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Abstract

In this paper we deal with the dynamics of material interfaces such as solid-liquid,
grain or antiphase boundaries. We concentrate on the situation in which these inter-
nal surfaces separate three regions in the material with different physical attributes
(e.g. grain boundaries in a polycrystal). The basic two-dimensional model proposes
that the motion of an interface F,j between regions i and j (z,j = 1,2,3, i ^ j) is
governed by the equation

Here Vij, KtJ, /itJ and / t J denote, respectively, the normal velocity, the curvature, the
mobility and the surface tension of the interface and the numbers F^ stand for the
(constant) difference in bulk energies. At the point where the three phases coexist,
local equilibrium requires that

the curves meet at prescribed angles. (0.2)

In case the material constants fa are small, fa = efa and e <C 1, previous analyses
based on the parabolic nature of the equations (0.1) do not provide good qualitative
information on the behavior of solutions. In this case it is more appropriate to
consider the singular case with fa = 0. It turns out that this problem, (0.1) with
fij = 0, admits infinitely many solutions. Here, we show that a unique solution, "the
vanishing surface tension (VST) solution", is selected by letting e —> 0. Furthermore,
we introduce the concept of weak viscosity solution for the problem with 6 = 0 and
show that the VST solution coincides with the unique weak solution. Finally, we
give examples showing that, in several cases of physical relevance, the VST solution
differs from results proposed previously.

1991 Mathematics Subject Classifications: 65B10, 41A21, 41A25.

Keywords: Mean curvature flow, triple junction, viscosity solutions
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1 Introduction

A variety of mathematical models have been devised to investigate the dynamics of
interfaces such as solid-liquid, grain or antiphase boundaries. These internal surfaces
are, in general, non-equilibrium features of a material: they have a positive excess
free energy. Thus, for example, grain boundaries (i.e. boundaries between single
crystals in a poly crystal) migrate to reduce the total amount of grain boundary
area. Understanding the evolution of these surfaces is of fundamental importance,
not only for its intrinsic interest, but also for its technological significance: they
constitute a key factor in determining a wide range of material properties, from
mechanical strength to electrical conductivity (see e.g. [3]).

The simplest models for interface dynamics can be obtained by neglecting the
changes in the bulk and concentrating solely on the evolution of the internal bound-
aries. In many instances these kinds of models provide a good representation of the
physics. In this paper we study a two-dimensional model for the motion of interfaces
in multi-phase continua. This model, which applies in particular to grain growth,
corresponds to the "small surface tension" limit of the one derived by Mullins [10]
and investigated by Bronsard and Reitich [5]. We show here that, even though the
"vanishing surface tension" problem admits infinitely many solutions, a unique solu-
tion, which we shall call "the vanishing surface tension (VST) solution" is selected
by the limiting process (see §2). Furthermore, we introduce the concept of weak
viscosity solution for the problem and show that the VST solution coincides with
the unique weak solution.

Mullins' model describes the evolution of three curves in the plane (the two-
dimensional boundaries) which move according to

Normal Velocity = V = K = Curvature. (1.1)

The three curves are assumed to meet at a point, a "triple junction" (see Fig-
ure 1), with prescribed angles 0, (0, = 120° in the case of grain boundaries). More
generally, (1.1) should be replaced by the equation

V = / i / /c- /xF, (1.2)

which describes the evolution of an isotropic interface that is driven by an energy
difference F between the bulk phases [2]. The material constants / and // denote,
respectively, the energy and mobility of the interface; they may be different for
different curves. The existence and uniqueness of solutions for a given initial state
was established in [5] by means of a parametric formulation of the problem and
the analysis of the resulting quasi-linear parabolic system of equations with fully
nonlinear boundary conditions. When / i / « 1, the system is near degenerate and
the analysis in [5] does not provide good qualitative information on the behavior of



vij=Pi2(efi2Kij-»«|-e2)

Oi(t)

Figure 1: The interfaces FtJ move with normal velocities V^ = //tJ (efijKij + et — e,)
and prescribed angles 0t.

solutions. For this, it is more appropriate to look into the problem with fif = 0,
that is a model in which the curves evolve under constant velocities.

The problem of three curves moving under constant velocities and meeting at a
triple junction has been previously considered by Taylor [12] and Merriman, Bence
and Osher [9]. It is readily checked that, if no further conditions on the motion
are imposed, the solution is not unique (see Figure 2 below). In [12] a Huygens'
Principle is applied in order to select a particular solution, and a catalog of solutions
depending on the initial configuration is provided. The implementation of the level
set approach developed in [9] yields solutions which coincide with those in [12]. As
we shall see, these solutions do not always coincide with the VST or weak solutions
we present here.

Perhaps the simplest way to motivate the model is to associate to the system an
energy functional of the form

S = efn length(Fi2) + e/23 length(F23) + ef3l length(F3i)
+ ex vol(f)!) + e2 vol(ft2) + e3 vol(ft3). (1.3)

Then, it easy to see that the corresponding gradient flow is

Vij = Pa (tfijKij + €i - ej) , 6 < 1 (1.4)

where VVj, Ky and //,j denote, respectively, the normal velocity, the curvature and
the mobility of the interface between phase i and phase j . Furthermore, a straight-
forward calculation shows that, in the absence of dissipation at the triple junction,



the requirement that

f <0
dt -

imposes the condition

(see Figure 1). (1.5)
23 /31 /12

This condition coincides with the classical condition at triple points that can be
found in the materials science literature (see e.g. [11]). It was recently shown in
[5] that (1.5) is also recovered in the small interface-thickness limit of a (diffuse-
interface) Allen-Cahn type model for three-phase boundary motion (see also [1]).
Notice that in the particular case of grain boundaries we have

/12 = /23 = /31

and (1.5) implies that 0t = 120°.

