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1 Introduction
The purpose of this paper is to make some remarks on a model problem
in the scattering by obstacles. We have a bounded region in which a non-
dissipative hyperbolic equation holds. In the (infinite) exterior a different
non-dissipative hyperbolic equation holds. The effect of the infinite exterior
is to introduce a dissipation effect and it is this aspect we wish to pursue.

The results are different in two or three dimensions. We treat a two
dimensional case since two dimensionality produces serious technical diffi-
culties and we want to explore these. At the end of the section we indicate
what happens in three dimensions. The specific problem considered is the
following. Let ft be a bounded region in the plane, with boundary F and let
ft+ = ftc. Let p and fi be positive functions in ft and r a positive function
on F. We put Lu : div(fi grad u) and consider the problem;

puu = Lu + h in ft, utt = Au in ft+,for t > 0

u(M) = ti«(s,0) = 0 in R2 P(f,9,h)

tt" = tt+ + / , |iti- = r(//+ + g) on T t > 0.

Here f,g and h are given, n is the normal to F and the plus and minus signs
denote limits from ft+ and ft.

For simplicity we will assume throughout that r is a constant.
The above problem arises in the scattering of anti-plane elastic waves,

in an infinite homogeneous medium, by an inhomogeneous cylinder [(2)].
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It also arises in the scattering of tranverse magnetic waves by dielectric
cylinders ([9]).

Our goal is to investigate what happens to the solution when /, g and h
tend to steady states /oo>#oo>̂ oo as t tends to infinity. We would call the
system dissipative if u then tends to a steady state u^. For purposes of
comparison let us consider the interior Dirichlet and Neumann problems:

putt = Lu + h in ft u(xy 0) = ut{x, 0) = 0 in ft
(i-i)

u = / or fiun = rg on T

If / ,p , h —* /co,#00> ̂ 00? and there were a steady state, Woo, one would expect
it to solve the problems,

LUQO + /loo = 0 in ft , u^ = /oo or ^ 1 ^ n = T9oo on T (1-2)

The (Dirichlet) problem (1.2) will always have a solution but it is not
true (in general) that it will be the limit of the solution of the (Dirichlet)
problem (1.1). We observe that the (Neumann) problem (1.2) will have a
solution if and only if the quantity,

= T f 9oo+ //loo (1.3)
Jr Jn

is zero. Moreover even if one has a solution it is not unique. The methods
of [6] can be used to show that (formally) the solution of the (Neumann)
problem (1.1) satisfies an estimate of the form u(xjt) —» cZ(<7oo, h^t + 0(1)
as t —> oo. Thus the problems (1.1) are certainly not dissipative.

The standard approach to asymptotic stability questions is to Laplace
transform the problem. If [/, JF,G and H are the transforms of w, f,g and h
we obtain the reduced problem:

p2pU = LU + H in ft, p2U = AU in ft+
PV{F,G,H).

- = T(U+ + G) on T

Here p is complex, with Re p > 0, and U —> 0 as |x| —• oo. Assume
that f(xyt) = foo(x) + ff(x9t) where /(&,•) £ ^(0,00). Then F(x,p) =
/oo(^)^"1 + F(x,p) with Z1 continuous in Re p > 0. We suppose similar
decompositions hold for g and h. Then one seeks the solution of Pp in the



form U(x,p) = Uoo(x)p'1 + U and expects Uoo to satisfy,

LUoo + Uoo = 0 in £2, A t ^ = 0 in ft+,

^ = ^ i + /oo , Ai^,n = r C E ^ + (7oo) on r

Then one expects the solution of P( / ,5 , h) to tend to Uoo(x) as tf —• oo. We
are warned that there may be trouble with the above idea by the fact that
Po lacks uniqueness. Indeed any constant is a solution of the homogeneous
problem.

