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1. The Statement of the Condition.

Suppose that the linear constraint set

ijXj + A,n+i > 0, i = 1,..., m (1.1)

is in canonical form. That is,

A j = £;;, * = l , . . . , n + l , j = l, . . . ,n. (1.2)

The author proved in [1] that the polyhedron formed by the coordinate constraints Xj > 0, j =
1,..., n and the fcth , k > n is empty when Akj < 0 for all j = 1,..., n + 1 and contains a redundant
constraint when the set {.4*1, ...,-4fcn>.4fcm+i } consists only or non-negative elements or Ak,n+i < 0
and Akj > 0 for exactly one j < n.

In this note we shall use the above stated condition to obtain the result indicated by the title
by obtaining explicit formulas for the coefficients in the constraints when the constraints

*i,...,fcr, ki >r + l, r <n (1.3)

have been interchanged with the constraints

/ i , . . . , / r , 4 < n , (1.4)

in the order A;t,̂ t-, i = 1,..., r and the constraint set is returned to canonical form at each step. In
order to state the formulas, we denote by

f*(iu->ia'-ju-<>j*) (1.5)



the minor determinant of Aij, * = m + 1, ...,m, j = 1, ...,n indexed by the rows »i,..., in and the
columns ji,...,jr- Then, with A^ representing the original matrix and A\j the matrix after the
constraints indexed by k\, ...,kr have replaced those indexed by £, ...,lT,

KT = {*i,...,fcr>,AC; = [ l , m ] - I C r , £r = {£i,...,lr},C'r = [l,n+ !]-£;,
(1.6)

Dr = fr(ku...,ki:li,...,tr)

we have the formulas for * € K'T,

Arij = fr+l (*i,..., *V, « : ll,...,trJ)/Dr> j € /£ , (1.7)

^ = (-l)r-ifr(ku...,kj-Ukj+1,...,kr,i:l1,...,lr)/Dr, tj € £r, (1.8)

and for k{ € /Cr,

Ar
kJ = (-l)r+1-7r (*l,...,*r :lu...,li-l,li+U...,trJ)/Dr, j € 4 , (1.9)

+ ^ 6 ^ . (1.10)
Before stating the condition for redundant constraints or empty sets, we shall prove the following

theorem.

Theorem 1.1. The formulas (1.7) - (1*10) are invariant under permutation of fcj,..., fcr or / j , . . . ,/ r

in the sense tAe sign of either (1.7) (1.8) or (1.9), (1*10) for fixed i and j = 1,..., n + 1 are invariant.
This makes it possible to state the condition for empty sets or redundant constraints using only
the pair (1.7), (1.8) in the order r = 1,2,..., n.

Proof. First let us note that we may assume that the fc's and /'s are in increasing order. This
follows from the fact that when fci,..., kn are permutations of the same set, then
A?i,..., Jbj-i, &j+i, ...kr,j = 1,..., n are merely written down in a different order.

To prove this by induction, let a == (&i,..., kr) and aj = (fci,..., fcj-i, fcj+i,..., fcr) and suppose
that the largest element y of a is indexed by £. Then after interchanging the y with the last elements
of a and o$, j £ / , the sign of the ratio <Tj/a is retained when j < t, changes when j > i and is
multiplied by (—l) r - / when j = £. Hence by moving the £ih ratio to the end of the list and
decreasing the order of those, indexed by fc, £ + 1 < fc < r, we obtain a valid induction proof.
Similarly for the Vs. D

Theorem 1.2. In applying the empty set or redundant constraint test, it is sufficient to scan (1-7),
(1.8) for all permutation (k\9 ...,fcr) &nd (£\, ...,£r) in increasing order ofr.



Proof. In proceeding from r to r +1 we interchange the constraints indexed by fcr+i and lr+\. A
simple computation shows that in an (n + 1) constraint set in canonical form, an interchange of the
(n + l)8t constraint with a basic constraint can't change the sign test indicating an empty set or
redundant constraint. But, by Theorem 1.1, we may assume that any hi and l{ were interchanged.

2. The Recursion Formula.

Assuming that we have computed the matrix A\j, the matrix A]*1 is obtained by interchanging
the constraints indexed by fcr+i,£r+i and updating the matrix as in [1]. The result is

£lMl l + l A + 1 (2-1)

• ^ J = " ^ U j M U . MI ' 3 * **» (2-2)
and for i ^ fcr+i,

^ (2-3)

= A\i ^ , j f 4 + i • (2.4)

Note, in particular, that (2.4) is the ratio of a 2 x 2 minor and a 1 x 1 minor and when r = 0, it
agrees with (1.10). Also, when r = 0, (2.2), (2.3) agree with (1.8) (1.9). In order to make (2.1)
agree with (1.6) we make the convention /o = 1. Before proving the general result, we shall develop
some lemmas on determinants.