The remainder of the paper is devoted to understanding the qualitative behavior
of (1.4),(1.5) in the limit 6 —> 0. First, in §2, we discuss the non-uniqueness of
solutions in the case 6 = 0. We present a perturbation analysis (§2.1) and a class of
self-similar solutions (§2.2), which suggest that a unique solution (the VST solution)
is selected by letting 6 —• 0 does not. In §3 we introduce the concept of weak viscosity
solution for the constant-velocities problem ((1.4) with 6 = 0). Since the motion is
governed by a system of Hamilton-Jacobi equations, the classical notion of viscosity
solution can be used away from the triple points. At the triple points, however, and
in accordance with (1.5), we need to introduce the idea of weak angle conditions. As
we shall show, this concept singles out a unique solution which coincides with the
one obtained in the limit e —> 0 (§4). Finally, in §5, we present a preliminary result
of convergence of solutions as e —> 0 in the case where two interfaces are symmetric
relative to the third (which is given by a semi-infinite stationary line). A simple
example of a non-physical geometric problem is also discussed at the end of §5.



2 Non-uniqueness and the VST solution

As discussed in §1, for € > 0 the equations (1.4) subject to the angle conditions (1.5)
admit (in a finite time interval) unique classical solutions for smooth initial data.
Of course, when 6 = 0 the resulting (first order) equations

cannot be constrained by the angle conditions. On the other hand, the equations
(2.1) subject only to the requirement that the interfaces meet at a triple point, admit
infinitely many solutions. The simplest case in which this is apparent corresponds
to that of Figure 2, where

= 1

and
e2 — €\ = a and = a (a > 0).

(a) (b)

Figure 2: (a) The solution proposed in [12]. (b) The VST solution.

Figure 2 contains two different solutions to the problem. The lighter curves
correspond to the initial configuration and the heavier ones to the the solution at
time t = 1. Since the interface velocities are constant, the solution at time t = T can
be obtained by simply dilating these graphs. The solution in Figure 2(a) corresponds

Tf



to the construction in [12]. However, it is easily checked that the solution that is
singled out by taking the limit as e —> 0 in (1.4) is the one depicted in Figure 2(b).
Indeed, if the initial configuration satisfies the angle conditions, it is clear that
the solution in Figure 2(b) is an exact solution of (1.4), (1.5) for e > 0 (since the
interfaces have zero curvature) and therefore it coincides with the limit solution.

ry<»
=120°

(a) (b)

Figure 3: (a) The solution proposed in [12]. (b) The VST solution; one of the angle
conditions is preserved in this solution.

More generally, consider the situation of Figure 3, where

e2 - = a and e2 - e3 = 0 (a > ft > 0).

Again, Figure 3(a) shows the solution proposed in [12] (at t = 1). The construction
is as follows: first draw a parallel line to the initial interface F^O) at a distance
a, up to the point of tangency with the circle of radius a. Then, follow this circle
up to the new position of the triple junction on the ar-axis: this defines Fi2 at time
t = 1. To construct F23 at time t = 1, first draw a parallel line to the initial interface
F23(0) at a distance 0 up to the point of tangency with the circle of radius 0 and
then a line segment from the triple junction which is tangent to this circle (notice
that this introduces a corner in F23). The construction in Figure 3(b) is similar but
in building Fi2 we do not go all the way down to the x-axis on the circle of radius
a. Rather, we propose a solution which, at t = 1, contains only part of this arc of



circle and then joins Fi2 with Fi3 with a straight line segment which is tangent to
the circle of radius a; the ensuing construction of 1̂ 3 is as in Figure 3(a). Notice
that the length of the arc of circle in the solution is a free parameter, giving rise to
infinitely many solutions. The solution we propose, in case

Oi = 120° (2.2)

and
0 < 0 < a < 2/?, (2.3)

is the one where this length is exactly the one for which the construction results
in an angle of 120° between Fi2 and F23- In §2.1 and §2.2 we shall show, through
a perturbation analysis and the construction of self-similar solutions, that this is
indeed the solution that is selected if we let e —> 0 in (1.4), (2.2). Further evidence
of this fact will be provided in §3 after we motivate and define the notion of viscosity
solution to (2.1), (2.2). As we shall see, the solution depicted in Figure 3(b) is the
unique viscosity solution of (2.1), (2.2).

2,1 Perturbation analysis

As we discussed above, the solution in Figure 2(b) is an exact solution of the problem

V21 = e / i 2 * 2 i + a ,

V23 = */23«23 + <*, (2.4)

Viz = */l3«13

subject to the angle conditions (2.2). In order to gain some insight into the structure
of solutions, it is natural then to study small perturbations of this problem (see
Figure 4):

v21 =
V23 = f / 2 3«23 + ( a ~ 6 ) , < 5 < 1 , ( 2 . 5 )

^13 — €fl3K13-

In the coordinates of Figure 4, the equations (2.5) can be written in the form

ul, x < s(t)

*^ , X > S(t)^2



V(x,uo(x,t))

(x,wo(x,t)) (x,w(x,t))

(a) (b)

Figure 4: Perturbation analysis: (a) Exact solution, (b) A perturbation.

where s(t) denotes the (unknown) ^-coordinate of the triple junction at time t. The
requirement that the solutions meet at the triple junction translates into

u{s(t),t) = w(s(t),t),
v(s(t),t) = w(s{t),t), (2.7)

and the angle conditions (2.2) become

).*)2- (2-8)

The exact solution for <5 = 0 is

= -y/3x + 2at,

8



v = vo(x,t) = V3x-2at, (2.9)
w = wo(x,t) = 0,

To first order in 6

u = u0 + 6^1, v = t;0 + Sv\, w = u>o + ^^i ? s = SQ + 6s\

and the linearized version of the free boundary problem (2.6), (2.7), (2.8) is

f -v/3
uu(x,t) = e-j-uixx(x,t)-a—ulx(x,t),x<s0(t),

f \/3
vu(x,t) = e-j-vlxx(x,t)-a—vlx(x,t) + 2,x

wu(x, t) = efi3wixx(x, t), x > so(t),

ulx(so(t),t) = vlx(so(t),t) (2.10)

ui{so{t),t) =

At this point, the equation (2.10) becomes the key to understand the behavior of
solutions as c —» 0. Indeed, the condition

uix(so(t),t) = vix(so(t),t)

implies that, near the triple junction, the solutions u and v for 6 < 1 differ from
the solution for 6 = 0 by a rotation of angle

— « ( 6 < 1 ) . (2.11)

In particular, the angle between u and v is preserved in the limit, i.e.