The plan of the paper is as follows. We will treat Pp completely, within
the framework of generalized solutions. In section two we review a varia-
tional procedure from [2] and in section three we use it to obtain an estimate
for the solution Up of Pp for p small, under the assumption that F, G and H
are independent of p. The result is that,

Up = Z(G, H)(logp + 7 ) + Uo(F, G, H) + 0(p2(logp)2) (1.4)

Here Z is as in (1.3), 7 is a constant and Uo(F,G,H) is a special solution
of Po(F, Gj H). In section four we give a formal analysis of what we believe
are the implications of (1.4) for time decay. We assume that

/ (* , t) = /oo(x) + /(x, t), g(x91) = 9oo{x) + g(xy *), h{x,t) = hco^x) + h(z, t)

where fyg and h are in £i(0,oo) with respect to t. Our formal asymptotic
results are that the solution up of P(/,5,/i) satisfies,

tipOM) = Z(g00jh00)log2t+Uo(foo,goo,h00)+Z(G,S)x(t)+0(t'-2logt) as t -> 00
(1.5)

Here x(*) = 0 for t < £,x(<) = ^"1 f o r * > 2 a n d G > H a r e 6 i v e n b>"

G(x)= [°°g(x,t)dt,B(x)= [°°h(x,t)dt (1.6)
Jo Jo

Let us comment on the meaning of (1.5). Observe first that there is a
steady state limit if and only if Z(gooy hoo) = 0. If this quantity is not zero
the effect of the exterior is not quite strong enough to produce dissipation
but it does reduce the order of growth from 0(t) in the interior problem to
O(logJ) for the interface problem. If Z(<7oo,/&oo) is zero then the interface
solution will tend to a (special) solution of Po(/oo>#oo?^oo) and we have
dissipation. The term Z(G, H)x(t) 1S a first measure of the rate of decay in
the dissipative situation. It depends on the time dependent part of the data
but only on the special quantities (1.6).



Remark 1.1 The special solution UQ in (1.4) and (1.5) is a solution of
Laplace's equation in (2+ and it will be characterized by the estimate

U0(x) = Alog\x\ + O(lzl)-1 as \x\ -+ 00 (1.7)

and we will see that A = 0 if and only if Z(G, H) = 0.

Remark 1.2 In the physical problems of [2] and [9] the solution u ofP(f, g, h)
represents a scattered wave in £2+. In pure scattering problems one has an
incident field u°(x,t) which is, typically, a solution of uu = Aw in all space.
In this case f = u° and g = u° on r and h = 0. If u° —> u°'°°(x) as t —> 00
then AuOi°° = 0 in all space. In this case it will automatically be true that

,hoo) is zero.

The study of low frequency (small p) expansions for interior and exterior
problems has a long history. See, for instance, [3], [4], [6], [7], [8] and [12].
The application to the study of long time asymptotics for exterior problems
is treated in [1], [10] and [11]. The latter results, in contrast to ours, are
rigorously proved. What is needed to make our results rigorous is a high
frequency (large p) theory. We do not have this, as yet, since we do not
know how to handle the interior region.

Remark 1,3 The presence oflogp in (1-4) and logtf in (1.5) is charac-
teristic of two dimensional problems in exterior regions as indicated in the
references. Since two-dimensional problems serve as numerical examples it
seems important to understand this phenomenon. This motivated our con-
sideration of two-dimensional problems.

Remark 1.4 Let us describe, without proof, the results for three dimen-
sions. The comments concerning the interior problems (LI) and (1-2) re-
main in force. Now, however, it will be true that the solution of Pp in three
dimensions will tend to the unique function J7QO which satisfies PQ and van-
ishes as \x\ —» 00. Formally, this means that the solution of P(fyg,h) tends
to UOQ as t —> 00. Thus in three dimensions the effect of the infinite exterior
is enough to produce dissipation.

2 The reduced interface problem

We follow the ideas of [2]. Let K(z) denote the singular Bessel function of
second kind and order zero. K(z) behaves like z~^e~z for large z and for



small z,

K{z) = log z + 7 + £ anz
2n logz + f] bnz

2n, 7 = - log 2 - f ° e"" log ipfy

(2.1)
We form the simple layer

Sp[<p](x) = (27T)"1 jf ^(y)iSr(p |* - y|)rfry (2.2)

It satisfies Av = p2v in fi(Jft+ and tends to zero as \x\ -* oo. It is continuous
in all space with the limit value.

