
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



 



AJAMT

Relaxation of Multiple Integrals in
Subcritical Sobolev Spaces

Irene Fonseca
Carnegie Mellon University

Paolo Marcellini
Dipartimento di Matematica "U. Dini"

Research Report No. 94-NA-014

May 1994

Sponsors

U.S. Army Research Office
Research Triangle Park

NC 27709

National Science Foundation
1800 G Street, N.W.

Washington, DC 20550



 



Relaxation of Multiple Integrals in
Subcritical Sobolev Spaces

IRENE FONSECA

Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213
U.S.A.

PAOLO MARCELLINI
Dipartimento di Matematica "U. Dini"

Viale Morgagni, 67/A
50134 Firenze

ITALY

1 Introduction
In this paper we study lower semi continuity and relaxation of some integrals of
the calculus of variations of which a prototype example is given by

r, (1.1)

where J2 C R ^ is an open, bounded domain,

for some Cx > 0,C2 > 0, N - 1 < p < N and for all ( € MNxN,t € R.
Integrands of the type (1.1) are considered in nonlinear elasticity and the

condition p < N plays a fundamental role (see [B]) as it allows discontinuous
deformations.

It is well known that if W : MnxN —• R is a quasiconvex function (see
Section 2) satisfying

0<W(S)<C{l + \£\<) (1.2)

then
liminf / W(Vuk{x))dx > / W(Vu(z))dx



whenever ukiu € Wl«(tt\Rn), uk — u in Wl>*(Q;Rn)(ste [AF], [Marl]).
The lower semicontinuity problem for polyconvex integrands below the criti-

cal exponent q was firstly stated by Marcellini [Marl]. In particular, if we restrict
to our prototype example (1.1), Marcellini [Marl] proved the lower semicontinu-
ity for p > j ^ . This result was extended to the case p > N - 1 by Dacorogna
and Marcellini [DM]; Gangbo [G] incorporated in this setting a dependence on
x and u as well. Later, Dal Maso and Sbordone [DMS], Fusco and Hutchinson
[FH], and Celada and Dal Maso [CDM] extended the lower semicontinuity result
to the limiting case p = N — 1.

Counterexamples to lower semicontinuity have been provided by Maly [Mall]
for p < N - 1 and by Gangbo [G].

In the quasiconvex case (1.2), lower semicontinuity below the critical ex-
ponent was first studied by [Mar2] for p > tf^py, under some structure con-
ditions on the quasiconvex integrand. Maly [Mai2] considered the case where
p > 0̂ 77̂ 1 p > q — 1, and he analyzed the lower semicontinuity on smooth
mappings.

Here we study a class of integrands larger than the ones included in (1.1),
and not necessarily polyconvex. Considering the functional (1.1) with W(£) :=
/ ( 0 + p(detf), we define the relaxed energy for every u 6 W^lfyR") as

and we prove that, for every p > N — 1,

J-p(ii) > / QW(Vu(x))dx
Jn

and equality holds provided u £ Wl>N(Sl\RN).
The novelty of this result is that, in the relaxation process, the integrand

QW is at best quasiconvex and the convergence takes place in WltP(Q;RN)
where p is smaller than the critical exponent. Hence the results obtained earlier
for p > q or for polyconvex integrands cannot be applied here.

Abo this is, as far as we know, the first relaxation result for subcritical
Sobolev spaces as opposed to the lower semicontinuity results obtained in the
previous works mentioned above. We emphasize the fact that when relaxing an
energy functional the energy density is, in general, represented by a quasiconvex
function which is not polyconvex.

This paper is organized as follows:
In Section 1 we prove the general theorem of lower semicontinuity when

q — 1 < p < qy for quasiconvex integrands with q growth satisfying a suitable
structure condition (see Theroem 2.1). In Corollary 2.3 we obtain a relaxation
result and the integral representation for Fp(u) when the integrand is not quasi-
convex. In Section 3 we show that Theorem 2.1 can be applied to integrands of



the type (1.1) (see Theorem 3.1) and in Theorem 4.1, Section 4, under the same
hypothesis on the integrands of (1.1), together with polyconvexity, we prove
that

/ g{dttVu)dx

for a certain class of deformations u $ Wl's(Q;Rs). This shows that the
condition u € Wl'*(Q\RN) imposed in (2.17) cannot be relaxed. Precisely,
we prove that for some radial deformations u <fc H^ l iN(fi;RN), singular at the
origin, Tv(u) is equal to the sum of the integral in the right hand side of (1.1)
plus a Dirac mass supported at the origin.