3. Some Lemmas on Determinants.

Let us use the usual convention that Bij is the co-factor of 6tj. Then our first and main lemma is:

Lemma 3.1. Let B = (bij) be a k x k matrix and let C be the (k - 1) x (k - 1) matrix

0 = ^ - ^ ) , l<i, j<k-l. (3.1)

Tien
det C = det B/bkk. (3.2)



Proof. Define:
<p(e) = det (bij - e bitkbkj) , 1 < •', j < * - 1. (3.3)

Now we use the fact that the derivative of a determinant is the sum of the determinants obtained
by differentiating one row of the matrix. When we differentiate the i th row of C, the new i th row is

- 6«*(6*i,6*2,-,6*,*-i). (3.4)

D
If we interchange this row with each of those indexed by i + 1,..., k - 1, we have the matrix

obtained by deleting the i th row from the first k columns of B. Hence, when we take the determinant,
we obtain

bikBik. (3.5)

It follows that

(3.6)

When we differentiate twice we obtain a sum of determinants of matrices having two rows equal.
Hence <p"(e) = 0 so <pW(c) = 0 for j > 2.

Since <p(0) = Bkk we then have

(3.7)
t=i

Putting e = 1/Bkk gives (3.2).
The recursion formula (2.4) with i > fcr+i> j > A-+1 can be rewritten

where the numerator is the determinant of the 2 x 2 matrix indexed by /i = fcr+i, i and v = / r + i j
and is, in fact, just the Lemma 3.1 with k = 2 after a change of indices. More generally, we can
use Lemma 3.1 to prove inductively that, for 1 < p < r + 1,

det ( A ) A I

where the numerator is the determinant of the (/> + l )x (^ + l)matrix indexed by fi = kr+2-p, —,
and i/ = lr+\-pj . . . ,£ r + i , j . In particular, when p = r + 1, (3.9) reduces, in view of (1.5), to



for any t € /Cr+i, j € £'r+1. In particular,

or

Since this is true for each r, we have proved (1.7) with i /C(.+1, j € £'r+i as a consequence of (3.10)
and (3.11) with r replaced by r — 1.

By eliminating A?*1 between (3.9), (3.10), setting i = fcr+2,j = ^r+2, and using 1.6 for Afi1"*,
we obtain the interesting identity

(3.13)

with n and v ranging over the indices fcr+2-p> •••> *V+2 and £r+2-p? —»'r+2- The main use we make
of this identity is:

Theorem 3.2. Consider the identity (3.13) with p = 1. If three of the four minors comprising the
determinant on the right have sign opposite the fourth then
Dr 7̂  0 and the sign of /r+2 is determined by the identity.

We shall also need the following identity

/ +i (fci k +i : l\ U-\ t{+\ t )fr(ki kr \ l{ ...I )

f fK b • / , / • , / • . , / i*̂  — n

If we suppress the dependence on fci, ...,fcr_i and ^i, ...,^r_i, the left side of (3.14) is the 3 x 3
determinant of the matrix with rows indexed by (fci, fci, fc2) and column indexed by lrytr+i,j. Since
the first two rows are equal the determinant is zero.

By eliminating A}** between (3.9), (3.10), setting t = fcr+2, j = £r+2, and using 1.6 for AT^l'p,
we obtain the interesting identity

/r+2 (fcl» —» *V+2
(3.15)

= det (/r+2-p (̂ 11

with fjL and 1/ ranging over the indices fcr+2-p, —»̂ r+2 and 4+2-p, —,̂ r+2- The main use we make
of this identity is:



Theorem 3.3. Consider the identity (3.13) with p = 1. If three of the four minors comprising
the determinant on the right hand sign opposite the fourth then Dr ^ 0 and the sign of fr+2 is
determined by the identity.

We shall also need the following identity

/ r + l (."'l* •••» " T + 1 • ̂ 1? ••• ,*

~~ yy-j-i V 1> *••' r + l • "̂ l > ••«,•*'

If we suppress the dependence on &i,..., fcr-i and / i , . . . , / r- i j the left side of (3.14) is the 3 x 3
determinant of the matrix with rows indexed by (*,-, &i, fc2) and columns indexed by / r , 4 + i , i - Since
the first two rows are equal the determinant is zero.

4. Completion of the Proofs of the Identities.

We now have the main tools sufficient for the proofs of (1.7),...,(1.10) by induction. Note that we
have proved (1.7) for all r and i £ KT, j £ £ r , the proofs of the cases (1.8), (1.9), (1.10). Hence,
we may use i = Arr+i> j = 4-+1 in (1.7) to express (2.1) as

This is the promoted version of (1.10) with i = r + 1, j = r + 1. By putting i = Arr+i, j
into (1.7) and substituting (4.1) into (1.10), we obtain

/ r+l

which is the formula (1.9) corresponding to the pair Arr+ij with j ^ £ r . It follows from (2.4) that
for ki e Kr, j £ £ r+i.

