V} forms an orthonormal basis of 1RN and 5^ is the strip

In the above A°°(x,.) stands for the recession function of k(x,.), given by

and HN~l is the N - 1 dimensional Hausdorff measure. Denoting by

the minimizer of J/l(.; -Aj) obtained as Ll limit of a sequence {v[ h} of mini-
mizers for {E^(.,A^)}e>o, then {^+1} generates a (generalized) minimizing



movement u(t) := a\At + (1 ~ XAt)b
 m the sense of De Giorgi [DG2] and

we prove that, in accordance to De Giorgi's conjecture, the boundary of At
moves with normal velocity

V = * ( # / / + a ) , (1.2)

where $ is an increasing real function, a is a function depending on the
derivatives of the in homogeneous, anisotropic surface energy density H and
KH is the (anisotropic) curvature of

rt := dAu

associated to H.
Our results hold globally in time,pas£ possible singularities that may

arise in the evolution {Ft}(>o even for smooth initial data To- We conclude
that the notion of minimizing movements may indeed unify problems in the
calculus of variations and in particular it can relate singular perturbations
and their F-limits to generalized curvature flows. A prototypical example,
capturing many important features of this class of equations, is the motion
by mean curvature, i.e. where

7 V - 1

V = K = ] T Kt,
t = l

V is the normal velocity of the interface Tt and KU ..., «n_i are its principal
curvatures.

As noted earlier, surface evolutions depending on their curvature tensor
can start out smooth and yet at a later time they may develop singularities,
change topological type and exhibit various other pathologies. A great deal
of work has been done recently in order to interpret the curvature evolution
of surfaces past singularities. Here we will be using a combination of the so-
called level-set and distance-function approaches. For a detailed description
of all approaches, their relationship, as well as their consequences, we refer
to the papers cited below and references therein.

The level set formulation represents the evolving surface as the level set
of an auxiliary function solving an appropriate nonlinear partial differen-
tial equation. This approach has been extensively developed by Evans and
Spruck in [ESI] in the case of motion by mean curvature and, independently,
by Chen, Giga and Goto (see [CGG]), who considered evolutions of the type
of (1.2). In both works, the analysis is based on the theory of viscosity



solutions to fully nonlinear second order parabolic equations, which were
introduced by Crandall and Lions in [CL] and Lions in [L]. For a detailed
overview of the theory of viscosity solutions as well as a complete list of
references (until at least 1991) we refer the reader to the User's Guide [C1L]
by Crandall, Ishii and Lions.

The distance-function approach, introduced by Soner in [S] and later
extended to very general situations by Barles, Soner and Souganidis (see
[BSS]), is a more intrinsic one. It describes the motion in terms of the
properties of the distance function to the evolving surface. For the precise
relation between the two approaches, as well as their consequences, we refer
to [BSS].

The generalized mean curvature evolution {r*}t>o> defined in the vis-
cosity sense, starting with a given closed surface To C IRN exists for all
t > 0. The sets obtained from the level set approach are uniquely defined
as opposed to the ones obtained by the distance function, unless there is no
interface fattening. The last issue is rather intriguing and we return to it
later in the paper. Finally, the generalized mean curvature evolution agrees
with the classical differential-geometric flow, as long as the latter exists.

These notions of generalized motion have been proven in several occa-
sions to be the right way to extend the classical motion past singularities.
One of the most definitive results in this direction was obtained by Evans,
Soner and Souganidis (see [ESS]), who proved that the generalized mean cur-
vature motion governs the asymptotic behavior of solutions to the following
semilinear reaction-diffusion equation (Allen-Cahn model)

u$-Aux + ̂ W'(ux) = 0 in lRNx(0,oc),

in the limit as A —• 0 + , where W is a double well potential with wells of
equal depth. In a statistical mechanics framework Katsoulakis and Sougani-
dis studied the asymptotic behavior of Ising particle systems with dynamics
of Glauber-Kawasaki type ([KS1]) and simple Glauber with long range inter-
actions ([KS2]), obtaining again after appropriate rescaling of the stochastic
system, generalized mean curvature evolutions, past possible singularities.

The work on this paper had just started before the conference on "Surface
tension and movement by mean curvature " w a s held in Trento in July,
1992. There, discussing with DeGiorgi [DGF] we realized that it could be
extended to a more general framework. During that same conference [ATW]
announced their results on the time evolution of Af, starting directly from
the T-limit Jh(.\ Ao), assuming that H is homogeneous and fh is given by



a multiple of (1.1) with 5 = 1 and proved that such evolutions agree with
classical smooth flows starting with smooth initial data. Our methods differ
from those of [ATW] except in what concerns the regularity properties of the
reduced boundaries d^Aj^ (see Theorem 3.5). The proof of this regularity
result presented here is that of [ATW], and by completeness, as well as
for convenience for those readers less familiar with concepts from geometric
measure theory, it is included in the Appendix.

The paper is organized as follows: in Section 2 we recall some results
on functions of bounded variation and sets of finite perimeter as well as
the integral representation for the F-limit of {E^}c>o in the case where
fh = 0. Furthermore, we introduce the notion of viscosity solutions and
discuss some of their fundamental properties. In Section 3 we determine
the F-limit Jh of {E^}c>o in the general case, we construct a minimizing
movement associated to minimizers for Jh and in Theorem 3.6 we deduce
the Euler-Lagrange equation satisfied by each of these minimizers, namely

for a.e. x € ft and where i/(x)is the normal to d*Aj+l at x. This result relies
heavily on the apriori knowledge of smoothness properties of the interfaces,
Theorem 3.5. In Section 4 we prove that a minimizing movement is contained
in the unique viscosity solution {I\}t>o of (1.2); if such a solution has no
interior then the minimizing movement coincides with the viscosity solution.

2 Preliminaries

In what follows ft C E N is an open, bounded, strongly Lipschitz domain,
n,N > 1, {e i , . . . ,eyv} is the standard orthonormaJ basis of IRN and MnxN

is the vector space of all n x TV real matrices. If A 6 MnxN then ||J4|| :=

/

Given v € 5 N - 1 := {x e EtN | |x| = 1}, we denote by Qv an open
unit cube centered at the origin with two of its faces normal to u, i.e. if
{v\,..., VN-I, v} is an orthonormal basis of 1RN then

| € R N | | x . n | < i , | x . i / | < | , i = l , . . . , N -

Definition 2.1 ([DGl]) Let Jt,J0 : X^fijlR11) -+ R be a family of func-
tionals. We say that Jo is the T(I1(fi) limit of J( if



i) given any u G Ll(Q;Rn) and any sequence {uc} such that ut —• u in
Z^tyR11), then

Jo(u) < liminf Jt(u();
€- •0+

ii) for every u G Ll(Q;TR,n) there exists a sequence {ut} such that uc -> u
in Z^tyEt11) and J0(u) = lim Jt(u€).

We recall briefly some properties of functions of bounded variation and
sets of finite perimeter. For more details, we refer the reader to Evans and
Gariepy [EG], Federer [F], Giusti [Giu] and Ziemer [Z].

Definition 2.2 A function u G Ll(£l; IRn) is said to be of bounded variation^
u £ J9y(Q; lR n ) , if for alii 6 { l , - . - , n } , j € {1 , . . . , 7V} , there exists a finite
measure /x,j such that

Jn oxj Jn

for every ip £ C*(fl). The distributional derivative Du is the matrix-valued
measure /z with entries // tJ.

Definition 2.3 A set E C fi is said to be of finite perimeter in Q (of
finite perimeter, when fi = JR^J if XE € BV(£l), where \E denotes the
characteristic function of E. The perimeter of E in Q is defined by

?evQ(E) := supjj^div ip(x)dx \ <p G CHn;B^)9

Theorem 2.4 [Isoperimetric Inequality]
If E is a bounded set of finite perimeter in EtN then

where £jv stands for the N-dimensional Lebesgue measure in fftN.

Definition 2.5 If E is a set of finite perimeter^ we say that XQ belongs to
the reduced boundary of E,XQ G d*E, if there exists VE(XO) € SN~l such
that

i) PerB(xo ,c )(£) > 0 for all e > 0;
i{) ^ measfi(xo,c) /B(XO,C)

 DXE = - ^ ( * o ) , <™d uE(x0) w called the mea-

sure theoretic unit outer normal to E at XQ.