Angle(u,v) = 120°. (2.12)



U=UE

Figure 5: A self-similar solution.

2,2 Self-similar solutions

In what follows we shall construct self-similar solutions (ue, v€, w€) to (cf. (2.6) with
a - 6 = /?)

U] =

v, = (2-13)

subject to the free-boundary conditions (2.7), (2.8). As we shall see, these solutions
will converge, as e —• 0, to a solution of

u, = a y 1 + u\ , x < s(t)

vt = - /

wt = 0,x> s(t)

(2.14)

satisfying (2.12).

10



The first step in the construction is to assume

u€{x,t) = u(x,t) = -a(:r - s€(t)), a > 0 ,

v<(x,t) = *(*,*) = &(*-*«(«)), 6 > 0 ,

5€(t) = at, a > 0.

Then, equations (2.13) take on the form

aa = a2 ,

and the angle condition for (u€,v€) becomes (cf. (2.8))

(2.15)

(2.16)

- ab = - - (2.17)

Solving (2.16), (2.17) for (a, 6, a) we obtain

2a-/?'

(2.18)

Next, we want to solve for tu* by proposing a self-similar form

«;«(*,<) =

Then, from (0.1)

(2.19)

and
= 0. (2.20)

11



The requirements that

Angle{u\ w() = 120°, Angle(v€,w€) = 120°

translate into

where

n = tan(0#) =

(2.21)

(2.22)

It is easily checked that the (unique) solution to (2.19) subject to the initial condi-
tions (2.20) and (2.21) is given by

'f arcsm — arcsm (2.23)

With this definition, (u€ = u,v€ = v,w€) is a self-similar solution of (0.1), (2.7)
and (2.8) (see Figure 5). Since xp(z) is uniformly bounded, (u€,v€,w€) —> (u,v,0)
uniformly as € —• 0. In particular, the angle between u and v is again preserved in
the limit, cf. (2.12), see Figure 6. Notice that the other angles are not preserved.

120°+Gt

Figure 6: The limit (e —> 0) of self-similar solutions (see Figure 5).
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3 The weak solution

In §2.2 we have shown that, for 0 < e <C 1, the solutions of (1.4), (1.5) develop
boundary layers at the triple junction and that in the limit as e —> 0 the angle
conditions are not necessarily satisfied. In the theory of viscosity solutions this
phenomenon is well understood and weak formulations of different types of bound-
ary conditions have been developed [6, 7]. In this section we shall derive a weak
formulation of (2.1), (1.5) in the spirit of those obtained in the theory of viscosity
solutions. However, it should be noted here that this system of equations does not
have a comparison principle - a property which is essential in the theory of viscosity
solutions.

3.1 The definition

For each t > 0, consider three unbounded, closed and connected regions
i = 1,2,3, satisfying (see Figure 1)

fii(t)nfi2(t) = r t i = {p t j(5,t) : 5 > 0 } ( t / j ) , t > 0 , (3.2)

for some continuous parametrization pij : [0,oo)2 —» R2 with

Pij(s,t) ^ Pij(s',t)i ifs^s'. (3.3)

We assume that near the triple junction T(t) the domains fl, satisfy the local epigraph
property: for each i G {1,2,3} and to > 0 there exists a neighborhood O x (to —
6,t0 + 6) of {T{to),to) such that, for \t - to\ < 6 and in an appropriate coordinate
system,

T(t) = (s(t),d(t)) (3.4)

and there exist continuous functions u(x,t), w(x,t) satisfying

TijDO = {{x,y)€O : y = u(x,t), x < s(t)} ,

TiknO = {(x,y) € O : y = w{x,t), x > s(t)} (j^i^k), (3.5)

a n O = {(x,y)£O :y>G(x,t)}

where

G(x,t) = {J;j}; *!*$; (3.6)

13



As for regularity, we only assume that the domains £!,-(• )'s are continuous in the
Hausdorff metric, i.e.

= O1 1 = 1,2,3, i > 0 , (3.7)

where, for two closed sets i ,

dn{A, B) = max < sup inf \x — y\, sup
[AVtB B

inf \x - y\ > . (3.8)

If Pij(-,t) is difFerentiable at 5 = 0 and |Ptj5(0,£)| / 0 then the angles 8i(t) be-
tween the curves F tJ are well defined (see Figure 1). Our goal is to obtain a weak
formulation of the angle conditions

9{{t) = 0*, Vt > 0. (3.9)

For this, assume that there exist smooth test functions <f>{x,t) and ip(x,t) such that
(s(£o),io) is the strict minimizer of G — F where s(t) is defined by (3.4), G is the
defining function for fit in the local epigraph condition (3.5) and

F( (3.10)

(see Figure 7).

<KM)

«j(t)

v(-.t)
nk(t)

Figure 7: The functions <f> and tp are test functions for the definition of An-
gle(u{-,t),w{-,t)) > 6* weakly.