SP[v](x) = (2T)"1 / <p(y)K(p \x - y\) \xer dry on T (2.3)

Sp is an integral operator with logarithmic kernel. Sp satisfies the jump
relations,

T
Here n is the normal to T and Np is an integral operator with continuous
kernel if F is a smooth curve.

We seek to represent the solution U of P(F, G, H) in fi+ as,

U = SP[V] (2.5)

From (2.5), (2.3), (2.4) and the interface conditions we are led to the problem

pP H in il

P;(F,G,H)

U~ = Sp[<p] + F ( )

for the pair (C/,^). It is easy to verify the following result.

Theorem 2.1 If(U, <p) is a solution of P^(F, G, H) and U is defined in O+

by (2.5) then U is a solution ofPp(F,G,H).

We reformulate Pp as a variational problem. Let E\^E^xj2 a n d #1/2
denote the complexifications of JfiTi(fi),iT1/2(r) and H1/2(T) and let 7i =



# 1 X .ff_i/2- We write U = (U, <p) and >V = (W, V>) for elements of H. Note
that U € H implies U~ € #1/2- We define the bilinear form,

AP(U,W) =

AP(U, W) = J (uVU • VW + p2pUW) -Tj(\(P + Np[<p))W\

(2.6)
and the functional,

Jn Jr Jr

Remark 2.1 Sp extends to an operator from #_i/2 to Hi/2 and Np to
operator from #_i /2 to H^,2

 1
} the complexification of H3/2(

T)(see [&])•
The integrals over T in (2.6) and (2.7) should, accordingly, be interpreted
as duality pairings but we will continue to use the integral notation.

Definition 2.1 Up is a generalized solution of Pp(F,G,H) ifUp = (Upj(fp)
is a solution of

AP(UP, W) = T(W) V W € H VPP(F, G, H)

and Up = Sp[ip] in f i+ .

Remark 2.2 The variational formulations VPP and VPQ in the next section
are amenable to implementation with finite elements. This is described in
[7] with proofs of optimal convergence.

The following result is easy to prove and is given in [2].

Theorem 2.2 / / Up is a generalized solution of Pp(F, G, if) and is suffi-
ciently smooth, then Up is a solution of Pp(F,G,H).

Hi risaC<2> curve



(The required smoothness can be achieved by appropriate regularity as-
sumptions on the data).

There is a technical difficulty with VPP which bears on the results of
this paper. VPP is treated in [2] as a compact perturbation of a coercive
problem. This reduces existence to uniqueness and that can fail. The result
is this.

Theorem 2.3 Let — A£ be the eigen-values of A in il with Neumann bound-
ary conditions. Let F, G, and H be in #1/2, #-1/2 and Hi- Then for any p
with Re p > 0, p ̂  i\n,VPp(F,G,H) has a unique solution.

Remark 2.3 Notice that p = 0 is one of the excluded p's. We will see that,
in general, this exclusion is necessary. For p = ±i\n,Xn ^ 0, however,
the exclusion is a consequence only of the ansatz not of the problem. In [2]
an alternate variational procedure is given which yields existence for those
values.

3 Low frequency asymptotics

In this section we study the behavior of the generalized solution of PP(F, G, H)
under the assumption that F, G, and H are independent of p.

Let us begin with some analysis of the formal limit problem

Lv + H = 0 in ft , Av = 0 in £2+ ,
(3.1)

v- = v+ + F , pv- = r(v+ + G) on T

A-first question is how solutions should behave for large |x|. Note that

so that
/ I / / ^ * } (3.2)

Z as in (1.3). Thus we expect that,

v = i41og|a:| + 0(l) as \x\ -+ 00 (3.2)

with A then determined by A = -{2T;T)-1Z{G,H).