Theorem 2.6 [Structure theorem for sets of finite perimeter]
/ / E has locally finite perimeter in IR , then

oo

i) d*E = U FkUG where HN~l(G) = 0 and Fk is a compact subset of

a Cl -hypersurf ace ;

ii) ?erA(E) = HN~l(d*E n A) for every Borel set A C IRN.

Theorem 2.7 [Generalized Gauss-Green Theorem]
If E C 1RN has locally finite perimeter then

f div <p(x)dx =
JE

/
d*E

Definition 2.8 Let E C IRN be a set of finite perimeter, x0 6 RN . The
(N — l)-upper density of d*E at x0 is defined as

6 {d E,x0) .= hmjap Q(JV _ 1) fJV-,

where a(N - 1) := ^ ^ - ^ B R N - ^ O , 1)).

It is possible to prove that if xo £ d"E then

0-*-i(0-£(a:o) - i.

Lemma 2.9 / / £ is a set of finite perimeter then

CN(E) <

Proof Fix xo 6 E. By the Gauss-Green Theorem (see Theorem 2.7)

CN(E) =f

= ^(diam E)Fei(E),



where we have used Theorem 2.6 (ii). I

Let JEbea set of finite perimeter, xo G EtN and let

m(r):=HN-l(dmEnB(x0,r)).

If E was smooth, e.g. if E was a polyhedral set, then

ro'(r) = HN~\Lr)

where Lr is the boundary curve of d*E H B(xo, r). Suppose that xo G extE
and let XQ =pTO}d*Exo- If w e consider the cone

:= {Ax! + (1 - A)x | x e d*E n £(x 0 , r), A G [0,1]}

where x\ = ^xo + (1 — 0)a?o> ^ € (0,1), we see that due to the isoperimetric
inequality in R1^"1 (see Theorem 2.4)

lim HN~l(d*Ce\ (d*EnB(xo,r))) < C(N - l)[ro'

and so, there exists ^ G (0,1) such that

N l DB(xo,r)) < 2C(N - l)[m\r)]^. (2.1)

Note that
C* = (x0 x (d*E fl 5(x 0 , r)) \ (x0 x dm

LC$)

where ^£C^ stands for the lateral surface of C$- In this case, d*(E U C$) =
d*E\(d*E H B(x0, r)) U X where X = d £ O = d*Ce\{d*E n JB(x0, r)) is the
lateral surface of a cone satisfying, by (2.1),

HN~l(X) < C'(N - l ) [m' ( r ) ]^5 . (2.2)

If xo €int E then the cone C$ will be interior to the polyhedron and
d*(E\C0) = d*E\(d*E n B(x0, r)) U X. If x0 G «*£, let a?i := x0 - ri/E(x0)
and it is easy to verify that

d*(E\Ce) = d*E\(d*E n 5(x0, r)) U X

IT



and that (2.2) is satisfied. We conclude that for every XQ G IRN there exists
a set Q (where Q = E U CQ if x0 £ extE and Q = £\C$ if x0 € E) such
that £AQ C B(xo,r),

d*(EAQ) C (d*£ H B{x0, r)) U X,

HN~\X) < C\N - l)[m'(r

Here, and in what follows, we use the notation

AAB:=(A\B)U(B\A).

The analogue of this property for arbitrary sets of finite perimeter may be
stated as follows.

Lemma 2.10 There exists a constant C = C(N — 1) such that if E is a set
of finite perimeter, x0 G IRN, m(r) := HN~l{dmE n B(xo,r)) and m{r) > 0
for allr > 0, then for da.e. r > 0,HN~l(dmE D dB(xo,r)) = 0 and there
exists a set of finite perimeter Q such that

QAEcB(xo,r),

d*(EAQ) C (0mE H B(x0, r)) U X,

X) < C(N - l)[m'(r)]^

8mQ c P \ % r ) ) U l

The proof of this result relies heavily on geometric measure theory, and
so we only sketch the proof following [ATW].

Using slicing properties of integral currents by Lipschitz functions (here
we use the slicing of d*E by p{x) :=| x - x0 |), for £ia.e. r > 0, we have
that d(d*E D B(xo,r)) is an integral TV - 2 current (see [F], 4.3) with mass

M(d(d*E H B(x0, r)) < Ci(7V)m7(r).

As d[d(d*E fl B(xo,r))] = 0, there exists a TV - 1 integral current X with
dX = d{dmEr\B(xQ,r)), supp X C convex hull d(dmEnB(x0,r)) such that

HN~\X) < C2{N)[M{d{d*EnB(xo,r)))]J!&

(2.3)



where we used a result by Federer (see [F] 4.2.10 and also [A2]) ensuring
the existence of X satisfying the isoperimetric inequality (2.3). It suffices to
consider the cone

C := x0 x {d*E n B(x0, r)) \ (x0 x X).

The following necessary condition for lower semicontinuity can be found
in Reshetnyak [R] (see also Goffman and Serrin [GS] and [Fo]).

Theorem 2.11 Let f 6 C(ilx S^"1) be a nonnegative function and extend
/(x,-) as a positively homogeneous of degree one function. If

I f{x,vE{x))dHN~\x) < liminf / f(x,vEn{x))dHN'\x)

whenever EnyE are sets of finite perimeter such that Cj^(EnAE) —* 0,
n—++oo

then /(£,•) *s convex for every i g f t .

Let W : IRn -• [0,+oo) and A : ( l x Mn x A -»• [0,+CXD) be continuous
functions satisfying the following hypotheses:

(HI) W(u) = 0 if and only if u € {a, 6};

(H2) there exists a constant C > 0 such that

for some p > 2, and for all u € Hn;

(H3)

±\\A\\-C<A(x,A)<C(l+\\A\\)

for all a: G fi, A G M n x N .

Let A°° : £2 X MnxN ~* [0,+oo) be the recession function of A, i.e.

A (x, A) := hm sup

In addition, we assume that

10



(H4) there exist 0 < m < 2,C',L > 0 such that

iootf,- ^ A2(x,M) 2 - m

for all (x,A) € fi x Mn x 7 V and for all t > 0 such that t\\A\\ > I ;

(H5) for all XQ € ft and for all € > 0 there exists 6 > 0 such that

whenever \x — XQ\< 6;

(H6) for every ft > 0, A : fi X E n x {A C KN | A is measurable} —
E is a bounded, Caratheodory function (i.e., for any A, / ( - , - , 4 ) is
measurable in the first variable and continuous in the second one)
such that

\h(x,u;A)\<gh(£N(A))(l + \u\r)

for all « £ E n and some gh 6 L

(H7) fh(x,a;A) = 0 if .T € A, fh{x,b;A) = 0 if x & A.

We consider the family of anisotropic singular perturbations

E£(u9A):= ( \hv(u(x)) + eA2(x,Vu(x))]dx+ f fh(x,u(x)',A)dx
Jn U } Jn

for e,/i > 0. Heuristically, we want to show that as h,€ —• 0 + , minimizers of
E< will converge in some sense to a piecewise constant u with two phases, a
and 6, and the interface separating the two phases moves by mean curvature,
i.e.

where Kyi is the mean curvature of the interface associated to a possibly
anisotropic surface energy H and $ an increasing real function, related to
/ (see Sections 3 and 4 below).

An example of functions fh satisfying (H6) and (H7) for which this prop-
erty is satisfied is given by (see Section 4)

, ti; A) :=| it - aXA(x) - 6(1 - *>i(*)) |p g

11



and d is the signed distance function (see (2.13)).
Let v G SN~X and define

.4(1/) : = {t € H\W n {| x • v |< I} ;H n ) | fly) = a if y 1/ = - I ,
€(y) = 6 if y • 1/ = 5 and £ is periodic with period one

in the remaining directions I/J, . . . , I/TV-I}?

where the boundary values of £ are understood in the sense of traces. Recall
that a function f is periodic with period one in the direction of i/t if

for all A: € Z,y 6 ! R n n { | x - i / |< | } .
We define the inhomogeneous, anisotropic surface energy density

H(xo^o) -M {lQuoMW{t(y))

i 2 M > 0,£ €

In [BF] it was shown that

j t
 r ( " _ T " Jo (2.4)

where

and

PerQ(A) < +00

+00 , otherwise.

As remarked by Gurtin [Gu2], the assumption that the two potential wells
of W have equal depth involves no loss of generality, as we can always add
an affine function of u to the functional E*.