2 The General Case
Let n C R N be an open, bounded domain, N,n € N; let W : MnxS — [0, +oo)
be a Borel function such that

(HI) 0 < IV(O < C(l -I- Ulf) for all { € MnxN

and there exists A € [0,+oo) such that

(H2)x W(AB) < C(l + W{B))

for all B € M n x N ,A = tfl + (-A-ff)2®«, for all 0 € [0,1],z £ Sn'lU{6] and,
if A = 0, then W(0(l-z®z)B) < C if \z\ = 1,9 € [0,1], for some C > 0, q > 1.

Let p > 1, p > g - 1, and for u € H'^fiiR/1) consider the relaxed energy

- inf 1 iimi /i i m in f / W(V^(x))dx\uk - ii in ;Rw) f 1
J

We recall that W is said to be quasiconvex (see [D],[Mo]) if

for all i4 G M n x N , D C R N open, bounded, Lipschitz domaun, <p €
Also, the fuastconvex envelope of IV is defined as

QW(A) := inf

where ( ? = ( ^ ^ ) N .



Theorem 2.1 Let W : MnxN —• [0, +00) be a quastconvez function satisfying
(HI) and (H2)x, for some A > 0 . Let u € W l lP(fi;Rn),uk € W1'*(Cl;Rn) such
that uk — u in W^^R"). Then

liminf [ W(Vuk(x))dx> f W(Vu(x))dx.

The proof of this result is based on a method introduced by Marcellini [Mar2]
and also on a truncation argument used by Celada and Da! Maso [CDM]. The
truncating functions are of the form, for A € (0,+oo),

•{

ipx(t):=t _A< + A + 1, Kt<A

0, t > A

where A := 1 + j \ while, for A = 0,

*, 0<t< 1

, 1,

For p > 0 set

* A . ( y ) : = | m ^ ^ ' ^ ° (2.1)
I 0, y = 0.

If A>0,p< |y|< Ap, then

, |*| = 1, »€ [0,1],*:= A

= 0 if It/1 > Ap (2.2)
A,,(y) = l if | y |<p-

Also if A = 0

= l >f \A<P
(2.3)

Thus we conclude that *A > , € ^ l ' ° ° (R n ;R n ) ,

||*A,p||i.oo < C(A). (2.4)

As in [Mar2] we will make use of the following lemma (see [Marl], [Mar2]
Lemma 2.2).



Lemma 2.2 Let W : MnxN —> R be a quastconvex function satisfying the
growth condition (HI). Ifq—l<p<q then there exists a constant C\ > 0
such that

I \W(t-(x))-W(t,(x))\dx
Jn

whenever £,T)e Lr(Q;MnxS)f and where r := pzf+f

Proof .It was proven in [Mar 1] that the quasiconvexity of W together with
(HI) yield

1/(0 - f(r))\ < cx{\ + Kl + M r ' K - il
for all £,i? € MnxN and some Ci > 0.

The result now follows using Holder's inequality with exponents -£y and r.l

Proof of Theorem 2.1. The case p > q is well known and it holds without
assuming (H2)\ (see [AF], [Mai 1]), and so we restrict our attention to q — 1 <
p < q. We divide the proof into four steps.
Step 1. Let Fo € MnxS be a fixed matrix, uk € Wl«(Q\Rn),uk — Fox in
W^'^fljR/1). Assume in addition that

uk — F o xinI r (n ;R n ) . (2.5)

Without loss of generality we may assume that

liminf / f{Vuk(x))dx = lim / f(Vuk(x))dx < -hoo.

Here we follow an argument similar to that of [Mar 2] Lemma 2.3 (see also
[DG]).