We note that the problem (3.1), (3.3) lacks uniqueness, any constant is a
solution of the homogenous problem. We can eliminate this by strengthening
(3.2) and we arrive at the following problem

Lv + H = 0 in il , Av = 0 in £2+

v = A\og\x\ + 0(\x\^) as |a?|->oo P0(F,G,H)

v~ = v+ + F , jiv" = r(v+ + g) on T

Theorem 3.1 There exists at most one solution of Po(F,G,H)

Proof : Suppose v is a solution of the homogenous problem. The argument
preceding shows that A must be 0 so that v = Odxp1) as \x\ —• oo. Then
Green's theorem arguments yield,

/ |VH2 + / \Vv\z = 0
Q+

and, since v —» 0 as |x| —* oo v = 0.
Problem Po(F,G,H) admits of a formulation like Pp. We represent

t; in 0+ by i; = <So[y>] where «So is obtained by replacing K{p\x — y\) by
log \x — y\. This leads to an analog of P'v and to a variational formulation.
Define, for U = (U, (p)> W = (Wy ip)

Ao(U,W) =

A0(U,W) = j^VU VW - r Jr(\<P+ N0[<p])w (3-3)

[$ [
The appropriate variational problem to consider is

Ao(U, W) = T{W) for any W

Definition 3.1 v is a generalized solution of Po(F,G,H) ifU — (U,<p) is
a solution ofVP0(FyG,H) and U = S0[(p] in ft+.

One has the analog of Theorem 2.2.



Theorem 3.2 If v is a generalized solution of P0(F,G,H) and is suffi-
ciently smooth then is a solution of Po(F, G, H)

We set,

m[tp] = (27T)-1 / cpda ,6 = logp + 7 (3.4)
Jr

where 7 is the constant in (2.1). We can now give our main results.

Theorem 3.3 i) For any F e Hl/2,G € #_i / 2 and H € Hx there exists a
unique generalized solution UQ of PQ{F,G,H).

ii) If Ho = (C/o, (fo) for the generalized solution we have,

™[<po] = -(27rr)~1Z(Gr, H) (3.5)

Theorem 3.4 There exists a po > 0 such that for all p, Re p > 0,0 < \p\ <
Po the generalized solution Up of PV(F, G, H) satisfies,

Up = -(2xr)~1Z(G, H)6 +U0 + 0(p2(logp)2) (3.6)

where Uo is as in Theorem 3.3.

Note that Up has a limit at p = 0 if and only if Z(G, H) = 0.
We begin the proofs with expansions of the various bilinear functionals.

On the basis of (2.1) we have,

Sp[varphi]
+6m[(p]+

SPW] S0[<p] §M (3.7)

NP[<p] = No[<p) + Np[<p]

Here the subscript zero denotes the integral operators with the logarithm
as kernel and the tildas denote operators which are of order p2logp. These
yield, with U = (U,<p),W=(W,iJ>),

Bp(U,i/>)-2xm[<p]m[i/>]6

AP{U,W) = Ao(U,W) + Ap(U,W) (3.8)

where Ao and Bo are as in (3.3) and Ap and Bp are of order p2logp.



We rewrite VPP(F, G, H) in the form,

= TX(W)-AV(U,W)
(3-9)

B0(U,il>)-

The idea is to solve (3.9) by successive approximations for small p. The key
result is the following.

Lemma 3.1 For any K\ G H[ and K<i € # l i / 2 ^ e problem

A0(U, W) = ^ ( W ) W ; JB0(W, V̂ ) = K2(fl>) V^ (3.10)

/ia5 a unique solution U = (U,<p) with

m[<p] = -(27TT)-1 ^ ( 1 ) (3.11)

The proof of this result is a little technical and we postpone it until
the end of the section. We observe that it yields immediately the proof of
Theorem 3.3. We observe also that we will have for the solution (U,(p) of
(3.10),

U = Tu[K) , <p = %[K\ (3.12)

where Tu and Tv are bounded linear operators.