In the isotropic, scalar-valued case, i.e. it : £2 —• 1R and A = || • ||, the
r(X1(fi))-limit of I, Jo, was studied by Gurtin [Gul], [Gu2] and Modica
[Mo]. This result was generalized by Owen and Sternberg [OSt] and by
Bouchitte [Bo] to anisotropic functions A with linear growth such that A2 is
convex. The isotropic vector-valued case, u : Q —• IRn(n > 1) and A = || • ||,
was studied by Kohn and Sternberg [KoSt], Sternberg [St] and by [FT].

12



We remark that, as fi is a strongly Lipschitz domain, Pern(A) < +00 if
and only if Per(A) < +00. Also

Proposition 2.12 i) H(x,v) is continuous for every v G SN~l;

ii) H(xy') is convex, positively homogeneous of degree one for every x G

Hi) there exist a,/? > 0 such that

Q< H{x,v) <(3

for every {x,v)e Q x 5 N ~ 1 .

Proof

i) The proof can be found in [BF], Proposition 2.8.

ii) Due to Theorem 2.11, it suffices to prove that if Ek,E have finite
) —»

/ H{x,vE{x))dHN-\x) < liminf
d'Enn k+oo

Indeed, by part ii) of Definition 2.1 and by (2.4), for every k G N there
exists uk G Hl(Sl\W) such that

and

perimeter, Cpj(Ek^E) —» 0, then

hk{uk)- / H{x,vEk{x))dHN-\x)
Jd*EknQ*EknQ

for some e* —* 0 + . Then uk —• axE + 6(1 — XE) in i 1 and by Definition

2.1 (i) and (2.4)°°

Id*EnnH(x^E)dHN'1 < ljm^nf/Cjk(ttib)

k->+oo

iii) It is easy to see that (H3) yields

13



Hence, given f0 € A(v) defined as fo(z) := (x • v)b + (1 - (x • v)a) + ^ ,

B{x,u) < / 0 ^ ( ^ 0 ( y ) ) + (Aoo)2(:

6 - a

On the other hand,

> 2

because if rj G >i(e^) then £(y) := ^(/2t/) € A(v) where 1/ = RTen,R is a
rotation, Q^ = RTQeN

0i/

inf / ^ ( { ( y J J -

/ y/W(Z{y)) ||V((y)||rfy
JQCN

 V

dy = VQ e N v W ( W ) II Vr,(Ry)R \\ dy

By results in [FT],

a := MieA{ } fQtN y/W£(y)) || Vtfy) || dy

= inf j / j , ^ ( j ( t ) ) |(/'(0l rf< I 9 is piecewise C \

which is the geodesic distance between a and b with respect to the Rieman-
nian (degenerate) metric associated to y/W. Thus a > 0. I

Now we recall the level-set definition of generalized curvature evolution
with normal velocity

H + a(x,v)) (2.5)

14



where $ is increasing, H(x,-) is as before, homogeneous of degree one, and
convex, KJJ is given by (3.12) in Section 3, v is the unit normal to the
interface and also V2H € C(1RN - {0}). In addition

( 2 -6 )

Given a closed set To C RN , n > 2, choose h G tfC(]RN), where UC((l)
denotes the space of uniformly continuous functions denned on ft, satisfying

To = {r G HN : h(r) = 0} (2.7)

and consider the curvature evolution PDE associated to H and $

in RNx(0,oo)

u(x,Q) = h(x) in IRN. (2.9)

In the particular case of motion by mean curvature, $(r) = r and
H(x,y) = |y|, the above equation reduces to

i n

We consider the closed sets

Tt := {r £ Rn : u(r,t) = 0}, t > 0 (2.11)

and expect that {Ft}t>o is the evolution by the curvature rule (2.5) starting
from To (see [AG], [Gu3], [Gu4]). As we mentioned in the introduction,
such evolving surfaces may start out smooth and yet develop singularities
at some later time. However we can define weak solutions of (2.8) (hence
surfaces Tt) using the notion of viscosity solutions:

Definition 2.13 i) A function u : RN x [0,oo) —> 1R is a viscosity subsolu-
tion of (2.8)-(2.9) if for all smooth functions <f>: RN x [0,oo) -> R and all
local maximum points (xo,to) of u* — <f>,

15



<^t(^o^o) < 0 otherwise

and

ii) A function u : IRN x [0,oo) —• IR is a viscosity supersolution of (2.8)~
(2.9) if for all smooth functions </>: IRN X [0, oc) — IR and all local minimum
points (xo,to) ofum - <(>,

"

^t(^o^o) > 0 otherwise

and

in'̂  / / a function u is both a viscosity sub- and supersolution then we say
that u is a viscosity solution of (2.8)-(2.9).

In the latter definition we used the notation u* and u* to denote the upper-
(resp. lower-) semicontinuous envelopes of a function tz, defined as

u*(z) := Jim sup{u(y) : \z - y\ < r}

and
um{z) := Jim inf{u(y) : \z - y\ < r} .

It was proved in [ESI] for (2.10) and in [CGG] for a more general equation
(see also [BSS] for a mild relaxation of the assumptions of [CGG] and [ESI]
and [IS] for noncompact hypersurfaces) that the initial value problem (2.8)-
(2.9) admits a unique solution u £ UC(WLn x [0,oo) ) (see [BSS], [CGG],
[ESI], [IS] for the relevant proofs, comments etc.). In particular the following
theorems hold.

16
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Theorem 2.14 [Comparison Principle]
Let u and v be> respectively, viscosity sub- and supersolutions of 2.8 in IRN x
[0,T] for some T > 0. Ifum(0,x) < vm(0,x) then u* < vm in IRN x [0,T].

This result, together with Perron's method (see [CIL]), yields:

Theorem 2.15 There exists a unique continuous viscosity solution of (2.8)-
(2.9) .

The so! •, ;ion of (2.8) describes a geometric evolution of level sets, there-
fore the evolution should be invariant under any arbitrary relabelling of the
initial level set. Indeed, the following theorem, which will be used subse-
quently, can be proved along the lines of [ESI, Theorem 2.8].

Theorem 2.16 Assume that u is the viscosity solution of (2.8) and let $ :
IR —y IR be a nondecreasing function. Then

v := ^f(u)

is the viscosity solution of (2.8) with v(0,x) = $(/i(x)).

We conclude with the distance-function definition of generalized mean
curvature evolution. Let I \ P and R C IRN X [0,oo) be such that

r u P u R = IRN x [o,oc) and r n P = r n R = 0, (2.12)

define I\ to be the ^-section of T and let d(x,t) be the signed-distance be-
tween x and Ft, i.e.

f dist(x,Tt) (x,t)e P,

-dist(z,r t) (x,t)eR, (2.13)

0 (*,*)€ r ,

with the understanding that dist(x,Tt) = oo for all x if Tt = 0,and where
dist(x, A) denotes the usual nonnegative distance from x to the set A.

We say that {r*}t>o is the (distance function) generalized motion by
mean curvature starting from To if (D V 0)* is a supersolution and (D A 0)»
is a subsolution of (2.8) (see [S] and [BSS]). Here, and in what follows, we
use the notation

aV6:= max{a,6}, a A b := min{a,6}.
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In the case where Tt is defined by (2.11), it turns out that the two
definitions given above are equivalent if and only if there is no interface
fattening, i.e. if and only if the set

Ut>o(rt x {*})

has empty interior in HN x [0, oo) (see [BSS], [S], etc.). Here, as it is standard
in the literature, we say that intl\ = 0, where Tt = {x\ u(x,t) = 0}, if
given u(x,t) = 0 there exist sequences xn —» x, yn —• x, such that

u(xn,t) > 0, u(ynjt) < 0 for all n G N.

If there is interior, then there is no uniqueness in the distance function
approach but rather a minimal and maximal front (see [S] for the details).
Whether interior develops or not is a rather intriguing issue; we refer to
[BSS] for a detailed discussion and a general sufficient condition yielding no
fattening.

3 F-limit and generalized minimizing movement
for

Let A C ft be a set of finite perimeter, e,h > 0, and set

Jn U

where ue H^fyW1).

Theorem 3.1 The T(Ll(n))'limit of E* as t -* 0+ is

f fh{x,u{x)',

Jh(u;A) :=

Iufh(x,u{x);A)dx
ifu =
Per(L)< +oo

+oo, otherwise.