Let Qo be a fixed open set compactly contained in Q, let R := d " t ^ ° ' 8 n J ,
let M € N be fixed. For i € { 1 , . . . , M) we define

Then li = UJlifii, fij D Q,-i, and given t € {1,...,A/} we consider cut-off
functions pi € C"o(fi|) such that

0

We set

{ 1, * € 0,-,

o, *en\a



As W is quasiconvex, v\ € H/
0
1'*(f2;Rn) and W satisfies (HI) we have (see

[BM])

/ W(F0)dx = W(F0)meas(Q) < f W(Vu[(x))dx
ci Jn

= / W(F0)dx+ I W(Vu[(x))dx + I W(Vuk(x))dx

hence
W(Vuk(x))dx -

W(VtSk(x))dx.

S u m m i n g this inequality wi th respect t o t = 1 , 2 , . . . , A/ and div id ing by M
yie lds

W(Vuk(x))dx - ^™**™ ±/ ) > Y, I
Jn M M *?[ Jfi,\n,.l

(2.6)
On the other hand

- <P*)FQ -h (uk -

and using Lemma 2.2 we obtain

W(Wk(x))dx =

+ / W(^(x)Vuk(x))dx =: /j + 72 (2.7)

where

h < C1||l + |Vui| + |

< d| | l + 2 |Vttt| + |F0|

• (Ill + l^ol + HV^IIe

i) •+ R

(2.8)

IT



On the other hand, using (H2)A with z = 0 we have

h< I C(l + W{Vuk{x))dx

which, together with (2.6), (2.7), (2.8), yields

M

M

- 4TC f meas(fi) + / W(Vuk(x))c

Taking the limit as k —* + oo followed by the limit as M —> -hoo we conclude
that

Hminf / W(Vuk(x))dx - W^(F0)meas(f2) > 0 ,

where we have used the fact that

W(Vuk(x))dx
n

remains bounded.
Step 2. Under the same hypotheses of Step 1, we remove the additional assump-
tion (2.5).

i) A > 0. Let m € N and choose an increasing sequence p m ,p m —•

-foo,pmA > HFoslli-cn), where A = 1 -f \,

— sup / \uk{x)\dx < —. (2.9)
pm h Jn rn

Let Co > 0 be such that

sup / f(Vuk(x))dx < Co.

Since

Co > I W(Vuk(x))dx > £ / W(Vuk(x))dx
Jn jrT^{pmA-»<iufc|<pmA'}

then we must be able to find t(m) 6 {0 , . . . ,m — 1} and a sequence



such that

W(Vu[m\x))dx < 2±. (2.10)

Set

Um: = *xjm(*), «(x) = Fox ,

(see (2.1)-(2.4)). Then Um,k - ^ m in Wl*(Q\Rn),Um,k € lV1-«(n ;R
n)

and supt ||£/m,*IU« < ^(m), thus Umtk -* t/m strongly in Lr(Q; Rn ) . More-

over, as <pmA > \\Fox\\Loo{n.Rny then

Um(x) =

and by Step 1 we have

/ W{FQ)dx = W(F0)meas(n) = / W(VUm(x))dx
o, Jn

< liminf / W(VUmk{x))dx

< liminf</ W(Vuk(x))dx+ [ W(Q)dx+

Using (H2)A) (2.2) and (2.10) we have

W(F0)meas(n) < liminf / W(Vuk(x))(L

+ limsup {^(0)^- jf |«t(x)|dx +

+Cmeas {/3m |

Letting m —• -f oc we conclude that

<liminf / W(Vuk{x))dx.



ii) A = 0. As in part i) , choose 0m an increasing sequence, 0m —• + oo,

such that
rj-sup / \uk(x)\dx< — ,
Pm k Jfl HI

0m > ||F0*||L«(ft.Rlk). Then Um,k - Um = Fox in W ^ j R " ) , strongly
in Lr, and by Step 1

W(FQ)dx =

< liminf f W{VUmk(x))dx

< liminf i /

• 2® z)Vuk(x))dx
i\»k\>0~}

where 6 := T^T and z = I^T, and where we have used (2.3).
By (H2)0,esssup W(0(1 - z ® ;)Vui( i)) < C, and so

\

J

W(F0) - meas(fi) < liminf ( / W{Vuk(x))dx

+Cmeas{|ti*|>/?m} j

< liminf / W(Vuk(x))dx + —.
*—+00 y n m

It suffices to let m —• +00.

S. Let t/ € W^OsR11),ti« €
In addition, assume that

for some k > 0 and for all £ € MnxN. Without loss of generality we may
suppose that

liminf / W(Vuk(x))dx = lim / W(Vuk(x))dx < +oo.