Since 4> and ip are smooth, the angle between their graphs at time t, Angle(<p(-, t),ip(-,t)),
is well-defined. If 0,(<o) were defined and satisfied 0,(£o) > 6", then we would have

Angle(4>(-,t),tl>(;t)) > d,-(t0) > «,••

14



Hence we expect to have further restrictions on <j> and ip only when

ct>{.,t)^{-,t))<ei (3.11)

Suppose then that (3.11) holds. Let {ft- : t > 0, i = 1,2,3} denote the solution
to the curvature perturbed problem (1.4), (1.5). We assume that Sl\ satisfy (3.1)-
(3.3) and denote the corresponding triple junction by T€(t) = (s€(t),d€(t)). We also
assume that ft-(t) has a form similar to that of ft,(t), i.e.

= {(x,y)eO : y = u€(x,t), x < s*(
= {(x,y)eO : y = w<(x,t), x>s<(t)}, (3.12)

for smooth functions u€, w€ satisfying

1 + {u%y
(^ ) 2 , x < s<(t)

wt =

where

Finally, we assume that

lim sup dH(ni(t)Mt)) = 0
^0 \t-to\<6

= 0.

Set

15



Then, the local minimizers {x(,f) of Gf - F( converge, as € —• 0, to (s(to),to). If
xf = s€(t(), we would have

6* = Angle(ul(f),wf(tf)) < Angle(<fr(f),iJ>(t()) < 6*.

Hence, xl # sl{t{). From (3.13), we then obtain either

(f>t + (s'(f)-s
tt(^"1 - -- **

if x* < 5*^), or

if x€ > s€(<e). Here, </>, V1 and their derivatives are evaluated at (xf: + s(tt) — s((t(),tf).
Now, let f —» 0 and use the assumption that s( —> s in C1, to conclude

max < (fit — VjiJl + (4>x)
2 , tpt — VkiJl + (ipx)

2 > > 0 at

Since this inequality was derived under the assumption (3.11) we have

(3-14)
4>t - Vj

at (s(to),to). We are thus led to the following definition.

Definition 3.1 Let {Qt(<) : t > 0 , i = 1,2,3} be unbounded, connected, closed
regions satisfying (3.1)-(3.3), (3.7) and the local epigraph condition at the triple
junction. We say that

6i(t) > 6* weakly V* > 0,

if for any smooth functions <\> and ip such that G — F (cf (3.6), (3.10)) has a local
minimum at (s(to),to) for some t0, the inequality (3.14) holds at (s(to)yto).

16



Similarly we define the concept of 0,-(£) < 6* weakly.

Definition 3.2 Let {£),(<) : t > 0, i = 1,2,3} be as in Definition 3.1. We say that

Oi{t) < 6* weakly Vt > 0

if for any smooth functions <j> and i\> , such thatG — F {cf {3.6), {3.10)) has a local
maximum at {s{to),to) for some tQ, the inequality

mm{Angle{(f>{;t),<it>{.,t)) - 0*,

(3.15)
<t>t ~ Vj

holds at {s{to),to).

Definition 3.3 We say that

6i(t) = 0* weakly \ft > 0, (3.16)

if9i{t) < 6* weakly for allt>0 and 0{{t) > 6* weakly for all t > 0.

Finally we give the definition of weak solution of

Normal Velocity of F t j = Vy = vy = //y(e* - ej). (3.17)

subject to the angle conditions. In this formulation we interpret (3.17) as in the the-
ory of viscosity solutions [6, 7], and the angle conditions as in Definition 3.3. Observe
that if the parametrization pij is differentiable at some {s,t) with \pijs{s,t)\ ^ 0,
then (3.17) is equivalent to

Pijt • n>ij = Vij , (3.18)

where n,j(s,t) denotes the unit vector normal to F^ pointing into fij(t).

Definition 3.4 Let the domains ft, be as in Definition 3.1. We shall say that
{Qi : i = 1,2,3} is a weak {viscosity) solution of {3.17) and the angle conditions,
if they satisfy {3.16) and they solve {3.17) in the sense of viscosity solutions {see
[4, 8ft.

In §4 we shall show that, there exists a unique viscosity solution in the sense of
the above definition, see Theorem 4.3 and 4.4. In the case of Figure 3, it can be easily
checked that the weak solution is the one depicted in Figure 3(b); in particular, the

17



(a) (b)

Figure 8: (a) The solution proposed in [11] (see also Figure 3) and (b) comparison
functions for the weak formulation. The Angle(u(-,t),w(-,t)) > 120° but these
comparison functions show that Angle(u(- ,t), w(- ,t)) is not < 120° weakly.

solution depicted in Figure 3(a) is not a weak solution in the sense of Definition 3.4.
To see this, let us rotate (90° clockwise) the graph in Figure 3(a), and define u(x,t)
and w(x,t) as in Figure 8(a).

If a and /3 are as in (2.3), then Angle (u(-,t),w(-,t)) > 120°. We want to show
that this angle is not less than or equal to 120° weakly, i.e. that the condition
(3.15) in Definition 3.2, with i = 2, j = 3, k = 1, Q\ = 120°, vn = - a and
3̂2 = —/?, is not satisfied for some test functions <f> and ip. Let <f>\(x,t) and ipi(x,t)

denote the solution corresponding to Figure 3(b), that is the solution satisfying
Angle{4>i{;t),%l>i(-,*)) = 120°, see Figure 8(b). Then if (0, -at) and (0, -at) denote
the positions of the triple junction in Figures 8(a) and (b) respectively, the functions

<f){x,t) = 0i(ar,t) + {a - a)t and tp(x,t) = ipi(x,t) + (a - a)t

are admissible test functions for the proposed solution u(x, t), w(x, t). For these test
functions we have, at x = 0,

<f>t - - a

and

= a - a > 0

= a - a > 0.

(3.19)

(3.20)

18



Thus, we can slightly change the slopes of <f> and ip and still maintain the above
inequalities, while at the same time satisfying

Angle(<t>{-,t),i}>(-,t)) - 120° > 0. (3.21)

Since inequalities (3.19)-(3.21) contradict (3.15) we conclude that this is not a vis-
cosity solution.

