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1. The Statement of the Condition.

Suppose that the linear constraint set

Y Aizi+ A 20, i=1,.,m (1.1)
J=1
is in canonical form. That is,
Aij =6, i=1,..,n+1, j=1,.,n (1.2)

The author proved in [1] that the polyhedron formed by the coordinate constraints z; > 0, j =
1,...,n and the k" | k > n is empty when A;; < Oforall j = 1,...,n+ 1 and contains a redundant
constraint when the set {Ax1, ..., Akn, Ak,n+1 } consists only or non-negative elements or Ag 41 < 0
and Ax; > 0 for exactly one j < n.

In this note we shall use the above stated condition to obtain the result indicated by the title
by obtaining explicit formulas for the coefficients in the constraints when the constraints

kla'"’ kr, ki >r+ I, r<n (1-3)
have been interchanged with the constraints
lly""tr’ ¢; <n, (1.4)

in the order k;,¢;, ¢ = 1,...,r and the constraint set is returned to canonical form at each step. In
order to state the formulas, we denote by

fo (315 s 90 2 1, 000y Jo) (1.5)




the minor determinant of A;;, i = m + 1,...,m, j = 1,...,n indexed by the rows iy, ..., i, and the
columns ji,...,jr. Then, with .A?j representing the original matrix and A7; the matrix after the
constraints indexed by ky, ..., k, have replaced those indexed by ¢, ..., ¢,,

K. = {ky b}, KL =[1,m] - Ky, £, = {ly,...., 4}, £} = [1,n+1] - L;,

(1.6)
D, = fi(k1,.skizly,....4,)
we have the formulas for i € K/,
'A:J = fr+1 (kla sty kn t: ll, "'9£T7j)/D1'1 ] € ‘C:-a (17)
ALy = (1) fr (k1y s kjm1y Kjg1ys ooy Ky 2 £, ey £) [ Dy, £ € Ly, (1.8)
and for k; € K,,
'A;,j = (_1)r+1_‘-fr (kly "'9kr : [19 ""li—l’ei-l—l’ ""lraj)/Dr’ ] € C:ﬂ (19)

,A,r:.,,[j = (—l)i+jf,_1 (k1yeers ki1, K41y eoen br 2 by oliqy ity o0 €y) /Dy £ € L, (1.10)

Before stating the condition for redundant constraints or empty sets, we shall prove the following
theorem.

Theorem 1.1. The formulas (1.7) - (1.10) are invariant under permutation of k,, ..., k, or £y, ..., £,
in the sense the sign of either (1.7) (1.8) or (1.9), (1.10) for fixed i and j = 1,...,n+ 1 are invariant.
This makes it possible to state the condition for empty sets or redundant constraints using only
the pair (1.7), (1.8) in the order r = 1,2, ...,n.

Proof. First let us note that we may assume that the k’s and I’s are in increasing order. This
follows from the fact that when k;, ..., k, are permutations of the same set, then
k1., kj—1,kj41,-.kr, j = 1,...,n are merely written down in a different order.

To prove this by induction, let 0 == (ky, ..., k,) and o; = (ki1,...,kj-1,kj+1, ..., k,) and suppose
that the largest element y of o is indexed by £. Then after interchanging the y with the last elements
of o and 0j,j # £, the sign of the ratio o;/0 is retained when j < £, changes when j > £ and is
multiplied by (—=1)""¢ when j = £. Hence by moving the £'* ratio to the end of the list and
decreasing the order of those. indexed by k,£+ 1 < k < r, we obtain a valid induction proof.
Similarly for the I’s. O

Theorem 1.2. In applying the empty set or redundant constraint test, it is sufficient to scan (1.7),
(1.8) for all permutation (ky, ..., k,) and (¢, ...,£;) in increasing order of r.



Proof. In proceeding from r to r+1 we interchange the constraints indexed by k41 and £,41. A
simple computation shows that in an (n + 1) constraint set in canonical form, an interchange of the
(n+ 1)* constraint with a basic constraint can’t change the sign test indicating an empty set or
redundant constraint. But, by Theorem 1.1, we may assume that any h; and ¢; were interchanged.