Then there exists a subsequence (for simplicity, we do not change the notation)
and a finite, non-negative, Radon measure /x such that

W(Vuk)C
N — fi



weakly — • in the sense of measures, where CN denotes the Lebesgue measure
in R N . Using the Radon-Nikodym Decomposition Theorem (see [EG]), we may
write

where /*a € £1(H;[0)+oo)) and /i, is a finite, nonnegative Radon measure,
singular with respect to CN'.

We claim that

> W(Vu(x0)) for £Na.e.x0 € fi. (2.12)

Assume that the claim holds. Choosing p<m) € CJ°(f2; [0,1]), with limm-+Oo <p(mHx)
1 for all x € fi,y?(m) < ^ m + 1 > , then

liminf / W(Vuk(x))dx > liminf / <p{m\x)W(Vuk(x))dx

?

> / <pim)(x)W(Vu(x))dx
Jet

and using Lebesgue's Monotone Convergence Theorem, letting m —• -f oo, we
conclude that

/ W(Vu(x))dx <liminf / W(Vuk(x))dx.
Jo, *—+oo J n

Now we prove the claim (2.12).
Let x0 G fi be a Lebesgue point for u such that

Bin - -I \u(y) - u(xo) - Vti(xo)(y - xo)|dx = 0 , (2.13)

fia(x0) = Urn KV<V "' / ; exists and is finite , (2.14)

where
-\ \\N

It is known that the set of points x0 € fi for which (2.13) or (2.14) fail has
£N-measure zero (see [EG]).

10



Then, selecting a sequence c - • 0+ for which /i(#Q(xo,e)) = 0, we have

*»a(*o) = lim+ PW(*O'C»

= Urn iim 4r / W(Vuk(x))dx
<—•0+fc-*+oo •/Q(ro,«)

= lim lim / tV(Vu* e(x))dx

• ex) - u(x0)
where

Then ukil € ^ • ' ( Q j R " ) and by (2.14) and (2.11)

{VtiA|€} is bounded in Lp(Q,MnxN)

In addition, as uk —• u strongly in L1, by (2.13)

lim lim \\uk€ — Vu(xo)x\\Li(Q)

, -I- ex) - t/(x0) -

(215)

= lim lim /

= lim 7 / |ti(x0 + ex) - u(x0) - Vu(xo).(xo + ex - x o ) | dx

=€j™> | fQ(j.Oie) l«(y) - ^(«o) - Vu(xo)(y - xo) | dy.

In view of (2.15) we may take a diagonal subsequence Vj of ti*|6 and we ob-

tain Vj € Wx*{Q\Kn)t Vj - . Vti(xo)x in L^QiR"), { / Q IVty^} is bounded.

Therefore vj — Vu(xo)x in W1*p(Q\Kn) and by Step 2 we conclude that

J—+OO

. Under the same conditions of Step 3, we remove the assumption (2.11).
Let k > 0 be such that

sup [ \Vuk(x)\p dx < K <+oo.

11



Let u € W1-'>(n;Rn) and apply Step 3 to

Indeed, as p < q, it is clear that Wt still satisfies (HI) and, given A = $1 - (A +
0); <g> z, then ||.4|| < C(A) and so

= W(AB) + c \AB\P < C(l + W(B)) + <C(A) \B\

for all B € AfnxJv. Hence Step 3 yields

f W(Vu(x))dx = lim
Jn <-o+

<— Of JQ

= lim+ J W€(Vu(x))dx

< Urn inf lim inf / W€ {Vuk (x) )dx

< liminf liminf I / W(Vuk(x))dx + cR\

= liminf / 1
*-+» Jn

Corollary 2.3 let W : Mn*N —* [0,+oo) 6e a Borel measurable function sat-
isfying (HI), (HS)x for some A € (0,+oo). Leip > q-l,u € ^'^(fijR"), ut €
W^CfijR"), « t - u in W^1*. Then

and

liminf / W(Vuk(x))dx > I QW(Vu(x))dx

Fp{u) > I QW(Vu(x))dx. (2.16)

, t /u€ ^•'(fijR"), then

)dx. (2.17)/

Corollary 2.3 uses the in variance of quasiconvexification under the structure
condition (H2)A, namely

Proposition 2.4 Let W : MnxN - • [0,-hoo) be a Borel measurable function
satisfying (HI) and (H2)\t for some A € (0,+oo). Then QW also satisfies (HI)
and(H2)x.