Ar Ar
j r A:t/r^i fc

After substituting (1.7) and (1.9), and setting the result equal to (1.9) with r replaced by r + 1 , we
obtain the identity (3.14). This completes the proof of the remaining cases in (1.9). The proof of
the promoted version of (1.8) is isomorphic.



There remains the case indexed by k> € KT and tj € Cr. We obtain from (2.4), (1.8), (1.9),
(1.10) and (3.11) with r replaced by r — 1 into (4.4), we obtain

(4.4)
/r (&!>—i^r * ^lr»> A' - l^t>b "M<r-i) / r (fcj, fc,-i, fci-fi, «.., fcj-i : l l , . . . , l r +l) *»

We now apply (3.13) in the form

—/r (*l»—»

After substituting (4.5) into (4.4), we have the promoted version of (1.10) for fct € /Ct, £j G
Since the case of fcr+i C /Cr+i, 'r+i € £r+i has already been disposed of, the proof is complete.

5. Duplications of Constraints.

The formulas (1.7) - (1.10) are derived under the assumption that the sets (fci,..., kr) and (jtif ...,'r)
are distinct. In particular the '̂s are a subset of ( l , . . . ,n) so we must have r < n. On the other
hand, it follows from the recursion formulas (2.1) - (2.4) that we may, at any time, start over with
a new matrix and continue until there is a duplication in either the fc's or the £'s. In this section
we resolve the question of such a duplication in the second step.

The new matrix coefficients, after interchanging the ith nonbasic constraint with the Ith basic
constraint and then returning to reduced echelon form by the use of elementary column operations,
are

A'u = I / A / (5.1)

Aij = - A i j l A i t i i ± l (5.2)

and for k ^ i,
At = Mil An, (5.3)

A'kj = Akj ~ Aiu An/An, j # L (5.4)

Now let us interchange the new kih constraint with the Ith basic constraint. By analogy with
(5.1), (5.2) the coefficients for the new kih constraint are

Alt = 1/4 (5.5)



and

At; = Ail At, j # /. (5.6)
After substituting from (5.1) - (5.4) there becomes

A'it = Au/Akt (5.7)

and

A'kj = Aij - An Akj/Akt, j ± L (5.8)

These are just the parameters obtained after interchanging the t th constraint with the £th and
returning to reduced echelon form. But they are in the position of the kih. The new coefficients
for the i th constraint are

A'U = Ail At, (5.9)

A% = Ai - At AjlA'u, j ± I. (5.10)
Again, after substituting from (5.1) - (5.4) and taking into account cancellations, there become

A'U = 1/Au, (5.11)

A^ =-Aki I A'M, j*t. (5.12)

They are the coefficients for the fcth constraint after interchanging the A:th constraint with the £th,
and they are in the position of the i th.

For r ^ k or i, r > n, the new coefficients for the r th constraint are

(5.13)

Aj = A'rj - At Ai I At, j ? £ (5.14)

After substituting from (5.1) - (5.4), these become

A!t = Art/Aki, (5.15)

A r j = A r j - A r t A r j / A k i , j £ l (5.16)

which are just the coefficient obtained after interchanging the r th constraint with the V^ in the
original matrix. This together with the remarks following (5.8) and (5.12) yields a proof of the
following theorem.

Theorem 5.1. Interchanging the iih non-basic constraint with the £th, updating and then inter-
changing the kih and updating is equivalent to merely interchanging the kth with the ltYi in the
original matrix, updating and then interchanging the tth and kih.



Now let us determine the effect of interchanging one non-basic constraint with two different
basic constraints. If after obtaining the formulas (5.1) - (5.4), we interchange the i th constraint
with the 9th basic constraint, q ^ t, the new parameter for the i th constraint are

(5-17)

q, (5.18)

and
q,l. (5.19)

The formulas (5.17) - (5.19), after substituting from (5.1) - (5.4) are just the formulas obtained
after interchanging the i th with the qih in the original matrix. For k ^ g,

MLq = A'kqf A'iq (5.20)

A'kt = A'kt-A'kqA'itIA'iq (5.21)

and
A'kj = A'kj - A'kq A'^IA'^ j # g,t. (5.22)

Again, after substituting from (5.1) - (5.4), these are just the formula for the fcth constraint after
interchanging the fcth with the qth in the original matrix.

Theorem 5.2. If we interchange the ith non-basic constraint with the Ith basic constraint, update
and then interchange the new iih constraint with the gth, q ^ i, and update, this is equivalent to
merely interchanging the i th with the gth and updating.

References

[1] Dantzig, G., Linear Programming and Extension, Princeton University Press.

[2] Pederson, R. N., Another Look at the Simplex Method in Linear Programming, Carnegie Mellon
University Tehnical Report, 94-168 (Submitted for publication).

[3] Strang, G., Linear Algebra and Its Applications, Harcourt, Bruce, and Jovanovich, 1988.



MAR 1 0 200*
gie Mellon Un

3 SM62 01375 fi«4b7