Finally, we want to show that the solution in Figure 3(b) is a viscosity solution.

w(x,t)

Figure 9: The VST solution does satisfy the weak formulation: 6(t) > 120° weakly.

Since strongly Angle{T12{t),r23{t)) = 120°, Angle{Ti2(t),T13(t)) < 120°, and
> 120°, we need only verify that

Angle(r12{t),r13{t))>120o and ^n^e(r23(*),r13(t)) < 120° weakly.

We shall only show that the first inequality holds (in the weak sense) since the second
inequality can be checked in an analogous manner. For this, consider smooth test
functions <i>(x,t) (x < s(t)) and ip(x,t) (x > s(t)) such that G-F (cf. (3.6), (3.10))
has a local minimum at (s(to)>*o) for some tQ > 0 (see Figure 9). We want to show
that the inequality (3.14) holds at (s(to),*o) W1^ * = 1, j = 2, fc = 3, v3i = 0 and
6\ = 120°. If we assume that

Angle(4>(;to),i!>(;to)) < 120°

then we need to show that

max j& - v2i\/l + {<t>x? , ^t] > 0 at (s{to),to). (3.22)

19



Now, since w(s(t),t) - x/;(s(t),t) has a local minimum at t = t0, we have

0 = j t (w(s(t),t) -

that is,

But since 0 = ip{s(to),to) > tp(x,t0), it follows that tpx(s(to),to) < 0, so that (since
s'(t) > 0)

*Pt{s(to),to)>O

and (3.22) holds.

3.2 An equivalent formulation

For solutions that are differentiate at the triple junction, like the ones discussed
at the end of §3.1, the definition of weak solution can be formulated in terms of
algebraic conditions. In order to derive these conditions, consider a situation like
the one in Figure 7 where (with i = 1, j = 2, k = 3)

and
r i 3 ( 0 n O = {(a; ly)€O : y = w(x,t), x > s(t)}

(cf. (3.5)). Let <(>{x,t) and ip(x,t) be smooth test functions and let F and G be
defined by (3.10) and (3.6). Assume that G — F has a minimum at (s(to),to) and
that

Then, using (3.14), we have that Angle(u(-,t),w(-,t)) > 6\ weakly at to if and only
if

max {<t>t - v2i>J\ + (4>x)
2 , rpt - v3iyjl + (^x)2} > 0 at (s(to),to). (3.23)

Let T(t) = (s(t),d(t)) denote the position of the triple junction and nu, nw, n^ and
n^ the unit normal vectors to the graphs of u, w, <f> and \j) at (s(tQ),d(to)) (pointing
towards Q\). Since (u,w) is a differentiate solution, we have

Tt{tQ) - nu = v2\ and Tt(t0) • nw =
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Thus,
Tt{t0) = Anu + Bnw (3.24)

where

. _ («2i vz\nu nw)
l-(nu-nw)2

On the other hand, since <f>(s(t),t) = d(t),

and similar^ for Tt • n ,̂, so that (3.23) is equivalent to

max{T* • n^ - t;2i, T< • n^ - i;31} > 0 at (s(tQ),to).

Then, using (3.24), the above condition becomes

max {Anu • n^ + Bnw • 7î  - t;2i, Anw • ?î  + Bnw • n^ - t;3i} > 0 , (3.26)

at ( (

Angle(w(;to),<f>(-ito)) = a >

so that

nu'U^ = cos(a — #i)

nw'n<i> = — cos(a)

nu-n^ = — cos(?7)

Then, substituting (3.25) and (3.27) into (3.26) we obtain

max{(sin(a)sin(0i) ~ sin2(0i)) v2\ + (~cos(a)sin2(^!) + sin(a

(-cos(?7)sin2(0i) + sin(77)cos(01)sin(01)) v2\ + (sin(i/)sin(^i) - sin2(^)) v3i} > 0
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or, equivalently,

1 t cos(0x)mm 1 A> cos(a)f
max \ - sin(a) sin(a)

^ 2 1 } > 0 . (3.27)

Thus, since Angle(<j>(-,t),tp(-,t)) = a + 77- #i, the condition (3.23) holds if and only
if (3.27) is satisfied for all a and 77 with

0i < OL , r; < 7T and a + 77 - 6\ <6\.

Analogous equivalent conditions can be derived for the definition of 6\ < 6\ weakly
as well as for 62 and #3. Indeed, if we let

then we have the following theorem.

Theorem 3.5 Assume the domains fi, are differentiate at the triple junction.
Then 6i{t) > 9; {resp. 6i{t) < 6* ) weakly if and only if either

#i(t) > B*i {resp.di(t) < 6') strongly,

or

max (resp. min)
(3.28)

> 0 {resp. < 0)

for all a and n satisfying

Qi{t) <a,n<n and a + n - 6i{t) < 6*
(3.29)

(resp. 0 < Q , r] < 0i(t) and a + n- 6i(t) > 6').

Here the indices i'. + 1 and i + 2 should be interpreted modulo 3.
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3.3 A catalog of weak solutions

In the previous sections we have presented the general definition of weak solutions as
well as the equivalent formulation for solutions which are differentiable at the triple
junction. We can now attempt to catalog them according to the interface velocities
and initial conditions. Since the behavior at the triple junction is a local property
we shall restrict our attention to solutions with linear initial data. Furthermore, for
simplicity we will assume that the smallest (in magnitude) interface velocity is equal
to zero and that 6* = 120°. Under these assumptions, the five possible solutions
for compatible initial data are presented in Figure 10. We note here that the only
solutions in Figure 10(a) do not alwrays coincide with the ones derived in [12].

Finally, Figure 11 shows solutions for incompatible initial data. Notice here that
if the initial angles are not too far from 120° then the solution will produce a corner
in order to keep an angle at 120° for t > 0 (Figure l l(a)). On the other hand, if
the initial angles differ from 120° by more than a critical amount (which can be
explicitly calculated) then it becomes impossible to keep the angle condition in the
strong sense (Figure ll(b)).

