NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

UNIVERSAL BRIDGE FREE GRAPHS

by
Martin Goldstern
Institute of Algebra
Technical University
Vienna, Austria
and
Menachem Kojman
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213, USA
Research Report No. $94-171_{2}$
August, 1994

Hivergity branias
Cannegie ment Univertiv
pistsburgh PA $15223-3350$

UNIVERSAL BRIDGE FREE GRAPHS

July 1994

Martin Goldstern
Institute of Algebra
Technical University
Vienna, Austria
goldstrn@email.tuwien.ac.at
Menachem Kojman
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213, USA
kojman@andrew.cmu.edu

Abstract

We prove that there is no countable universal $B_{\boldsymbol{n}}$-free graph for all \boldsymbol{n} and that there is no countable universal graph in the class of graphs omitting all cycles of length at most $2 k$ for $k \geq 2$.

§0 Introduction

Several papers have addressed the problem of existence of a universal element among all countable graphs omitting given finite subgraphs (see [KP] and the comprehensive bibliography there, and most recently [CK] and [KP1]).

Given a graph F we say that a graph G is F-free if F is not isomorphic to a subgraph of G. A countable F-free graph G^{*} is universal (strongly universal) in the class of all countable F-free graphs if every countable F-free graph is isomorphic to a subgraph (an induced subgraph) of G^{*}.

In [CK], Cherlin and Komjath raise the problem of determining for which finite trees T there exists a universal countable T-free graphs. In this paper we describe an infinite set of finite trees B_{n}, which we call bridges, and show that for no n is there a universal countable $B_{\boldsymbol{n}}$-free graph.

In [CK] it is proved that for all $n \geq 4$ there is no universal countable C_{n}-free graph (where C_{n} is a cycle of length n). In [KMP] it is proved, on the other hand, that a strongly universal countable graph exists among all countable graphs that omit all odd cycles of length at most $2 k+1$. What if we intersect some of those classes, say look at all graphs omitting $C_{3}, C_{4}, C_{5}, C_{6}$? We show here, using an idea of S . Mozes, that when all cycles of length at most $2 k$ are to be excluded (for $k \geq 2$), then there is no universal countable graph.
0.1 Problem: Is there a countable universal graph in the class of graphs omitting all cycles of length at most $2 k+1$ (for $k \geq 2$)? More generally, for what sets $F \subseteq N$ does the class of graphs omitting $\left\{C_{n}: n \in F\right\}$ have a countable universal element?

Following $[\mathrm{KP}]$ we make the following definition:
0.2 Definition: Let \mathcal{G} be a class of graphs.
(i) The complexity $\operatorname{cp}(\mathcal{G})$ of \mathcal{G} is the minimal cardinality κ of a set I of graphs in \mathcal{G} with the property that every member in \mathcal{G} is embedded as an induced subgraph into at least one of the members of I.
(ii) The weak complexity $\operatorname{wcp}(\mathcal{G})$ is defined by omitting the word "induced" from the definition of $\operatorname{cp}(\mathcal{G})$.

Notation: We denote the vertex degree of v in a graph G by $\operatorname{deg}_{G}(v)$. The length of a path is the number of edges in the path. For all m let K_{m} denote a complete graph with m vertices k_{1}, \ldots, k_{m}, let P_{m} be a simple path of length m with vertices p_{0}, \ldots, p_{m} and edges $\left(p_{i}, p_{i+1}\right)$ for $i \leq m$ and let C_{m} denote a cycle of length m. Let us call a simple path $h_{0}, h_{1} \ldots, h_{k}$ in a graph G a highway iff $\operatorname{deg}_{G}\left(v_{i}\right)=2$ for all $0<i<k$.
0.3 Advice: Drive carefully.

§1 Bridge-free graphs

1.1 Definition: A finite graph with $n+5$ vertices is called an n-bridge iff it is isomorphic to $B_{n}=\langle V, E\rangle$ where $V=\left\{a, b, c, x_{1}, x_{2}, \ldots, x_{n}, d, e\right\}$ and $E=\left\{(a, c),(b, c),\left(x_{n}, d\right),\left(x_{n}, e\right)\right\} \cup$ $\left\{\left(x_{i}, x_{i+1}\right): 1 \leq i<n\right\}$

1.2 Definition: Let us call a graph D a dead end if it is isomorphic to K_{n+3} to which a simple path P_{n+1} is freely adjoined by identifying k_{n+s} with p_{0}.