2. The Recursion Formula.

Assuming that we have computed the matrix AJ;, the matrix A7}! is obtained by interchanging

the constraints indexed by k,41,%,4+1 and updating the matrix as in [1]. The result is

1 —
Altl-l,lr-i-l - I/Azrn,lrﬂ (2'1)
A;:.-}ll WJ =- 2"4‘1 vj/'Azr-fl -lr+1 ’ j # £7+1 (2'2)
and for ¢ # k,41,
::Irl-l-l = A:vlr-bl /‘Azr-l»l rg1? (23)
AT P Az .
= —rrdl  Trdly) g
A = A - =8, G h. (2.4)
kr4148r41

Note, in particular, that (2.4) is the ratio of a 2 X 2 minor and a 1 X 1 minor and when r = 0, it
agrees with (1.10). Also, when r = 0, (2.2), (2.3) agree with (1.8) (1.9). In order to make (2.1)
agree with (1.6) we make the convention fo = 1. Before proving the general result, we shall develop
some lemmas on determinants.

3. Some Lemmas on Determinants.
Let us use the usual convention that B;; is the co-factor of b;;. Then our first and main lemma is:

Lemma 3.1. Let B = (b;;) be a k X k matrix and let C be the (k — 1) X (k — 1) matrix

b; kbkj) ..
= Py Lk A < <k-1.
C (b., b ) 1<1, 7<k-1 (3.1)
Then
det C = det B/b. (3.2)



Proof. Define:
¢(€) = det (bij — €bixbij), 1<i,j<k-1. (3.3)
Now we use the fact that the derivative of a determinant is the sum of the determinants obtained
by differentiating one row of the matrix. When we differentiate the i*h row of C, the new i*h row is

= bik (bk1, bk2y ooy Ok k—1) . (34)

a
If we interchange this row with each of those indexed by i + 1,...,k — 1, we have the matrix
obtained by deleting the i*h row from the first k columns of B. Hence, when we take the determinant,
we obtain

bikBik.- (3.5)

It follows that -
¢'(0) =) bikBi. (3.6)

=1

When we differentiate twice we obtain a sum of determinants of matrices having two rows equal.
Hence ¢"(€) = 0 so ) (e) = 0 for j > 2.
Since ¢(0) = Bix we then have

k-1
p(€) = Bk + € Y bixBix. 3.7
=1
Putting € = 1/B gives (3.2).
The recursion formula (2.4) with ¢ > k,43, j > €431 can be rewritten

r
det (.A “,,) )
T
kr41,dri1

At = (3.8)
where the numerator is the determinant of the 2 X 2 matrix indexed by u = k, 41,7 and v = 4,4, ;
and is, in fact, just the Lemma 3.1 with £ = 2 after a change of indices. More generally, we can
use Lemma 3.1 to prove inductively that,for 1 <p<r+1,

det (43217) .,
r4+1 __ P
A} =~ - (3.9)
kr42—pilr42-p"""" "kr41:lr41

where the numerator is the determinant of the (p + 1)x(p + 1)matrixindexed by g = ky 425, ..., kr41,1
and v = £, 41-p, ...y €r41, 7. In particular, when p = r 4+ 1, (3.9) reduces, in view of (1.5), to

A:;H - Sraz2 (K1 oskran, $: 81y brg1, 7) (3.10)

r r-1 0
A iritrir Akt Ak 1y

lr+1

4



for any ¢ € K,41, j € L},,;. In particular,
Dr+2

_AZ‘H loan = (3.11)
T2 kr41,r4a Agl N2
or
D;y2 = ‘Akx ll'Ak2yl2 Akr+2ylr+2 (3.12)

Since this is true for each r, we have proved (1.7) with ¢ K/ ,;, j € £}, as a consequence of (3.10)
and (3.11) with r replaced by r — 1.

By eliminating A[}! between (3.9), (3.10), setting i = kr42,; = £r42, and using 1.6 for Artl-e,
we obtain the interesting identity

fr+2 (kl ) ‘r+2 el’ r+2) (Df+1—P)p
(3.13)
= det (fr+2 —-p (kl'; r+l—p’ B by, £r+l—pa V))p+1

with # and v ranging over the indices ky42-p, ..., kr42 and €,42_,, ..., €, 2. The main use we make
of this identity is:

Theorem 3.2. Consider the identity (3.13) with p = 1. If three of the four minors comprising the
determinant on the right have sign opposite the fourth then
D, # 0 and the sign of f,42 is determined by the identity.