4 Existence and uniqueness of weak solutions

In this section we prove a local existence and uniqueness result for differentiable
solutions of the system of Hamilton-Jacobi equations (3.18) subject to the weak
angle conditions (3.16).

4.1 Existence

For the sake of clarity we shall restrict ourselves to the case in which

2̂1 = OL > t>23 = & > ^13 = 0

with
a<2/?

and uniform angle conditions

.*.-(*) = *r = y * f = l , 2 , 3 t > 0 . (4.1)

In this case the weak angle conditions (3.28) can be simplified, as we show in the
following lemma.
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Lemma 4.1 Suppose that 92{t) < ft. Then the angle conditions (4-1) hold weakly
if, and only if,

{y}[*0 ,»r) (4-2)

where OQ € [^r, ft) satisfies

Proof. First we show that 0\(t) > ^ weakly regardless of the value of 6\{t). In
view of Theorem 3.5, we need to show that, whenever 0i(t) < ^ , we have

max {#1,2,3(01 (*)) ~ ^1,2,3(0 , #1,3,2(0! (<)) " #1,3,2^)} > 0 (4.4)

for all £ and 77 satisfying

Oi(t)<£,V<* and £ + 77 - ^( i) < ^ .

Here,

Then, since i^^C7?) < 0, we have

for 77 € [0i(*o), y ] and (4.4) holds. The opposite inequality, Oi(t) < y , as well as
the weak equality 03(£) = y can be proved in a similar manner. Thus, in this case,
the weak angle conditions impose no restrictions on 6\{t) and 6^{t).

Finally, we want to show that 02(t) = ^ weakly if and only if (4.2) holds. Since

we have #2,1,3(0 > 0 for £ < arccos(-^/a) and H^sl(r)) > 0 for all 77. It follows
that 62{t) > ?f weakly if and only if 02(t) > ^ strongly. On the other hand,
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02(t) < Y weakly if and only if 92{t) < \ strongly or H2%ifl(02(t)) < #2,i,3(0 for
all £ with Y < £ < 02{t). In the latter case, since #2,1,3(0 has a maximum at
£ = arccos(—/?/a) > y , we must have

7T > 02{t) > #0

where 0O > arccos(—/?/a) satisfies

o _

or , equivalently, ^0 is given by (4.3). •

Remark 4,2 Notice that the condition {4-2) is in agreement with the construction of
weak solutions for incompatible initial data shown in Figure 11. Indeed, Figure ll(a)
corresponds to solutions for which 62^) = ^f while the solution in Figure ll{b)
satisfies 92(t) € [0O,TT)-

With the help of Lemma 4.1 we will now establish the existence of weak solutions
for smooth initial data. First notice that if a solution satisfies

(4.5)

7 (4-6)

where rj, fj € [0, | ] are given by

W) =

ft

= 1 + n

3 strongly

7T
3(*) ~ «

cos(ry) = — , cos(77) = — , a = —?^Jot2 + f32 - a(5.
a o v 3

Moreover, the triple junction satisfies

= a. (4.7)
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We consider initial data of the following form

T(0) =

T23 =

(0,0),
{(x,wo(x)) : x

/) : y :
l) • y*.

where UQ,VQ,WQ are smooth functions satisfying

(*) tio(0) = wo(O) = vo(0),
(ii) UO,WO,VQ 6 C2(R) and their limits as \x\ —* cx> exist,
(tit) w'0{0) = 0
(iv) u'0(0) < tan(77),
(v) t/0(0)>-tan(»7).

(4.8)

We look for a solution of the form

T(t) = (s(t),wo(s(t))),

T 1 3 = {(X,WQ(X)) : x>s{t)} ,

Ti2 = {(u{y,t),y) : y > wo(s(t))} ,
T23 = {(v(y,t),y) : y < wo(s{t))}

satisfying (4.5) and (4.6). Here s(t) is an increasing function that, in view of (4.7),
solves

s'(t) = ° = (4.9)

j + (w'0(s(t))f

while the functions u and v solve (in the viscosity sense)

ut = aJl + u\ , , t> 0,

«2 , y < t«o(s(t)), t > 0, (4.10)

u ( w o ( s ( t ) ) , t ) = v ( w o ( s ( t ) ) , t ) = s(t) , t > 0 .
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Theorem 4.3 (Existence) Let u0, v0 and w0 satisfy (4.8) and let s(t) denote the
unique solution of {4.9) with s(0) = 0. Then there exist T > 0 and functions u(y,t)
and v(y,t) such that (u,v) is a viscosity solution of (4-10) fort € (0,T) with initial
data (UO,VQ). Moreover, (u,v) is differentiable at (wo(s(t)),t) for allt € (0,T) and

uy(w0(s(t)),t) = -

(4.11)

where \0(t)\ < \ satisfies tan(0(t)) = w'0(s(t)).

Proof. We shall construct the solution v(y, t) in the form of the value function
for a deterministic control problem. A construction using the method of characteris-
tics is also possible and we will indicate the connection between these two approaches
below. The construction of u(y,t) is similar.

First we write the equation for v in (4.10) in the form

vt = H(vy) (4.12)

where

H(p) = pJl+p2 = sup (-bp + Jj32 - bA .
|6|</? V /

The above representation for H suggests that (4.12) is related to the following control
problem [7]: fix (y,t) with y < wo(s(t)), t > 0. Let A(y,t) denote the collection of
all pairs (£(-)ir) satisfying

£ : [ 0 , * ] - R , r € [ 0 , t ] ,
tir) < wo(s(r)), Vr€[r,t],
C(r) = ti;o(«(r)),ifT>0,

W) = y
W(r)\ < 0, Vr€[0,t].

For (a-),r)€A(y,t) set

J(y, t\ ti-), r) £
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and
v(y,t) = sup J(y,t;t(-),r).