1.3 Claim: A dead end is B_{n}-free and if a dead end D with vertices $k_{1}, \ldots, k_{n+3}=$ $p_{0}, x_{1}, \ldots p_{n+1}$ is a subgraph of a B_{n}-free graph G then $\operatorname{deg}_{D}(v)=\operatorname{deg}_{G}(v)$ for all vertices $v \in D$ except maybe $v=p_{n+1}$.
Proof: : Suppose first that for some $i \leq n$ there is an edge (p_{i}, y) in G which is not an edge of D. If $y \notin D$, by labeling y as a, labeling p_{i} as c and p_{i+1} as b it is possible to label vertices of D as $x_{i}(i \leq n)$ and as d, e to produce a copy of B_{n}.

Suppose, then, that $\left(p_{i}, p_{j}\right)$ is an edge not among the edges of D. Without loss of generality, $j \geq i+2$. Now label p_{j} as a, label P_{i} as c and p_{i+1} as b. Again, a copy of B_{n} is easily found.

The remaining possibility for an edge of the form $\left(p_{i}, y\right)$ is that $y=k_{j}$ for some $j \leq n+3$. Here we distinguish two subcases. First, $j=1$ (and, of course, $i>1$). Labeling p_{1} as a, k_{1} as c and p_{1} as b, the remaining $n+2$ vertices of K_{n+3} complete the three labeled ones to make a copy of $B_{\boldsymbol{n}}$.

Second, $j \neq 1$. In this case if $i>1$ label k_{j} as c, label k_{1} as x_{n} and label p_{1} as e. The remaining vertices of K_{n+3} serve as x_{i} for $1 \leq i<n$ and as b. If, however, $i=1$, label p_{1} as c, label p_{2} as a and label k_{j} as b. Again, a copy of B_{n} is found.

We show next that the $\operatorname{deg}_{D}\left(k_{i}\right)$ is preserved. Suppose that $\left(k_{i}, y\right)$ is an edge in G which is not an edge in D. We already proved that $y \neq p_{j}$ for all $j \leq n$. Therefore, either $y \notin D$ or $y=p_{n+1}$. If $i=1$ label p_{1} as a, label y as b and k_{1} as c; otherwise label k_{i} as c, y as a, p_{1} as e and k_{1} as x_{n}. In both cases a copy of B_{n} results
1.4 Definition: Let us call a graph T a drive through if it is isomorphic to the graph obtained as follows: Let k_{1}, \ldots, k_{n+2} be the vertices of a copy of K_{n+2}. For $1<i<n+2$ adjoin freely to k_{i} a copy of a dead end by identifying p_{n+1} in that copy with k_{i}. To k_{1} connect a vertex l by an edge and to k_{n+2} connect a vertex r by an edge. Call l the left exit of T and call r the right exit of T.

1.5 Claim: A drive through T is B_{n}-free and if T is a subgraph of a B_{n}-free graph G then $\operatorname{deg}_{T}(v)=\operatorname{deg}_{G}(v)$ for all vertices $v \in T$ except l and r.

Proof. : Suppose to the contrary that B_{n} is a subgraph of a drive through T. As $\operatorname{deg}_{B_{n}}(c)=$ $\operatorname{deg}_{B_{n}}\left(x_{n}\right)=3$, both a and x_{n} are either in a copy of K_{n+3} or in the copy of K_{n+2}. Both cannot be in the same copy of K_{n+3} because the minimum of distances of x_{i} to c and x_{n} is smaller than $n+1$, and all the points satisfying this would be in the same dead end as x_{n} and c, contrary to claim 1.3. Similarly, c and x_{n} are not both in the copy of K_{n+2}.

Also, c and x_{n} cannot be in different copies of K_{n+3}, or in a copy of K_{n+3} and in the copy of K_{n+2} because the distance between x_{n} and c would be greater than n. We conclude that T is B_{n}-free.