Before proving this theorem we show that

Lemma 3.2 Let h > 0 be fixed. If vc € Jf^fylR") is such that v€ -+ u in
R") and if

^tv,;!) < +oo (3.1)
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then
u(x) = aXL{x) + 6(1 -

for some set of finite perimeter I c f i , and

Proof For a subsequence, and by (H2) and (H6), we have

lim / -W(vt)dx < +00
e-o+ JQ €

and so by Fatou's lemma

/ W(u{x))dx < lim sup / W(vc(x))dx = 0 , (3.2)
JQ €—o+ Jn

i.e.
u{x) = a\L(x) + 6(1 - XL[X))

for some measurable set L. As shown in [BF], Proposition 3.1, Step 1, if
Per(X) = +oo then

lim Ic(vt) = +oo

contradicting (3.1), thus Per(i) < +oc. Moreover, by (H2)

< C'[W(vc) + l]

and so, extracting a subsequence for which vc(x) —> u(x) a.e. x 6 E, by
Fatou's Lemma we obtain

C'CN(5l) = /Qliminf {C'[W(t;c(*)) + 1] - K(«) - ^(^)IP} dx

< liminf / {C'[W(vc(x)) + 1] - |v€(x) - tt(x)|p} dx
e—0+ J«

- lim sup / |vc(x) - u(x)\pdx

where we have used (3.2). Hence
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Proof of Theorem 3.1. Let u € Z^ftjK,11), uc € H^fylR11),^ -> u in
Z^ftjlR!1) with

Um'm{E*(ut;A) < +00.
£—•0+

By Lemma 3.2

with Per(I) < +00 and

11 Ut " U I|LP
(_̂ + °" (3*3)

By [BF] (see (2.4))
liminf Ic(ut) > Jo{u)

and by Fatou's Lemma, (3.3) and (H6)

lim / fh(x,uc(x);A)dx = / fh(x,u;A)dx
c—0+ JQ JQ

and we conclude that

t/ fi { U, J\ I *— t/QI U I ™| lr\ J fay JC ^ UL^ f\ JCLJi

< liminf{/e(w£) + / fk(x,u;A)dx}
€-0+ JQ

= liminfE.K)-

Conversely, choose vt £ Hl(Q;Rn) such that vt — u in X1 and I€(vt) —>

Jo{u), Jo{u) < +oc. By Lemma 3.2

vt -> um Lp

and so by Fatou's Lemma, (3.3) and (H6)

[ fh(x,vc(x);A)dx -> I Jh(xMx)\A)dx
JQ €—0+ ^ Q

and we deduce that

E^(vt\A) = /c(vc) + /n//l(a:,t;c(a:);>l)cfx
- \ Jo(tt) + /n A(x, w; A)dx

We recall De Giorgi's notions of minimizing movement and genemlized
minimizing movement.
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Definition 3.3 [DG2] Let S be a topological space, T : (1,+oc) x Z x 5 x
5 —> I R u { + o o } . We say that u is a minimizing movement associated to T
and S, u £ MM{T,S)} if there exists w : (1 ,+oc) x Z - ^ 5 such that for
allt E IR

u(t) = lim w(A,[Af])
A—•-•-oo

and if X > 1, k £ Z

min/*(A,fc,s,u;(A,A:)) = ^"(A, fc,w(A,fc + l),w(A, A:)).

Definition 3.4 [DG2] Let S be a topological space, T : (1,+oc) x Z x 5 x
5 —* IR U { + o c } . We say that u is a generalized minimizing movement
associated to T and S,u£ GMM(T, 5 ) , if there exist w : (1 ,+oc) x Z — 5
and a sequence {A,}t€j>j such that lim,_«.+oo A, = +oc and for all t £ IR

u{t) = lim u?(At,[At2])
t—•'+00

and if X > 1, k G Z

min ̂ (A, k, s, w(\, k)) = T(X, k, w(X, k + 1), w( A, it)).

We use the notation [x] := max{z G Z | 2 < 1}. In our context,
associating the set of finite perimeter L to the function of bounded variation
u(x) := axi,{x) + 6(1 - XL{X))-> W ^ consider S := {A C Q \ Per(^4) < +00}
and we set

( £N(LAA) iik<0

+ fn J{(x,«XL + b{\ - XL)\ A)dx if fc > 0.
In the case where

/fc(a:,t.; A) :=| u - aX / , ( i ) - 6(1 -

then for A; > 0

?(\,k,L,A) = J±(aXL + (l-XL)b;A)

= f H(x,v{x))dHN-\x)
Jd'LnQ

aXL(x) + 6(1 - XL(X))) - aXA(x) - 6(1 - XA(X)) \P X
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x g(Xd\st (x,dr

/
d'Lnii

N-1(\b-a\p g{Xd\st(x,dmA))dHN-1(x). (3.4)

This was exactly the functional considered in [ATW], with g{t) := t and
H = H(i/).

Fix Ao C ft,Per(i40) < +oc. Using the Direct Method of the Calculus
of Variations, it is easy to see that ££(•; Ao) admits a minimizer v^. It is
a well-known fact that minimizers converge to minimizers of the F-limit.

Proposition 3.5 {v|^}c>o admits a subsequence {v^l}v>o such that

«fc0) = °X,4?(z) + Kl - X>if (*)), PerM?) < +00

minimizes Jh{',Ao). In addition, setting

uo{x) :=

Proof By Theorem 5.2 in [BF], as Ic(v[ I) remains uniformly bounded in

there exists a subsequence {v^ 1}TJ>O such that

By Lemma 3.2

i0) K ) ( 4 ) < +oo.

Due to Theorem 3.1, given u = a\L + K1 ~ Xl).Per(I) < +00, let v( £
H\Q;Rn),vt -* u in I 1 and E*(ut;A0) -• A(u; Ao). Then

< Uminf
7J—••0^"

< liminf
+
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hence vrh ' minimizes Jh(*;Ao). Finally,

since, due to (H6), fu /(x, uo(x); A0)dx = 0. •

Construction of a Generalized Minimizing Movement:
We consider a minimizer v]1^ for E^(-;Ai) and, as before, for some sub-

sequence

vllh - x
 uih] = "XAZ+W-XAS)* P e r ( 4 ) < +<* , u™ minimizes Jh(-;A$),

and
^ )

<

Recursively, we construct a sequence of minimizers {v|^} for E?(-;Aj) such
that (for some subsequence)

viJl - . u^ in L\Q;JRn),
' c—+0+

^t) H^ + 6(1 - x^ + ) ) ,Per (^ + 1 ) < +00,

u£ minimizes «//,(•; Aj),

<

< ...<Jo(wo). (3.5)

By Proposition 2.12 iii), B(x,u(x)) > a > 0 and so by (3.5) and as

Hti^Hoo < max{|a|, |6|},

sup ||t#)||f lV(n!R.) < +00. (3.6)
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With T{\, k, L, A) defined as in (3.4), we set

«,(A;[*A]):=u«tA», i.e. w ( ± , j ) := ««>.

By (3.6), and after extracting a diagonal subsequence, we find a sequence
{^»}i€N s u ch that linit-.+oo A, = +00 and for every t > 0 in a countable
dense subset of (0,+oo)

w{\i;[t\}) . -> U(t) in I^ l l j lR^IKt) G BV(fl;IRn).
t—••foo

In addition, as u^ 6 {a,6}a.e., then

U(t) = aX>if + 6(1 - X>ir)i P e r(^t) < +oc.

Holder regularity results obtained in [ATW] guarantee that the convergence
holds for all t > 0.

Note that u 6 GMM(F,S), i.e. u is a generalized minimizing movement
associated to T (see Definition 3.4) since

min ^(A,fc,I,u;(A,fc)) = min f(\,k,L,u[k))
Per(L)< + oo V " Per(L)<+oo X '

= min T(\,k,L,A~£, -,)

,ti;(A,fc + l ) , u;(A,ifc)).

De Giorgi [DG2] conjectured that d*At moves along its mean curvature (see
also [ATW]). In order to justify this conjecture, we begin by determining
the Euler-Lagrange equation satisfied by the minimizers Aj + 1 of

L e S ~ Jh{L; A1}) := Jd.Lnn H(x,*(

) + 6(1 -

+
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For simplicity of notation, in the sequel we consider a set of finite perime-
ter Ao and a functional

I H J(L):= I H(x,v(x))dHN-l(x)+ f f{x,a)dx+[ f(x,b)dx
Jd'Lntl JL\Ao JAO\L

where / satisfies (H6) and (H7), Per(Z) < +oc and

(H8) H 6 C3(Q x (IRn\{0})),H(x,-) is convex, positively homogeneous of
degree one, H > 0;

(H9) there exists a,/? > 0 such that

a < H(x,v)<(3

for every (x,i/) € ft x SN~l.