( « ) ) ^ ( 0

Then v(y,t) is the viscosity solution of (4.12), see e.g. [7]. Furthermore, the maxi-
mizers in the definition of v above are straight lines. Hence,

v{y,t) = max Ut - r)y/f32 - b2 + vo(y - bt)xT=o

where for any b € R, r € [0,t] is defined by

r = inf{/9€ [0,t] : y + b{r - t) < wo(s(r)), Vr

Now, observe that whenever ^Q(O) < 0, the assumption

Vo(O) > -tan(fj)

yields

(t>t(0))2

Then an elementary analysis using s'(0) = a and the above fact implies that
v(w(s(t)),t) = s(t) for all sufficiently small t > 0. Indeed, there exist T > 0,
6{t) > 0 such that for t € (0,T\ and y £ {wo(s(t)) - 6{t), wo(s(t))} we have

v(t,y) = V(r,t) = s(r) + P(t - T)COS(0(T) - 77) (4.13)

where d(-), fj are as the statement of the Theorem and r = r(y,t) is the solution of

y = WQ(S(T)) + p(t - T) sin(8(r) - ff). (4.14)

Thus, differentiating (4.13) and (4.14) with respect to y and evaluating at (wo(s(t)), t)
we obtain

Wj, = ( * ' ( * ) " /?COS(0(<) - 7?)) Tj,

and
1 = (w'0(S(t))s'(t) - (3sm(e(t) - r7)) rv.

Since
s'(t) = a cos(0(t)), w'o(s(t))s'(t) = asin(0(t))
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we have

_ <Tcos(0(t)) - pcos(Q(t) - fj)
Vy~ asm{e(t)) - psm{9(t) - fj)

and since cos(?7) = a//?,

_ cos(fl(<)) - cos(rj)cos(6(t) - fj)
Vy ~ sm(6(t)) - cos(rj)sin(6(t) - fj)

_ cos(rj+($(t) - fj)) - cos(fj)cos(e{t) - fj)

sin(fj + (0(t) - fj))-cos(fj)sin(0(t) - fj)

= ta.n(fj - ${t)) (4.15)

and the proof of the Theorem is complete.

Finally let us mention that one could also use the method of characteristics to
derive (4.13). Indeed,

Y(t; T) = WO(S(T)) + 0(t - r) sin(0(r) - fj)

is the characteristic curve for (4.12) emanating from the boundary point (WO(S(T)), r).
Characteristics emanating from the initial data are

+ Wv)r

and, for t < to(y),

(v'o(y)Y

Now assume that Y(t; r) = Y(t; y) for SOTie 0 < r < t and y < 0. Then, for
sufficiently small t > 0, we have V{t, T) > V(y,t) and (4.13) follows. •

29



4.2 Uniqueness

In this section we prove that the solution (u(y,t),v(y,t),wo(x)) constructed in the
previous subsection is the unique viscosity solution of (3.16) and (3.18). Suppose
that there is another solution {f0 : t € [0,T]} of (3.16) and (3.18), satisfying (3.1),
(3.2), (3.7). We further assume that there is a neighborhood AT of {(t, 0) : t G (0, T]}
such that for i ^ j € {1,2,3}

Pij € C\M) \pijj > 0 on M > 0, (4.16)

where ptJ- is a parametrization of the f tj's. Let T(t) be the triple point of f. Since
Pij is differentiate on A/\ for t € (0,T]

n13((M) = 0, f(*)-n21((M) = ^ t'(*) • n23(0,t) =/?. (4.17)

Moreover the angles between the arcs f y are well defined and by (4.1) we have,

if 02{t) # y , then 02(i) > tf0, (4.18)

where 0O € (^, 'TT) is as in (4.3). Since 02 > T ' a n d ^"(0 ' ni3(°>0 = 0, it is
elementary to show that

( 4 1 9 )

where a is as in (4.7).

Theorem 4.4 (Uniqueness) ftJ(f) = ry(<) /or allt<T and i,j = 1,2,3.

Proof. First we will show that

f i3(«) C r13(*), V<€[0,T]. (4.20)

Fix to > 0. In view of (4.16), there is 6 — 6(t0) > 0 such that, the arc

Ss(t) = f 13(0 n {(*, y) : |(x, y) - f(to)\ < 6},
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is continuously differentiate for all t0 < t < t0 + 6. Suppose that x e Ss(t) for some
to < t < t0 + 6 and x ^ f(t). Then x ^ f(s) for all 5 near t. Set

*0' - i f

sup{s < t : x = f(s)}, otherwise.

Since the normal velocity at x is zero, we conclude that x € tis(s(x,t)). Hence for
all to < t < to + S we have,

S6{t) C S6(t0)U{f(s) : to<s<to + 6}.

If for some t0 < t < tQ + 6 , f (t) £ f13(*o) then,

r

which contradicts (4.19). Hence for all t e [to,to + <5],

T(t) € f 13(*0),

and consequently,

T(t)=p13(s(t),tQ),

for some s(t).

Now extend f \s(t) in the following way,

f i3(«) = f 13(t) U {pi3(*,*o) : * € [0,5(*)]} U {T(t0) - rp13iJ(5(*o),*o) : r < 0}.

Then for t € [to, to + ]̂> fi3 solves a two-phase geometric problem with normal
velocity zero. By the uniqueness result for the two-phase problem (see e.g. [4]),
we conclude that f 13(0 = f i3(<0), f°r all t € [to,to + 6]. (4.20) follows from the
continuity of f.

By (4.20) we conclude that,

f (0 = (*(0
We claim that x{t) is equal to the unique solution of (4.9) and that 02(O = ^f
all t > 0. Indeed if 02(t) / ^ for some t > 0. By (4.18) 02(O ^ T f o r a11 *
Moreover by (4.17) we conclude that 1̂ < f.
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Set
d(t) = sup{y : (x,y) € t^t) for somei}.