Suppose that T is a subgraph of a B_{n} free graph G. By claim 1.3 we know that $\operatorname{deg}_{T}(v)=\operatorname{deg}_{G}(v)$ for all vertices v in the dead ends except those which are also in the copy of K_{n+2}. Suppose that for some vertex k_{i} in the copy of K_{n+2} there is an edge (k_{i}, y) in G which is not an edge of T. Label y as a. If $i=1$ or $i=n+2$ label l or r respectively as b. Label k_{i} as c. Label n of the remaining k_{i} as x_{1}, \ldots, x_{n}. Label the last remaining k_{i} as d. If this i is 1 or $n+1$ label l or r respectively as e. Otherwise label as e the vertex p_{n} in the dead end adjoined to k_{i}. This yields a copy of B_{n}.

For every $\epsilon \in{ }^{\omega} 2$ we construct a connected B_{n}-free graph G_{ϵ} as follows.
Let $T^{\epsilon}(m)$ for $m \in N$ and $\epsilon \in{ }^{\omega} 2$ be disjoint copies of a drive through. Let $l^{\epsilon}(m)$ and $r^{\epsilon}(m)$ be the left and right exits of $T^{\epsilon}(m)$. Let D^{ϵ} be a copy of D with vertices $k_{1}^{\epsilon}, \ldots, k_{n+3}^{\epsilon}=p_{0}^{\epsilon}, \ldots p_{n+1}^{\epsilon}$. Let $H^{\epsilon}(m)$ be a simple path of length $n-1+\epsilon(m)$ with vertices $h_{0}^{\epsilon}(m), \ldots, h_{n-1+\epsilon(m)}^{\epsilon}(m)$.

Adjoin D^{ϵ} to $l^{\epsilon}(0)$ by setting $p_{n+1}^{\epsilon}=l^{\epsilon}(0)$. Connect $r^{\epsilon}(m)$ to $l^{\epsilon}(M+1)$ by $H^{\epsilon}(m)$ by setting $r^{\epsilon}(m)=h^{\epsilon}(0)$ and $l^{\epsilon}(+1)=h_{n-1+\epsilon(m)}^{\epsilon}(m)$. (If $n=1$ then when $\epsilon(m)=0$ we identify $r^{\epsilon}(m)$ with $l^{\epsilon}(m+1)$.)

Let $G_{\epsilon}=D^{\epsilon} \cup \bigcup T^{\epsilon}(m) \cup \bigcup H^{\epsilon}(m)$.

Let us observe that all highways in G_{ϵ} are either of length $n+1$ or of length $n+2$. All highways that have an end of degree $n+3$ are of length $n+1$ except a unique highway the one containing $l^{\epsilon}(0)$ - which is of length $n+2$. Let us denote this highway by $H(\epsilon)$. 1.6 Claim: The graph G_{ϵ} is B_{n}-free and if G_{ϵ} is a subgraph of a $B_{\boldsymbol{n}}$-free graph G then the vertex degree of every vertex $v \in G_{\epsilon}$ in G_{ϵ} equals the degree of v in G.

Proof. : A similar argument to that in 1.5 shows that G_{ϵ} is B_{n}-free. Suppose now that $G_{\epsilon} \subseteq G$ and that G is B_{n}-free. By 1.5 we already know for $\operatorname{deg}_{G_{e}}(v)=\operatorname{deg}_{G}(v)$ for each
vertex $v \in T^{\epsilon}(m)$ except $l^{\epsilon}(m), r^{\epsilon}(m)$. If, however, $\operatorname{deg}_{G}(v)>\operatorname{deg}_{G_{\ell}}(v)$ when v is on one of the highways of G_{ϵ}, there must be some $y \in G \backslash G_{\epsilon}$ such that (v, y) is an edge of G and a copy of $B_{\boldsymbol{n}}$ is easily produced.
1.7 Corollary: For every $\epsilon \in{ }^{\omega} 2$ and every connected B_{n}-free graph G, if $G_{\epsilon} \subseteq G$ then $G_{\epsilon}=G$.

Proof. : Suppose that $y \in G \backslash G_{\epsilon}$. By connectedness of G we may assume that y is connected by an edge to a vertex of G_{ϵ}. This contradicts 1.6
1.8 Claim: If $\epsilon \neq \nu$ are two members of ${ }^{\omega} 2$ then G_{ϵ} and G_{ν} are not isomorphic.

Proof. : Suppose that $f: G_{\epsilon} \rightarrow G_{\nu}$ is an isomorphism. We show that $\epsilon=\nu$. Clearly, f maps every highway in G_{ϵ} onto some highway in G_{ν}.