Note that the surface density H that we obtained in the F-limit of the
functional E^ satisfies (H8) and (H9) (see Proposition 2.12) when A = A(v)
(and so H = H{y)).
Also, as H(x,-) is homogeneous of degree one

H(x,ty) = tH(x,y) for all t > 0 (3.7)

hence, differentiating this equation with respect to j / , we have

— (X,ty)=—(X,y), (3.8)

i.e. ^ ( a v ) is homogeneous at degree zero. If we differentiate (3.7) with
respect to t at t = 1 we get

t,y)-y = H(x,y) (3.9)

thuS - -BE.

i.e.

^ ^ (g,y)yjb = 0 for every j = l,...7V. (3.10)

We introduce the concept of mean curvature of a surface F C il with respect
to # . Suppose that T is a C2 surface with a local parameterization T =
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{(x\F(x')) | x' G J9}, where D is a domain of JR*"1 and a: = (x',xN) 6
H N - 1 X JR. Then the normal vector to T is given by

and the mean curvature is defined as

D'F

-1 [ j flF

where we have used the summation convention for repeated indices, greek
indices range from 1 to N — 1 and i, j G { 1 , . . . , N}.

Now if H satisfies (H8) and (H9), then the mean curvature of T with
respect to H is given by

= D2
yH-D2G (3.12)

where T = {G = 0},and G(x) = xpj-F(x'). Of course, when H(x,y) = | j / |
then (3.12) reduces to (3.11).

The uniform ellipticity of equation (3.12) will be used to obtain regularity
properties for F which, in turn, will be helpful to deduce the Euler-Lagrauge
equations satisfied by a minimizer A of J(-), with Per(>4) < +oc. This
suggests the introduction of an additional hypothesis, not necessary if H(x, •)
is strictly convex:

(H10) H is elliptic, i.e. for every R > 0 there exists XR > 0 such that

for all x € Sl,k € {1,. . . ,JV}, £ € H N and y G R N such that j / * =
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As it turns out (see [ATW], Theorem 3-8 and (3.4)) there is a regularity
result asserting that

Theorem 3,6 Let H satisfy (H8), (H9), (HlO) and let /(x, u) = /(x, u; Ao)
verify (H6) and (El). There is an open set U C Etn such that HN~l(d*A\U)
= 0 and WA D U is aCl{N - 1) dimensional submanifold o/IRn . If N = 3
then d*A is a compact C1 2-dimensional manifold o/lR3 without boundary.

As the proof of this theorem presented in [ATW] uses heavily notions of
geometric measure theory, we found it convenient for the reader less familiar
with those concepts to rewrite it analytically and include it in the appendix.

Theorem 3.7 Let H satisfy (H6), (H9) and (HlO) and let /(x, u) = /(x, u; Ao)
satisfy (H6), (HI), /(•,*>)-/(•, a) Lipschitz in a neighborhood ofHN~la.e. x G
d*A. Then for HN'1 a.e. xoed*A there exists 6 > 0 such that

N 02 LJ

f(x,b) - f(x,a) = KH + J2 ̂ " (3-13)

for every x £ d* A C\ B(xo,6).

Remark 3.8 Let t() : H —+ IR be an increasing, locally Lipschitz function,
and set

9(t) := j y ^ W ) , /(*,«) :=l u-aXAo(x)-b(l-XAo(x)) \P g

for some h > 0, where the signed distance to 8*AQ is defined as

{
—dist(x,#*Ao), if x G

By Proposition 2.12 ii) H is convex. Moreover,

f(x,b) - f(x, a) = [XAo(x) | b - a \f - (1 - XAO(X)) \b-a\r}g

= - \b-a\r sign
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which, by Theorem 3.5 and if we assume that H is elliptic, is locally Lipschitz
for HN~l&.z. x £ d*A. Hence, by Theorem 3.6 and (3.13) we conclude that

where

a(X i/) - y* d2H

and so
u( X , C

with

Proof of Theorem 3.7. By Theorem 3.6, for HN~l<i.e. x0 G d*A we may
find 6,6' > 0 and a C1 function F : B'(0,6) C IR1^"1 -* IR such that, for
some rotation i?,

R(A-xo)n[Bf(Q,r)x(-6,6')} = {(^xyv) 6 £'(0,6)xIR | -* ' < xN < F(x')}.

Without loss of generality, we may assume that R = I, x0 = 0. Let y? 6
Cc

a(IRn;Rn), suppy? C B'(0,6) x (-6',6') and choose e > 0 small enough so
that

wc(x) := x + 6<̂ (x)

is a diffeomorphism. Then by (H6)

0 = i l<=o {ld'W({A)nU H(y,»((y))dHN-\y) + Juu{A)XAo f(y,a)dy

- i I f jrfu lgtp«( |pr

So f(y^)dy - fW({A) /(

[DM*)))-***) \
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Now

1 v ' v ' det Dwt(x)

and

•T- l<=o adj _Dwt(z) = -Dtp(z)T

Hence, using the homogeneity of H(x,-) and (3.8)-(3.12),

0 = 37 l«=o {
fA[f(wc(x),a)-f(w((x),b)]<l<*Vwt(x))dx]j

f
I - D<pT(x)) u{x)dHN~\x)

and as

{[ | | g ] vKx) + lf(x,a) - /(*,&)] div ̂ (i)} dx

by the Gauss-Green formula (see Theorem 2.7) we obtain

(ar). (3.14)

For convenience we assume that F 6 C2(B'(0,6)) , although we will drop
this hypothesis at the end of the proof. By (3.8) we have

Writing the last integral in (3.14) in local coordinates and using (3.8)-(3.12),
we obtain

/ [ / ( ) / (

/ i
d'Ann d
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and if F £ C1 (B'(0,6) then

f(x,b)-f(x,a) = J ^

BF-({x\F{x%<-VF(x%l>)£-

) ,1>) (3.15)

in Vf(Bf(a,6)). As F is locally Lipschitz then ||< -VF, 1 >|| remains
bounded and so, due to the ellipticity hypothesis (H10), we deduce that
(3.15) is an elliptic equation for VF. The hypothesis (H10) and classical
regularity results (see [LU]) imply that F £ Clik and, as in [ATW], differen-
tiating (3.15) once more with respect to xe^O = 1, . . . ,N - 1, we obtain that
-g— is a solution of a second order linear elliptic partial differential equation
with Holder continuous coefficients, of the form

dF _

From Theorem 1.2, page 219 in [Gi], we conclude that % € C1-2 and so

„ M r . , d2H d2H dF 82H
f(x,b)-f{x,a)= +dyQdxQ dyQdxjv dxQ

d2H dF 67H

dxQ

4 Minimizing flows are viscosity solutions

In this section we prove that a minimizing flow is a viscosity solution for the
corresponding curvature-type equation. Notice that this result is past the
possible singularities appearing in the solutions of such equations.

We recall the construction of the generalized minimizing movement, as
described in the previous section. Let Q be any bounded set such that
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Ao CC fi. Given a time step h, we write [0,+oo) = Ug o [^ ,^ + 1 ) where
*o = 0> ti+i = ti + h. Then

^ -> ti = aXM, + 6(1 - * * ) in I1(fi;lRn)asj - +00

for some sequence hj —* 0 + , i.e.

X.»} - XA, in lHf i jR)

with

A?:=A{i/h] = A? iHe[t?,tf+i)-
We set AQ = Ao , and as before the signed distance to d'A* is given by

where, by Theorem 3.6, d*A^ is a compact C1 (Ar —1) -dimensional manifold.
We define

In the case where H(x,y) = |y| and p is given as in Remark 3.8, the Euler
Lagrange equation derived in Theorem 3.7 becomes

rtr|V0*(x,*)

= ADh(x,t) (4.1)

for all x 6 0MJ1 where the manifold is twice continuously differentiable.
Furthermore tp is a locally Lipschitz, increasing function; note also that in
the second equality we have used the fact that | VDh \— 1.

Setting
Z?oo(x,t) := -d(x,d"At),

heuristically we expect (4.1) to yield Doo as a solution of (2.10) and (2.9)
with /i(x,0) := Do(x) (at least when ip(r) = r), or for general H and ij>,

ut - \Vu\9 (I^JJ {tr [V2H(X, ]^y)V2u] + a (x, fa)}) = 0
in lRnx(0,oo) (4.2)

u(x, 0) = D0(x) in Rn (4.3)
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where, as before,

a(x,y) = 2^ dxd , i * = V> is increasing

and where t* G (0,+oc] is the extinction time for the level sets I\ = {x €
R n | u(x,t) = 0},i.e.

t* := sup{* | t > 0 and Tt ̂  0}.