We shall also need the following identity
fr+1 (klv r+l tli ei—lyei-i—l’ '"’er )fr (kla eeey kr : tl" ---er)

= frar(kry s ke i lay ey €y 5) fr (R1y ey br 2 by ey iy iy ey € 41) (3.14)

+ frn (kl, cor bt 200y ey brga) fr (R e 2 1y it iy e £,5) = O

If we suppress the dependence on ki, ...,k,—1 and £y, ...,£,_1, the left side of (3.14) is the 3 x 3
determinant of the matrix with rows indexed by (k;, k1, k2) and column indexed by £,,£,,,, j. Since
the first two rows are equal the determinant is zero.

By eliminating A} between (3.9), (3.10), setting i = k42, j = €42, and using 1.6 for AJ}1-,
we obtain the interesting identity

fr+2 (k], r+2 tl; r+2) (Dr+l—p)p
(3.15)
= det (fr+2—p (kly r+l-pa pby,.. er+1—p’ “))p.’.]

with u and v ranging over the indices k;42_p,..., kr42 and £, 42—, ..., €r42. The main use we make
of this identity is:



Theorem 3.3. Consider the identity (3.13) with p = 1. If three of the four minors comprising
the determinant on the right hand sign opposite the fourth then D, # 0 and the sign of f,42 is
determined by the identity.

We shall also need the following identity
fr+l (kls r+l ela ei-l,li-{rl’"')tr’j)fr (kl’---y icr : ei’ L) er)
= frar(kry s kegr s by ey €0y 5) fr (Kyy onkr 2 4, 8))

S (Y (PR TR JUNNY ATDY [ A (ST S Y U SIS DT Ay )

If we suppress the dependence on ki, ...,k,_; and £, ...,4,_;, the left side of (3.14) is the 3 x 3
determinant of the matrix with rows indexed by (k;, k1, ¥2) and columns indexed by £,,£,,,, j. Since
the first two rows are equal the determinant is zero.

4. Completion of the Proofs of the Identities.

We now have the main tools sufficient for the proofs of (1.7),...,(1.10) by induction. Note that we
have proved (1.7) for all r and ¢ ¢ K., j ¢ L,, the proofs of the cases (1.8), (1.9), (1.10). Hence,
we may use ¢ = k41, j = £r41 in (1.7) to express (2.1) as

41 - fr (kl’-"a kr :gla'"’er)
'Akr+1 Leg1 — Dr+l . (4'1)

This is the promoted version of (1.10) with ¢ = r+ 1, j = r + 1. By putting i = k41, j € Lop
into (1.7) and substituting (4.1) into (1.10), we obtain

A;:_ll ;= - fr+1 (kl, g—l f], r’j) (42)

which is the formula (1.9) corresponding to the pair k.4 ; with j ¢ L,. It follows from (2.4) that

fork; € K,, j ¢ Lysa.
r+1 Akn‘r lAkr 1)
'A k.,J _—i_'j_ (43)
kr+1 Lr41
After substituting (1.7) and (1.9), and setting the result equal to (1.9) with r replaced by r + 1, we
obtain the identity (3.14). This completes the proof of the remaining cases in (1.9). The proof of

the promoted version of (1.8) is isomorphic.



There remains the case indexed by k; € K, and £; € L,. We obtain from (2.4), (1.8), (1.9),
(1.10) and (3.11) with r replaced by r — 1 into (4.4), we obtain

—1)+s
2:‘:]1’ = ‘(_ID)_ {fr—l (kl7 7 3—1 s+l’ oo kr : lla seey ti—l,ti-}-ly -»ytr)

(4.4)
+ fr (klv'",k‘r : lla---,‘t—lytt-{-ly r—l)fr (k19 t—l,ki+l,"'7 kl'—l : £1a~--1£r+l)}
fr+1 (kh r+1 ll, r+1)
We now apply (3.13) in the form
fra1 (k1 eeorkrgr s Oy ey begr) froa (Rry s Kjmay Kjns cons ke 2y ey by biy oo Ey)
= fr(kiy e kjm1s K41y oes K1 2 €1y ey bimry bigry 1) fr (RKayoos br 2 6y oy €y) (4.5)

_fr (kh J—l’ kj+l, eeey kr+l : ll’ seey zr) fr (kh ) k,: lh '"’li—l,li-f-l, ---,lr) .