The highway $H(\epsilon)$ has to be mapped by f onto $H(\nu)$, both being the unique highways in their respective graphs of length $n+2$ with an end of degree $n+3$. As $l^{\epsilon}(0)$ is connected by an edge to the end of $H(\epsilon)$ that has degree $n+2$, we conclude that $f\left(l^{\epsilon}(0)\right)=l^{\nu}(0)$. We argue by induction on m that $H^{\epsilon}(m)$ is mapped by f onto the $H^{\nu}(m)$ and that $f\left(l^{\epsilon}(m+1)\right)=l^{\nu}(m+1)$.

If $m=0$, we already showed that $f\left(l^{\epsilon}(0)\right)=l^{\nu}(0)$. Therefore $f\left(r^{\epsilon}(0)\right) \neq l^{\nu}(0)$. Also, $f\left(r^{\epsilon}(0)\right.$ cannot lie on any of the highways in $T^{\nu}(0)$ which are part of a dead end, because both ends of $H^{\epsilon}(0)$ have degree $n+2$. Therefore necessarily $f\left(r^{\epsilon}(0)\right)=r^{\nu}(0)$ and consequently $H^{\epsilon}(0)$ is mapped by f onto the $H^{\nu}(0)$, with $f\left(l^{\epsilon}(1)\right)=l^{\nu}(1)$.

Similarly, if f maps $H^{\epsilon}(m)$ onto $h^{\nu}(m)$ with $f\left(l^{\epsilon}(m+1)\right)=l^{\nu}(m+1)$, it follows that f maps $H^{\epsilon}(m+1)$ onto $h^{\nu}(m+1)$ with $f\left(l^{\epsilon}(m+2)\right)=l^{\nu}(m+2)$.

As for all m we have established that $n-1+\epsilon(m)=n-1+\nu(m)$, we have shown that $\epsilon=\nu$.
1.9 Theorem: There is no universal B_{n}-free graph. In fact, the weak complexity of the class of countable B_{n}-free graphs equals $2^{N_{0}}$.

Proof. Suppose that $\left\{G_{\alpha}: \alpha \in I\right\}$ is a collection of less than $2^{\aleph_{0}}$ many countable B_{n} free graphs. By splitting each graph to its connected components we assume that each G_{α} is connected. Suppose that for every $\epsilon \in{ }^{\omega} 2$ the graph G_{ϵ} constructed above is isomorphic
to a subgraph of G_{α} for some $\alpha \in I$. By corollary 1.7 and the assumption just made, each G_{ϵ} is isomorphic to G_{α} for some $\alpha \in I$. By the pigeon hole principle there is a single G_{α} which is isomorphic to uncountably many G_{ϵ}. This contradicts claim1.8

§2 Graphs without short cycles

In this section we show that the class of all graphs omitting all cycles of length at most $2 k(k \geq 2)$ has no countable universal element.
2.1 Definition: Let S_{k} be the following graph: For five vertices $\left\{x_{i}: i \in Z_{5}\right\}$ indexed cyclically connect x_{i} to x_{i+1} by a simple path $x_{i}, y_{i, 1} \ldots, y_{i, k-1}, x_{i+1}$.
2.2 Claim: If f_{1} and f_{2} are two embeddings of S_{k} into a graph G omitting all cycles of length at most $2 k(k \geq 2)$ and $f_{1}\left(x_{i}\right)=f_{2}\left(x_{i}\right)$ for $i \in Z_{5}$ then $f_{1}=f_{2}$.

Proof: : Suppose for simplicity that f_{1} is the inclusion, and suppose that $f_{2} \neq f_{1}$. Let i be the least such that among $\left\{y_{i, j}: j<k\right\}$ there is a vertex v for which $v \neq f_{2}(v)$ and let $j(0)$ be the least such that $y_{i, j} \neq f_{2}\left(y_{i, j(0)}\right)$. Let $j(1)$ be the the least $j>j(0)$ such that $x_{i, j(1)}=f_{2}\left(x_{i, j(1)}\right.$. Now $x_{i, j(0)-1}, x_{i, j(0)}, \ldots, x_{i, j(1)}, f_{2}\left(x_{i, j(0)}\right), \ldots, f_{2}\left(x_{i, j(1)-1}\right)$ forms a cycle of length $\leq 2 k$ in G, contrary to the assumption.