Here u : lRn x [0,+oo) —• 1R is uniformly continuous and it is the unique
viscosity solution of (4.2), (4.3) (see Theorem 2.15).

Following the method introduced in [BP], we define the lower semicon-
tinuous envelope for /

Dm(x,t):=]\mmt Dh(y,s)
( ) ( ( )

h—o

and the upper semicontinuous envelope

D*(x,t) :=limsup Dh(y<s).
(v,«)-(*.t)

h-~ 0

It is clear that
D*>Dm in Rnx[0,+oo).

Let

T:=sup{t>0 | \Dm(x,t)l\Dm(x,t)\<+ooin Rn x [0,t)}.

Now we state our main theorem.

Theorem 4.1 Let u be the unique viscosity solution of (4-2), (4-3). Then

{u<0}c{£*<0}, {u>0}c{D.>0}. (4.4)

//, in addition, int Tt = 0 for all t G [0,T), <Aen

D*(x,t) = D(x,t) in {u < 0}, (4.5)

D*{x,t) = [D(x,t))* in {II >0}, (4.6)

!?•(*,t) = ^(a:^) in {w > 0} (4.7)
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and
Dm(x,t) = [Z>(x,*)]. *« iu < 0} (4.8)

u;/iene [/?]* (Vesp. /Z?7*) is </ie upper semicontinuous envelope of D (resp.
lower semicontinuous envelope) and

dist (x,Tt) \{u(xj) > 0
D(x,t):={ - d i s t ( a r , r t ) ifu{x,t)<0

0 if u(x,<) = 0.

Remark 4.2 Notice that the viscosity solution is always contained inside
the generalized minimizing movement. Moreover, in the no interior case, at
the points where the signed distance function D is continuous,

the convergence of the approximating motion to the minimizing movement is
not only in L\ but also locally uniform and finally the generalized minimizing
movement turns out to be a minimizing movement which coincides with the
viscosity solution.

The proof of Theorem 4.1 is based on a series of lemmas that we present
below.

Lemma 4.3 The function Dm V 0 (resp. D* A 0) is a supersolution (resp.
subsolution) of (4.2) in Rn x (0,t*] and

(0.VO)(a:,O)> (A) V0)(z,0) in IRn

(resp. (D* A0)(z,0) < (Z?0 A 0)(x,0) mIRn).

Lemma 4.4 The function Dm{ resp. D*) is a supersolution (resp. subsolu-
tion) of (4.2) in {D. > 0} D(IRn x (0, t*)) (resp. {D* < 0} n (IRn x (0, f ) ) ) .
In addition

| - 1 = 0 in {D* > 0} n (IRn x (0,f)) (4.9)

(resp.1- | VJD* |= 0 in {D* < 0} fl (Rn x (0, t*)))

in the viscosity sense.
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Proof of Theorem 4.1. We only present the proof in the case where
H(x,y) = |y|, the general statement being a straightforward adaptation of
our arguments. By Theorem 2.16, <p(u) = u V 0 is a solution of (4.2) and so,
by the comparison principle (see Theorem 2.14) and Lemma 4.3

t*(x,<) V 0 < Dm(x,t) V 0 in IRn x [0,t*).

In particular

(Rn x [OX)) n {u > 0} C {Dm > 0} H (IRN x [0,f)).

Similarly

(IRn x [OX)) n {u < 0} C {D* < 0} H (IRN x [0, t*)).

If int r t = 0 then

{u > 0} = {/?. > 0} and {t* < 0} = {D* < 0}.

Indeed, suppose that D*(xo,t) > 0,u(zo,t) < 0. If u(xo^t) < 0 then
jD*(xo,t) < 0 and this implies that D*(xo,t) < 0, contradicting our assump-
tion. On the other hand, if u(xo,t) = 0 and as intl\ = 0 then we may find a
sequence xn —> xo such that u(xn,t) < 0. Thus D*(xn,t) < Dm(xn,t) < 0
and due to the lower semicontinuity property we conclude that

D.(xo,t) <Kmmf{xn,t) < 0,
n—^+oo

again in contradiction with the assumption.

Since D(-,t) is a distance function, it satisfies

| VD | - 1 = 0 in {D > 0} n (Etn x [0,t*)). (4.10)

1- | VD |= 0 in {D < 0} n (IRn x [0,f)). (4.11)
By the uniqueness (in the viscosity sense) property of the above equations
and by (4.9) we conclude that

D*{x,t) = D(x,t) in {D > 0} 0 (Rn x [OX])

and, in a similar way,

D*(x,t) = D(x,t) in {D < 0} n (IRn x [0,t*]).

Relations (4.6) and (4.8) are proved at the end of this section. I

The proofs of Lemmas 4.3 and 4.4 use the preliminary results below,
Lemmas 4.5 and 4.7.
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Lemma 4.5 The function Dm (resp. D*) is a supersolution (resp. subso-
lution) of (4.2) in {D* > 0}D(IRn x(O,T]) (resp. {Dm < 0} H(Rn x (0,T])J.
In addition

>. | - 1 = 0 in {Dm > 0 } n ( R N x ( 0 , T ) ) (4.12)

and
1- | VD* |= 0 m {IT < 0} fl (Rn x (0,T))

in the viscosity sense.

The proof of Lemma 4.5 is based on the fact that strict local minima of
D« are approximated by local minima of Dh

y precisely

Lemma 4.6 Let U C lRk be an open set, tyn : U —• 1R continuous functions,
and let ipm(x) := liminf ^ n (x n ) . Let XQ be a strict local minimum for ipn.

Then there exist a subsequence n^ —̂  +<x> a72c? points of local minimum for
1pnk, Xnk, SUCh that Xnk —• X 0 .

This result is standard in the literature on viscosity methods. For com-
pleteness we include its proof in the Appendix.

Proof of Lemma 4.5. To prove that Dm is a supersolution of (4.2), we
consider a smooth function <̂>, we assume that (xoJo) G {Dm > 0} n (IRn x
(0,T)) is a strict minimum for Dm — if and we prove that

zo,to)\ U |Vv>(xo,*o)|2 J J /
(4.13)

By Lemma 4.6, there are points of minimum (z/,, t^) € {i?'1 > 0} for Dh -<p
(where we assume that a subsequence hk —* 0+ has been extracted), such
that (xh,th) —* (xo,to)- We fix a time step h and we assume that th €

[*?»*i+i) f o r s o m e « = *(h) e N - T h e n

Dk(xh,th) = d i s t (x ,a*4) =|arfc - zh\
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for some zh e 0*A^h = d*A^. According to Theorem 3.10 in [ATW], there
is a neighborhood of Zh where d* A1} is twice continuously differentiable. By
(4.1) we have

tr | f l ]
(4.14)

We define

£(x,t) := tp(x + xh- zh,t) - <p(xh,th), £{zh,th) = 0,

and we claim that

ft > 0} C {Dh > 0} and Dh(x,t) - i(x,t) > Dh(zh,th) - t(zh,th) = 0.
(4.15)

Indeed, if there exists (x,t) such that £(x,t) > 0 and Dh(x,t) < 0 , since
minimizes Dh - ip we obtain

x + xh-zh,t)> <p(

and since £(x,t) > 0 ,

D\x + x h - zh,t) > Dh(xhJh) =\xh-zk\.

On the other hand, as Dh(x,t) < 0 we conclude that

\xh-zh |< Dh(x + xh- zh,t) - Dh(x,t) <| xh - zh

yielding a contradiction. Also,

Dh(x,t)> Dh(x + xh-zh,t)-\xh-zh\

= Dh(x + xh-zh,t)-Dh(xh,th)
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and this proves (4.13). Now, as in Theorem 2.2 in [ESS], we may construct
an increasing function $ : R —• IR such that

9(t{x,t))<Dh(x,t), *(0) = 0 (4.16)

in a (uniform in h) neighborhood of (z^^k)- Furthermore, since | VZ?*1 |= 1,
by (4.16) and as £(zh,th) = 0 = Dh(zh,th), we have that Dh - $ o f has a
local minimum at (z^th) a n d so

»'(0) = 1, (4.17)

where we used the fact that D£{zh,th) = D<p(xh,th) and | D^p{xh^th) |= 1-
By (4.14), (4.16) we obtain

and by (4.14), (4.17), letting h -> 0 and using the fact that

with | ^<t>(xh,th) 1= 1) we conclude (4.12):

<Pt(xo,to) >

x v V ( ) } )
The dual statements for D* follow along similar arguments. I

Lemma 4.7 The function D+ V 0 (resp. D* A 0) is a supersolution (resp.
subsolution) of (4.2) on IRn x (0,T].
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Proof Step i.Given 6 > 0 we consider a smooth function <p$ : IR —> IR+
such that

ips = 0 on (-00,6], ¥>£ > 0 in IR, I im5_o+^(s) = s V 0.