12



Proof .It is clear that

for alU € MnxAr , hence (HI) holds. Given B € Mn*N\A = 01-(A+ 0)z®zi6 €
[0, l],z € S""1 U {0}, let ^ € Htf'°°(Q;R")f Q := ( ^ , £ )" , be such that

= lim [ W(B + V<pk(x))dx.

Then
< liminf / W(AB+ V(A<pk)(x))dx

= liminf

< liminf / C(l -f W(5 + V<pk(x)))dx

Proof of Corollary 2.3. The result is well known for p > q (see [AF], [Marl]),
hence we restrict our attention to the case q — 1 < p < q .

By Proposition 2.4 and Theorem 2.1 we have

liminf / W(Vuk(x))dx > liminf / QW(Vuk(x))dx

and we conclude (2.16).
Suppose now that u £ Wl«(Q;Rn). Then

^t(«) > ^>(ti) (2.18)

because p < q and, in view of the well-known relaxation results in Wl>q (see
[AF]) we have

§(u) = / QW(Vu(x))dx

which, together with (2.16) and (2.18), yields

?Ju) = / QW(Vu(x))dx.

13



Remark 2.5 i) If p > q then we do not need to assume (H2)A in Theorem
2.1 and Corollary 2.3 (see [AF], [Mar 1]).

ii) If qjfa < p then Corollary 2.3 was obtained by Marcellini (see [Mar 2]))
under the weakened hypothesis replacing (H2)A,

(H2)' W(tB) < C(\ + W{B))

for all B € MnxN,t 6 [0,1]. Note that (H2)' is used in Step 1 of the
proof of Theorem 2.1, while the full strength of (H2)x was only required
to carry out the truncation argument in Step 2, where it is shown that we
can modify the original sequence {u*}, into a new sequence {v*}, where

—• u in Lrstrongly, r =
P - 9 + 1

However, if p > qjfe then the Soblev exponent -$*- > P x and so
Wl>p —• Lr (compact embedding). Therefore, in this case we do not need
to construct {vk} as the original sequence {u*} converges strongly to u in

Hi) If q — 1 < p < 07̂ -py and if u^ —• it in U strongly (this happens e.g. if
sup ||u*||oo < +00) then, under the conditions of Theorem 2.1 with (H2)A

replaced by (H2)', we have

liminf / W(Vuk{x))dx > f W(Vu(x))dx.

We justify this fact using exactly the same argument of ii).
iv) The result of Theorem 2.1 may fail if p < q - 1.

To illustrate this fact, we use an example due to Maly (see [Mall]). Let

W is polyconvex, W satisfies (HI) with q = N and (H2)A with A = 0.
Indeed, if A = $(1 - z ® 2), z £ SN~X U {0}, then det A = 6N if z = 0, in
which case

W(AB) = |det(AB)|= |det A| |det B|
= 6N\detB\< |detB|

and if \z\ = 1 then det A = 0, in which case

W(AB) = W(0) forall B € MNxN.

Let u(x) := x,Q = (0 , l ) N . Maly [Mall] showed that there exists a se-
quence of diffemorphisms u* € C1(Q\RN),uk —• u in L9 strong, for all

14



s < +00 , ti, — u in Wl>s-l~l for all c > 0, and

liminf / W(Vuk(x))dx = liminf / \detVuk{x)\dx
*—+00 y n A—+00 j n

= 0 < / |detl | = meas(fi).
./n

In Section 4 we will exhibit an example of an energy density satisfying
the conditions of Corollary 2.3, and a function u € H'1'«-c(0;Rn), for all
c > 0,ti $ Wl*{Q\Rn), such that

/
n

whenever ^ — 1 < p < 9. This shows that the integral representation
(2.17) for the relaxed energy Tp{u) does not depend on the Sobolev space
in which weak convergence takes place, but rather on the regularity of u.