Let us define an infinite graph U by induction. For every natural m let $S(m)$ be a copy of S_{k} with vertices $x_{i}^{m}, y_{i, j}^{m}\left(i \in Z_{5}, 1 \leq j<k\right)$.

Let $U(0)=S(0)$. Suppose that $U(m)$ is defined and $S(m) \subseteq U(m)$. To obtain $U(m+1)$ adjoin freely $S(m+1)$ of to $S(m)$ by identifying x_{i}^{m+1} with with $y_{2 i,((k+1) / 2]}^{m}$. Let $U=\bigcup U(m)$
2.3 Claim: (i) The graph U contains no cycles of length $\leq 2 k$, and $\operatorname{deg}_{U}(v) \leq 3$ for all $v \in U$. (ii) If f_{1} and f_{2} are two embeddings of U into a graph G which contains no cycles of length at most $2 k$ and $f_{1}\left(x_{i}^{0}\right)=f_{2}\left(x_{i}^{0}\right)$ for $i \in Z_{5}$ then $f_{1}=f_{2}$.

Proof.: (i) is clear. Suppose that f_{1}, f_{2} are as stated. Using claim 2.2 inductively one sees that $f_{1}=f_{2}$

Let us choose, by induction on m, vertices v_{m} in U such that the distance in U between v_{m} and v_{m+1} is at least $2 k+1$. For every $\epsilon \in{ }^{\omega} 2$ let us construct a graph U_{ϵ} as follows:
let $u(m)$ be distinct vertices not in U. Connect $v(m)$ to $v(m+1)$ by an edge if $\epsilon(m)=1$ and connect $u(m)$ by edges to $v(m), v(m+1)$ otherwise. Let $U_{\epsilon}=U \cup\{u(m): m \in M\}$. It is not hard to verify that each U_{ϵ} omits all cycles of length at most $2 k$.
2.4 Theorem: For all $k \geq 2$ there is no universal countable graph in the class of all graphs omitting all cycles of length at most $2 k$. In fact, the weak complexity of the class of all such countable graphs is $2^{\aleph_{0}}$.

Proof: Suppose to the contrary that $\left\{G_{\alpha}: \alpha \in I\right\}$ is a set of countable graphs, each omitting all cycles of length at most $2 k$, with the property that every countable graph omitting all cycles of length at most $2 k$ is isomorphic to a subgraph of G_{α} for at least one $\alpha \in I$, and assume that $|I|<2^{\aleph_{0}}$. Fix an embedding f_{ϵ} of U_{ϵ} to some $G_{\alpha(\epsilon)}$. By the pigeon hole principle there is a single $\alpha \in I$ which equals $\alpha(\epsilon)$ for all $\epsilon \in A$ for some uncountable set $A \subseteq{ }^{\omega}{ }^{2}$. For each $\epsilon \in A$ let $\eta(\epsilon)=\left\langle f_{\epsilon}\left(x_{i}^{0}\right): i \in Z_{5}\right\rangle$. As there are only countably many finite sequences of vertices in G_{α}, there are different $\epsilon, \nu \in A$ with $\eta(\epsilon)=\eta(\nu)$. But then it follows by claim 2.3 that $f_{\epsilon} \mid U=f_{\nu} \upharpoonright U$. Let m be such that $\epsilon(m) \neq \nu(m)$. The vertices $f_{\epsilon}(v(m)), f_{\epsilon}(u(m)), f_{\epsilon}(v(m+1))$ span a copy of C_{3} in G_{α}, contrary to the assumption that G_{α} contains no cycles of length at most $2 k$.

References

[CK] G. Cherlin and P. Komjáth, There is No Universal Countable Pentagon-Free graph, Journal of Graph Theory 18 (4) (1994) 337-341
[KP] Peter Komjáth and János Pach, Universal elements and the complexity of certain classes of infinite graphs, Discrete Mathematics 95 (1991) 255-270
[KP1] P. Komjáth and J. Pach, The complexity of a class of infinite graphs, Cominalorica 14(1) (1994) 121-125
[KMP] P. Komjáth, A. Mekler and J. Pach, Some Universal Graphs, Israel Journal of Mathematics 64 (1988) 158-168