Since 6\ < ?r/2, and f is continuous in the HausdorfF topology, we conclude that the
maximizer in the above expression is attained. Since Fi2 is viscosity solution of the
equation V = a, we conclude that

7td{t) * °

in the sense of viscosity solutions. Therefore, d(t) < at. But this contradicts (4.19)
and we conclude that &2{t) = ^f for all t > 0. Then from (4.17) we obtain that
x(t) = s(t). Hence

), Vt€[0,T].

Finally we define,

)}U{(x,j/) : x<0,y>0}.

Then f 12 and Fi2 both solve a two-phase geometric problem with normal velocity
a in D satisfying the Dirichlet data

f 12 n az> = T(«), vte[o,T].

Hence by standard comparison results on viscosity solutions for two-phase problems,
[4], we conclude that the twro solutions coincide.

A similar argument shows that 1̂ 3 = F23- •
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5 A simple convergence result

In this section, we prove the convergence of solutions in the symmetric case: in the
notation of §4, we take a = /? and wo(x) = 0, «o(y) = vo(—y)- Without loss of
generality we set a = 1. Then the solutions to the e-problem (2.5) have the form,

1*13(0 = {(*,0) : *>

r « ( 0 = { ( t t € ( y , 0 , y ) : y > o } , t > o
1^(0 = {(ul(-y,t),y) ; y < 0}, t > 0,

where s£(t) = w{(0,<) and ttc solves,

with Neumann data

(5.2)

We assume that there are constants 0 < k < 4- < A", satisfying

Then by the maximum principle we have

Hence for every € > 0 the solution exists for all time.

Theorem 5.1 (Convergence) As e —» 0, u€ converges locally uniformly to the
unique viscosity solution of

+ (%)2, (5.3)

twit/i Neumann boundary data (5.2). Moreover for all t > 0, tiy(0,i) exists and
satisfies (5.2) pointwise and
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Proof. Let $(y) be a smooth, convex function satisfying

<$(0) = 0, 4y(0) = —^=, $y(y) = —fc, Vy > Y($), (5.4)

with some constant Y{$) > 0 depending on $. For any $ satisfying (5.4) define

c€($) = sup {-€$(-)-fcy}.

(Observe that the above maximum is achieved at V(4) and that c€($) converges to
zero as e tends to zero.) Then for any fixed to > 0, the function

is a supersolution of (5.1) and (5.2). Since u€
y(y,t) > fc,

Hence by the maximum principle, u€ < uc and, in particular, for any h > 0,

5c(to + h) = w€(O,to + /i) < t/c(O,to + h) = s€(to) -

Therefore
cc($), V/i > 0, (5.5)

for any function $ satisfying (5.4).

Similarly let $ be a smooth, concave function satisfying (5.4) with k replaced
by K, i.e., $ satisfies

= 0, *y(0) = ~ , 4v(y) = -A', Vy>y($), (5.6)
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and set

y>0

Then, arguing as above,

s€(t0 + h)~ s€(t0) > 0($)h - c€($), Vh > 0. (5.7)

Now let,
s*(t) = limsupsc(r), s*(t) = liminf 5€(r).

Since c€($) converges to zero as e —* 0, (5.5) implies that for any t , / i>0we have,

s*(< + /i) - s*(t) < /

for all $ satisfying (5.4), and similarly by (5.7),

for all $ satisfying (5.6). It is easy to show that the infimum of /?($) over all $
satisfying (5.4) is equal to 2/\/3. Also the supremum of/?($) over all $ is equal to
2/\/3. Hence we have

2 2
-7=/i < s*(f + h) - $*(*) < 5*(< + h) - 5,(t) < p /
v3 v3

for every <, /i > 0. Therefore

and we conclude that se converges uniformly.

Finally set

u*(y,t) = limsup u€(z,r), u+{y,t) = liminf
€ 0 ( ^ r ) (
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Then from the theory of viscosity solutions (see e.g. [6, 7]) it follows that u* is a
viscosity subsolution of (5.3), and um is a viscosity supersolution of (5.3). Moreover

Since there is a unique viscosity solution u of (5.3) satisfying the above (Dirichlet)
boundary condition, a standard comparison theorem yields u* = u« = u. m

In this paper, we have developed a weak theory for geometric equations of the
type

where Vy is the normal velocity of an interface and /itj > 0, ei,e2 ,e3 are given
constants. One may also consider more general geometric equations

with given constants v^. In general for any given v^'s there may not be any /itj and
€i satisfying vy = /x,j[e; — €j] for every i ^ j = 1,2,3. In this non-physical situation,
there is no convergence and our theory does not apply. We illustrate this lack of
convergence and hence the lack of solutions with a simple example. Consider the
problem

v;, = i, t #,7 = 1,2,3,

with uniform angle conditions and initial data of three half lines meeting at the origin
with equal angles. Let F^(i) be the solution of the curvature perturbed problem.
By symmetry, each one is obtained from another one by a rotation of 120° and the
triple junction remains at the origin. Thus it suffices to consider the evolution of
only one of the arcs, F ^ . Suppose that F^O) coincides with the x-axis. Then by an
elementary argument shows that as, e —• 0, F ^ i ) spirals around the origin infinitely
many times "converging" to

{(*,y) : x2 + y2 < t} U {(*,*) : x > 0}.

Hence there is no limit of the vanishing surface tension problem. A numerical study
of this example can be found in [9, Figure 28].
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(a)

(e)

Figure 10: A catalog of weak solutions for compatible initial data: (a) a >
a/2 > 0; (b) a/2 > /? > 0; (c) a > -(3 > 0; (d) -/? > a > 0; (e) -a > -/? > 0.
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(a) (b)

Figure 11: The weak solution for incompatible initial data, (a) One of the angle
conditions is preserved; (b) No angle condition is preserved is the strong sense.
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