3 A Special class of Energy Functionals
In this section we apply the results of Section 2 to functionals of the type (1.1),

where Q C R N is an open, bounded domain. We set

Theorem 3.1 Let f : MNxN —• R, p : R — R ie Bore! measurable functions
such that

and

/or some d > 0,C2 > 0, N

(3.2)

p < N, and for all £ € MNxN,t € R.
, tit - u in W^ifyR"). Thtn

limbf
t—+00

//, in addition, u € ^ ^ ^ ( n j

u) = int{vk) (liminf /
I*—+00 Jn

then

> [ QW(Vu{x))dx

: vk €

- « in = / QW(Vu{x))dx.

15



Proof .In view of Corollary 2.3, it suffices to prove that W satisfies (HI) with
q = N and (H2)> for some A > 0. In fact, we may assume that W > 0, i.e.
C<2 = 0, by adding the constant Ci, and we have

for some constant K > 0. Also, setting A = 1 we have

A = 0 1 - ( l + 0)*®z

. If 2 = 0 then

W(AB) = W(6B) = f(6B) + g(6N det B)

where we have used (3.1) and (3.2). Also, if |z| = 1 then det/i = 9s (l
^ < C3 for all 0 € [0,1], |*| = 1, and so, by (3.1) and (3.2),

W(AB) < C1{l

and this concludes (H2)A, A = 1.

16
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In the particular case where / = 0, i.e.

we do not need to assume (3.2), precisely:

Theorem 3.2 Let g : R :-+ [0,-f oo) be a Bo re I measurable function, let p >
N - lftijk € Wl*N(Q\RN),ue H ^ n j R " ) . Then

liminf [ g{detVuk(x))dx> [ g*9{deiVu(x))dx. (3.3)

//, in addition, u € W1«N(Q;RN) then

FJu) = inf (liminf / g(dttVvk(x))dx\vk £ WlN(Q;RN),

-+u in

Jn
/ (3.4)
n

Remark 3.3 The lower semicontinuity result (3.3) was obtained in [DM], [G],
[DMS], [FH] in the case where u € Wl>N(Q;RN).

Recently, Celada and Dal Maso [CDM] extended Theorem 3.2 to p = N -
l,u € WlfN'l(Q;RN)i and the method of their proof relies heavily on a result
of Giaquinta, Modica and Soucek [GMS] concerning the weak-* convergence
(in the sense of measures) of minors, and this result, in turn, is obtained via
methods of geometric measure theory.

Proof of Theorem 3.2. Letp> N - l f t i * € Wl'N(Q\RN),u € Wl*(Q\Rs).
To establish (3.3) it suffices to prove that

liminf f g**(detVuk(x))dx> f gmm(detVu(x))dx.

Consider an increasing sequence of piecewise affine, convex function gm such
that supm gm = lim^+oo gm = gmm and

Cm(l + W), C m > l .

Then, setting

we have (HI) with q = N and we prove (H2)A for A = 0.

17



If 1*1 s 1,0 e [0,1] then

Wm(0(l-z®z)B) s gm(0Ndet(l-z®z)detB)

= ^m(0)<Cm

for all B £ MNxN and if z = 0 then by the convexity of gm

Wm{6B) = 9m(6»detB)

+ gm(detB)

Thus, by Theorem 2.1

Jf 0m(detVti(x))dx < liminf f gm(detVuk(x))dx

< liminf / g(det^uklx))dx

and letting m —• -l-oo, using Lebesgue's Monotone Convergence Theorem, we
conclude that

/ gm*(detVu(x))dx <liminf / g(detVuk(x))dx.
Jn *-*+« 7n

Finally, if u € IV l^(n;RN) then we may find vk € Wl>oo(Q;R»)ivk —

[ g**(detVu) = lim f g(detVvk(x))dx

which, together with (3.3), yields

/•_(«)= [ g"(detVu)dx.
Jn

4 Existence of Relaxed Energies with Singular
Part

In this section we show that the integral representation (2.17) may fail if u ̂

18



Precisely, we prove that for a large class of polyconvex functional of the
type (1.1) satisfying (HI), (H2)A we can find function u € Wl*N-€(Q\RN), for
all e > 0, such that

rp(ti)= f\V(Vu(x))dx
Jn

P% > 0,p, = A60 for some A > 0,ft = B(0,1).
A related example was treated by Acerbi and Dal Maso (see Theorem 4.1,

[ADM]) by means of geometric measure theory techniques.