After substituting (4.5) into (4.4), we have the promoted version of (1.10) for k; € K;, {; € L;.
Since the case of k.41 C Kr41,€r41 € Lr41 has already been disposed of, the proof is complete.

5. Duplications of Constraints.

The formulas (1.7) - (1.10) are derived under the assumption that the sets (ky, ..., k;) and (¢4, ..., ;)
are distinct. In particular the £’s are a subset of (1,...,n) so we must have r < n. On the other
hand, it follows from the recursion formulas (2.1) - (2.4) that we may, at any time, start over with
a new matrix and continue until there is a duplication in either the k’s or the £’s. In this section
we resolve the question of such a duplication in the second step.

The new matrix coefficients, after interchanging the i*® nonbasic constraint with the £t® basic
constraint and then returning to reduced echelon form by the use of elementary column operations,
are

Al =1/Ai (5.1)
Aij = —Aij[Aie, 5#1L (5.2)
and for k # 1,
Ake = Are/ Ai, (5.3)
ki = Aki — Akt Aij[Aie, J# L (5.4)

Now let us interchange the new k! constraint with the £*! basic constraint. By analogy with
(5.1), (5.2) the coefficients for the new k* constraint are

Afle = 1/ Al (5.5)



and

Al = Ayi[Akes §# L. (5.6)
After substituting from (5.1) - (5.4) there becomes
Aile = Aie/ Ak (5.7)
and
Azj = Aij — Air Axj/Ake, 7 # L. (5.8)

These are just the parameters obtained after interchanging the i*® constraint with the £*h and
returning to reduced echelon form. But they are in the position of the kt*. The new coefficients
for the ith constraint are

Alp = Aje/ At (5.9)
Ay = Alj — Alg Akl Akes §# L. (5.10)
Again, after substituting from (5.1) - (5.4) and taking into account cancellations, there become
it = 1/ Axe, (5.11)
Al = —Axj [ Ay 5 # L (5.12)

They are the coefficients for the k*h constraint after interchanging the k*! constraint with the £t
and they are in the position of the ith,
For r# k or i, r > n, the new coefficients for the rth constraint are

Afe = Ake [ Akt (5.13)
Al = ALy = AL Al [ Aoy T# L (5.14)
After substituting from (5.1) - (5.4), these become
Al = Are [ Aey (5.15)
Al = Arj— At Arj [ Ake, J# L (5.16)

which are just the coefficient obtained after interchanging the r*h constraint with the £® in the
original matrix. This together with the remarks following (5.8) and (5.12) yields a proof of the
following theorem.

Theorem 5.1. Interchanging the i** non-basic constraint with the £, updating and then inter-
changing the k** and updating is equivalent to merely interchanging the k** with the £t in the
original matrix, updating and then interchanging the ith and k*®.



Now let us determine the effect of interchanging one non-basic constraint with two different
basic constraints. If after obtaining the formulas (5.1) - (5.4), we interchange the i*P constraint
with the g¢'h basic constraint, g # i, the new parameter for the it® constraint are

.A(’q =1/ A, (5.17)
o= —Al Al (5.18)

and
'A;j = _'A:'j /'A:'q’ J # g,L. (519)

The formulas (5.17) - (5.19), after substituting from (5.1) - (5.4) are just the formulas obtained
after interchanging the ith with the ¢t! in the original matrix. For k # g,

,A;c'q = iq / _A:q (5.20)
Ak = Ape — Apy Al [ Al (5.21)

and
;ej = -A;c;, - ;cq 'A:] /A£q1 Jj# gL (5.22)

Again, after substituting from (5.1) - (5.4), these are just the formula for the k*! constraint after
interchanging the k*® with the ¢*? in the original matrix.

Theorem 5.2. If we interchange the i*h non-basic constraint with the £** basic constraint, update
and then interchange the new i*! constraint with the ¢*t, ¢ # i, and update, this is equivalent to
merely interchanging the i*! with the ¢*® and updating.
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