Define

Let ip be a smooth function and let (XQ, *o) € IRn X (0, T) be a strict minimum
for vs — V7-

If D*(xo,to) > 0, then D« V 0 = D« near (a:o,to) and so, by Lemma 4.6
and Theorem 2.16, we have that v$ is a supersolution. We conclude that
(4.14) is satisfied by xp at (xo,to).

If Dm(xo,to) < 0, due to the Lipschitz continuity of v$ in x we have
vs = 0 in a small ball centered at xo- Thus

and to obtain (4.14) it suffices to prove that

Set

We have
v6(x,t) =liminf

( * ) (
h—0

and so, by Lemma 4.6, t;£ - ^ has a local minimum at (x^,^) , where
(2/nU) —• (^o^o)- In addition, for each h > 0 there exists i = i(/i) such

that ^ 6 [^,^+1)and

^(x/ , ,0 = ^(xfc,tfc) for all t € [«,\*?+i)

and so
0 = £ )

>
from which we conclude that
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Step 2. To prove that Dm VO is a supersolution of (4.2), we consider a smooth
function tp and we assume that (xo,*o) € lRn X (0,T) is a strict minimum
for D+ V 0 - xp.
By Lemma 4.5 we may find a sequence of strict local minima (xs,ts) €
Rn x (0,T) for vs - $ such that (**,**) -* (so,<o).

Applying Step 1 to (&£,<;), we conclude that equation (4.11) is satisfied
by %j) at (xs.ts) and due to the continuity of ^, we obtain equation (4.11)
for ip at (zo,<o).

Step 3. Finally, we turn our attention to the endpoint {t = T}. The state-
ment reduces to a standard observation in the theory of parabolic equations,
provided Dm V 0 is bounded. In our context, we can always reduce to this
situation by considering a bounded, continuous, strictly increasing function
$ and using Theorem 2.16 ensuring that $!(Dm V 0) is also a supersolution.
We conclude by applying fl*"1 and, again,Theorem 2.16. I

From Lemmas 4.5 and 4.7 we conclude that Lemmas 4.3 and 4.4 will
follow, provided

!?.(*, 0)V0 > Do(x)V0 i n R N ,

Z>*(z,0)A0 < 2?o(*)A0 inR n (4.18)

and
f < T. (4.19)

The estimates (4.18) and (4.19) are an easy consequence of the following
result, proven in [ATW] in a more general form (see Theorem 5.4 [ATW]).

L e m m a 4.8 Let Ro,ho>0,to>0 and let Rt := [IJg - 2(N - 1)(* - * o ) ] 1 / 2 .
The following hold true:

i) if for allQ < h< h0 , B(zo,Ro) C A%0 then

ii) if for allO < h < h0, A^ C B(XO,RQ) then

Hi) if for allO< h< h0, A^ C [B(xo,Ro)]
c then
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Aic[B(xo,Rt))

We prove that
Dm(x,0) = Do(x) in WL*. (4.20)

Since by definition JD*(I ,0) > D0(x), it suffices to show that D*(x,0) <
(x).
Define the set

and consider the signed distance VQ from the boundary of AQ. For all

% c

and so by Lemma 4.8 iii) we have

for 0 < t < 2 ( / _ ^ , where et := [e2 - 2(N - l)t]§. In particular

Ah
t c[B{x,-j=)f

for all x £ [AQ]C, 0 < t < 4/^_1^. Consequently

where Ao C Ec C AQ. It foUows that

) for
- ~ 4(N - 1)

which yields 2?*(z,0) < D0(x).
Finally, we turn to the proof of (4.19). Suppose that T < t \ By ( 4.20),

Lemma 4.5 and the comparison principle for viscosity solutions we have

{u < 0} C {D* < 0} and {u > 0} C {£* > 0} (4.21)

for t < T. By definition of t* there exists x0 £ Hn such that u(xo,T) ^ 0;
suppose that u(xo,T) > 0. By (4.4)

40



and
Dh(y,T) > | for all y € B(xo,Ro) ,0<h<ho.

Hence B(x0, Ro) C A^
B(xo,Rt)CA^+t (4.22)

for 0 < t < 2^TJ- Thus

Dh(x,T + t)> D(x, B(x0, Rt)) (4.23)

for all x G IRn,0 < h < ho, from which we deduce that

Dm(x,t'), D"{x,t') >-oo (4.24)

for all x e lRn, 0 < t' < T + ^rj-

On the other hand, choose M large enough so that T < 2(N-\\ an<^ xo € lRn

is such that
A% CB{xo,M), forO< h « 1.

By Lemma 4.8 ii) we have

A$cB(xo,MT), 0<h<l

and once again, Lemma 4.8 iii) yields

A$+t C B{xo,(MT)t) C B(xo,2MT)

for all 0 < t < 2(^fyy- Thus

Dh(x,T + t)< D(x,B(xo,2MT))

for all x € IRn, yielding

D.(x,t'), D*(x,t') <+oo

for 0 < t' < T + 2(NZI)• Therefore £>.,£>" remain finite beyond T and this
is a contradiction.

Proof of (4.6) and (4.8).
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As usual we prove only one of the statements, (4.8). Let (xo,to) be such
that JD*(£o,to) — ~c < 0 and u(zo,to) < 0. Due to (4.5) we have that

so it suffices to show that [D]m(xo,to) < I?*(xo,to).
We claim that

dist(xo,{x : Dm(x,t0) > 0}) > c.

Suppose that there exists xi such that Dm(xi,to) > 0 and \x - xi\ < c - 6,
for some 6 > 0. As in (4.22) and (4.23) we have that B(xuRs) C Aj, for
0 < h < h0,to < s < t0 + t(xi) and for some Rs > 0.
If we consider y 6 -B(XQ, f) then

from which we deduce that

Dh{y,s) > - c+2 f o r a11 (»**) 6 B(xo,-)x[to,to+€{xi)) and 0 < h < hQ.

This implies that
D*(xo,to) > c

which contradicts the hypothesis and the claim is proved.
As intF5 = 0, given a point y near xo and 6 > 0 there exists xi such that

u(xi,s) > 0 and
dist(t/,r5) > | y - xi| - 6.

By (4.7) we have D+ = -D in {u > 0} and so Dm(x\^s) > 0, from which we
conclude that

,{x : Dm{x,s) > 0}) < dist(j/,r5) + 6

and letting 6 —* 0+ we obtain

dist(y,{x : Dm{x,s) > 0}) < dist(y,T5).

Also, given 6 > 0 and x2 such that D*(x2,5) > 0 and dist(y,{x : D*(x,s) >
0}) > \y-x2\-S. By (4.4) we have u(x2,s) > 0 or else D*(x2,s) < 0 which
contradicts Dm(x2,s) > 0. Since y is near xo and ti(xo,s) < 0, we deduce
that

dist(y,r,) < \y - x2| < dist(y,Z?,(x2,5)) + 6.
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Consequently

limsup dist(y,rs) =limsup dist(y,{x : Dm(-,s) > 0}) > c
h—0 h

and we conclude that

[D)m(x0,t0) =liminf D(y,s)
y->xo,slto

=liminf [-dist(t/,r5)]
y r a l t

and so
[JD].(*o,to)< - c = D*

which completes the proof. I

Appendix

Here we prove Theorem 3.5 and we follow exactly the proof given in
[AMT], although we try to avoid the use of geometric measure theory, hope-
fully rendering it more accessible to analysts.

We recall the statement. Let AQ be a set of finite perimeter and let

:= / H(x,v(x))dHN~l(x)+ f f(x,a)dx+ I f(x,b)dx
Jd'LCiU JL\Ao JAO\L

where H : Q x KN -* (0,+oo) satisfies (H8) - (H10) (see Proposition 2.12),
/ = f(x,u;A0) verifies (H6),(H7)and Per(L) < +oc.

Theorem 3.5 If A minimizes «/(•) then there is an open set U C lRn such
that HN^(dmA\U) = 0 andlFAnU is an open Cl{N - 1) dimensional
submanifold of RN. If N = 3 then d*A is a compact Cl 2—dimensional
manifold o/R3 without boundary.