Theorem 4.1 Let f : MnxN —• R be a quastconvex function, g : R - • R a
convex function such that

±\t\-C < g(t)<C(l + \t\)

for some C > 0,N - 1 < p < N, and for all t € R,£ € MnxN. Lei B :=
B(0,l) C RN, W(O := /(O+«/(detO,«(x) := »(|*|)^,t> € W»-~(R;R), v{0)
0. Then u € Wl'N~t{B; TLN) for all O 0 and

Tp(u) = I W(Vu(x))dx + mens(B)geo(v(0)N),
JB

where the recession function g°° is defined as

This class of radial functions were studied in this context in [Mar 2]. We
recall that the recession function is a convex, positively homogeneous of degree
one function. Thus for every s > 0 we have

and so

Proof .It was shown in Section 3 that these integrands satisfy (HI), (H2)A, with
A = 1. It is clear that

where r := |x|, hence

detVu(*) =
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Step 1. Let uk € W1-N(B;RN), uk — u in W1''(B;RN). Using the truncation
method of Step 2 in the proof of Theorem 2.1, for fixed m 6 N we may find
pm > 1 such that (see (2.1) - (2.4))

Um(x) := ¥AA.(u(x)) = «(*),

VmJt{x) := * A A > * ( * ) ) .

Um,k(x) - Um in W»*(B; RN) and strongly in I ^ R " ) , ^ € W^N(B;RN)
and

liminf / W(VUm k(x))dx <liminf / ^(Vut(x))dz + —. (4.1)

Fix m € N and < > 0. As u € C^B^.c^B^.e^jR") , then ||Vu|| €
Lr(B(Q,e)\B(0,(/2)) and since Um,t — u in IS, as in Step 1 of the proof
of Theorem 2.1 using the slicing technique we may change Um,k in B(0, e) near
6B(0,€) into a new sequence wk

m) € ^^^(^(O.e)^^) such that

(m)

wK
k ' —* ti i n

wim\x) = 1,(0? if 1*1 = «,

and

liminf / ^(det Vu>£m'(x))dx <liminf / g(detUm,k(x))dx + c. (4.2)

Then

liminf / W(Vuk(x))dx > liminf / f(Vuk(x))dx
*—+oo y B — *—+oo j B

+ liminf / g(detVuk(x))dx

-I- liminf / g(dttVuk(x))dx} (4.3)
4^+00 y B

where we have used the fact that / is quasi con vex, it has p-growth and u €
W^iBiR") since p < N (see [AF], [Mar 1]). On the other hand, by (4.1),
(4.2),
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liminf / g(detVuk(x))dx = liminf / g(detVuk{x))dx
*—+00 JB *-*+OO JB^

liminf / g(detVuk(x))d+ / g ( ( ) )

limint [ g(dtVi™\))d

+ /
JB\B.

where we have used Theorem 3.2. Since w^ € WIS(Q\KN) and ^ ^ x
^ ^ x on dB(Qye), by the quasiconvexity of £ »-> y(detO we have

/ y(detV^m)(x))dx>meas(S()<7(f^^ J

and by (4.3) we conclude that

liminf / W{Vuk{x))dx > f /(Vti(x))dx+ / g{detVu{x))dx
*-+oo JB JB JB\Bt

and letting e —• 0 +

to,

= / W(Vu(z))di + meas(B)poo((t;(0)Ar) - —
JB m

It suffices to let m —»• +c».
Step 2. Consider

vt(t) := {
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Then u€(x) := vt(\z\)fc € Wl'N(B\KN) and u
strongly. Indeed,

t - u in

dx

€—0+

N-*-'{\vt{r) - v(r)f + K(r)

~P — 0.
+

Therefore,

< liminf / /(Vuf(z))dx + [ g(detVuc{x))dx

= / /(Vt/(z))<fx+liminf [ g(detVut(x))dx
JB *—° 7B

< / /(Vu(«))(fa+ limsup / p (t;;(r) ( 1 ^ ) ^ * ] dx

+ limsup / g(detVu(x))dx
€-o* JB\B.

= / W(Vu(x))dx+ limsup wN f r^^g ( (?&) j dx

V 0 ( W )
/ W(Vu(x))dx

/ W(Vu(x))dx + mea8(B)gco((v(0))N).
JB
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