Note that by the Structure Theorem for sets of finite perimeter (see
Theorem 2.6)

0M=.U A'.UG,

= 0 and K{ are compact subsets of Cl manifolds. However, there
oo

is no apriori guarantee that U A', is an open set.

Due to Theorem III.3 of [Al], Theorem 3.5 will hold if we prove that
there exist C, 6 > 0 such that if 0 < r < 6 then
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(A)

J H{x,vA{x))dHN-\x)<
(d-AnW)nti

<(l + rc) / H(x,v{x)) dHN~l(x),

(B) HN-l(FAAdA) = 0, whenever <p : lRn —> Etn is a Lipschitz
mapping, VF := {x G IRnb(x) 7̂  x} CC ft, and diam (WU^(W7)) = r.

Proof of (A). Let y> : 1RN -• IRn be a Lipschitz mapping, let W - {x £
]RN|^(x) ^ x} be a bounded set, diam (W U <p(W)) = r and we compare
the energy at A with the energy at

f H(x,vA)dHN-\x)+ J f(x,a
C A\A0

< f H{x1vv(A))dHN-1+ J f(x,a)dx+ f f(x,b)dx.
f(A)\A0 A0\A

Thus, by (H6)

/ H(x,uA(x))dHN-1(x) < J

/ f(x,a)dx+ f f(x,a)dx- J f(x,a)dx
A\A0 (<?{A)\A)nAo

J f(x,a)dx+ J f{x,b)dx+ f f(x,b)dx
(>1V4O)\V>(>1) A0\A A\V(A)

J f(x,b)dx - f f(x,b)dx
(A0\A)r\v(A) (A\v(A))\A0

/ f(x,a)dx- f f(x,b)dx
A\A0 A0\A

f H(x,
3M)nQ v(A)

(A.I)
+6CN{<p{A) A A), esssup {| /(x,o)|+ | /(*,6) |}.

n
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However,

d'<p{A) = d'[ip{A\W)U<p(AnW)]\{And'W),
d"<p(Anw) = <p{d*A n W) u (A n d'W),

= d'(A\W) = (#M\W) U (yl n

and we conclude that

d*<p(A) = <p(d'A HW)U (d'A\W)

and so (A.I) reduces to

H{x,vA{x))dHN~\x) < f H{
(d*AnW)nn

+6C0CN(<p(A)AA)
(A.2)

where
C0:=esssup{|/(x,a)|+ | f(x,b) |}.

As ip(x) = x if x ^ W,

d*(<p(A) AA) = d*AnW\J <p(d*A n W) {A3)

and

Indeed, if y £ W, y $ (f(W) and if y e <p(A) A A, then either y G A\<p(A)
or t/ G v?(i4)\i4. In the first case we obtain

y£ A and <p(y) ^ y (or else y G <p(A))

and this implies j / G VF, contracting the assumption. If y G y>(^)\i4 then
y = < (̂x) for some x G -4 and, as y §( VF, we have

= V =

Hence < (̂< (̂z)) ^ x, otherwise y = x G >1, thus <p(x) G VF. We conclude that
y = (^(^(x)) G
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Now, by (H9), (A.2), (A.3), (A.4) and Lemma 2.9 we deduce that

f H(x,vA{x))dHN-\x)<
) (d* AnW)na

+ f Co diam (W U <p{W)) [HN-\d'A DW) + HN~\<p(d'A n W))]

< J H(x, u^A){x))dHN-\x) + £ % diam (W U <p(W U

J H{x,vA{x))dHN-\x) + J

where we have used the fact that W CC fi and so d'A D W CC fl,
<f(d'A n W) CC Q. Finally,

J H(x,uA(x))dHN-1(x)
{d'An\V)nn

1 J- 6 QSL1 + Tf-T-

1O / ^

and setting C := -77— it follows that
N a

whenever 0 < r < ^r. I

Proof of (B). To prove that HN~l(d*A A A) = 0 it suffices to show that
the N - 1 density ratios at points of d*A (see Definition 2.8) are uniformly
bounded from below (see [F], [ATW] 3.1.3), i.e. there exist continuous func-
tions a,6 : IRn —• R such that if x0 G ̂ A , 0*N~l(d*A,xo) > 0 then

for every 0 < r < 6(p), where

m(r) := HN~\d'A n
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As 8* (8*A,XQ) > 0 and m(r) is an increasing function, we have

m(r) > 0 for all r > 0.

By Lemma 2.10 for a.e. r > 0 we have HN'1(d*A n dB(xo,r)) = 0 and
there exists a set Q of finite perimeter such that

A A Q C B(xo,r),dm(A AQ)C (d*A n B(xo,r)) U X,
H N ~ l { X ) < {N - l J I ^

and

Then,

-1(x)+ / f(x,a)dx+ J f(x,b)dx
d'AnQ A\AQ A0\A

f H{x,vQ{x))dHN-\x)+ J f(x,a)dx+ f f(x,b)dx
QQ Q\A0 A0\Q

and, as H > 0, we have

/ < JxH{x^Q(x))dHN'1(x)+ I \f(x,a)\dx
d*ADB(xo,r) A&Q

+ f \f(x,b)\dx
AAQ

< f H(x^Q(x))dHN-l(x) + CN(AAQ)C0
X

where Co :=esssup {| /(x,a |)+ | f(x,b) |}. By (H9) and Lemma 2.9
n

om(r) <0C(N- l)[m'|

+^diam(/l A Q){HN~l(d'A n 5(ar0, r)) +

< /?C(W - l)[m'(r)]^ + fyr[m(r) + C(N -

and so

m(r) < m'(:
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Let r0 := ^ = 6(x0). If r < r0 then

+ ^ ) §m(r) < m ( r ) C ( J V 1) ( | + r ^ ) §

and Y$L — 5' t^ l u s

m{r) <

where

We conclude that

As m is increasing
(JV - l ) m ( r ) ^ > 1

a n d s o
 r ,w-i

m ( r ) > L

m(r) =:o(xo)-

For completeness, we include the proof of Lemma 4.6. We recall its
statement.

Lemma 4.6 Let U C IRk be an open setf $n : U —> 1R continuous functions,
and let ip+(x) := liminf t/?n(xn). Let XQ be a strict local minimum for ipn.

n

Then there exist a subsequence nk —• +00 and points of local minimum for
^nfc,xnfc , such that xnk -> x0.
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Proof Let r > 0 be such that

M*)>M*o) for all xeB(xo,r)\{xo}. {A.5)

Claim 1. There exists a > 0 such that

ip«(x) > %l>+{xo) + a for every x £ dB(xo,r).

Indeed, if we can find xs € dB(xo,r) such that

we may assume that xs —* £«> 6 dB(xo,r) and, due to the lower semiconti-
nuity of V>*> we obtain

contradicting (A.5).
Now we choose, by definition of V7*? a sequence xn —̂  XQ such that

i>n(xn) —• V'*(^o) and | xn - a*0 |< r . We write

where

A := {xn | 3yn £ 5(xo,r)suchthat yn is a point of local minimum

and ipn(yn) < <fn{Xn) },

B := { x n } - A ^ .

n 5. If xn G £ then there exists zn e dB(xo,r) such that ipn(zn) <

If claim 2 was not satisfied, there would exist xn € B such that tpn(z) >
ipn(xn) for every z € #2?(xo,r). On the other hand, as xn 6 B there must
exist f € J5(xo,r) such that.

or else xn would be a local minimum for <pn, contradicting xn £ B. We
conclude that

<t> jt {z € B(x0, r) | t^n(z) < rpn(xn)} CK CC B(xQ,r)

49



where K is a compact set. Therefore

ipn \K attains a local minimum atzn G K

such that i>n(zn) < ipnixn)) contradicting xn 6 B. Hence the claims holds
true.

Claim 3 #B < +00.

Suppose that B has infinitely many elements. Then it is possible to
construct a subsequence zm £ dB(xo,r) such that, by Claim 2 and by (A.5)

Letting 2m —> z^ € dB(xo,r), by the lower semicontinuity of ^m and as
ipn(zn) —»• i>*(xo), w^ deduce that

contradicting (A.5). This proves Claim 3.
In view of Claim 3 we are able to extract a subsequence of points of

A,xnk) with corresponding local minima ynk G B(xo,r) such that

Again, assuming that ynk —> j/00 € 5(xo,r) , we conclude that

and, by (A.5), this yields j/oo =
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