Lemma 3.2 For any K\ € H[ and Ki € KL\ii the problem,

A0(H',W) = Ki{W) VW
(3-13)

B0(U', W) - 2nm[<p]m[i>}6 = #2(V0 W>

has a unique solution W = (U',<p) with

W = -{2*T)-XKX{\) + U (3.14)

where (U,<p) is the solution of (3.10)

10



Proof : This is an immediate consequence of Lemma (3.1) (with the formula
(3.11)).

We are now ready to prove Theorem 3.4. Let UQ be the generalized so-
lution of P0(F, Gy H). Thus (£/0, ̂ Po) is a solution of VP0(F, Gy H) and Uo =
So[(po] in f2+. According to (3.5) we will have m[<p0] = -(27rr)'~1Z(G,H).
If we set Vo = -(27rr)-1Z(G, H) + Uo and put Vo = (Vb, ¥>o) then by Lemma
3.2 we have,

A0(V0,W) = ^(W)
(3.15)

#o(Vo , VO - 27rm[<po]m[i>] = T2{^)

Let Up denote the generalized solution of Pp(F,GyH). Then Up =
(Up,(pp) will be a solution of (3.9) and we will have Up = <5>p[<£>p] in ft+.

Put Up = Vo + Up in fi and <pp = <po + (pv and set i / p= (Upj (pp). Then if we
substract (3.15) from (3.9) we obtain,

W) = JX(W) - AP(VP, W))
(3.16)

Bo(UP, VO - 2wm[vPM$}6 = J2($) - Bp(VP, V>),

where
Ji(W) = -AP(VO,W) = -p* I UoW + r f <p0Np

Ju Jr
(3.17)

= -BP(VO, i>) = - j
Let V = ( V , <ff) be the solution of

Ao(V',W)=J1(W)

B0(V, V) -

This exists by Lemma (3.1). Recall that Vo will be a constant times 6 plus a
term independent of p and <̂o will be independent of p • JVp and 5P are both
of order j92 log p. It follows that both J\ and J2 will be of order p2 log p. We
can then invoke the estimates (3.14) and (3.12) from Lemmas 3.1 and 3.2
to conclude that for V',

V = 0(p2(logp)2), <f? = 0(p2logp) (3.18)

11



We can now apply successive approximations to (3.16) for 0 < \p\ < po for

some p0 to conclude that Vp^ (UpiVp) satisfies the same estimates (3.18).
This yields the estimate 3.6 in ft. Finally we have in ft+

Up + (2irrY1Z(GyH)S -Vo = S0[<pP} + m[<pp]6 + (27rr

+ SP [<PP] ~ $o[<Po] = So[<PP] + m[<po]6 + (2TTT)~ 1 Z(G, H)6

SP [<pp] = S0[<pP] + m[<pp]6 + Tp[vP)

since TM[<̂ O] + (27rr)~1Z(GyH) = 0. This completes the proof of Theorem
3.4.

Remark 3.1 For our work in the next section we want a sharpening of
(3.6). If one inserts the expansions (2.1) and carries out successive approx-
imations with a little more details one finds

Up = -{2wT)-1Z(G,H)6+U0(J
:)+p\logp)2M22W\ogpM2i+p2^

(3.19)
Here Uo(^F) is the solution in Theorem 3.3. The quantities M{j are bounded
linear operators over the data T. They could, in principle, be determined
but we will not use their explicit form.

Proof of Lemma 3.1 We need two preliminary results.

Proposition 3.1 For any T there exists constants ko > 0 and k\ > 0 such
that

j v SO[<P]<P > MM&-1/2 - ^ M l 2 v v e JST-I/2 (3.20)

Proof : It is shown in [5] that if T is sufficiently small (mapping radius less

than one) there is a k > 0 such that / So[<p](p > k\\(p\\jI_1i2. The result

(3.20) follows by a scaling argument.

Proposition 3.2 / -<p + No[<p] = <P-
Jr 2 Jr

12



Proof: Put u = S0[<p]- We have Aw = 0 in ft+ with u =
0 \x\~x) as |a;| —• oo. We have then

u+ = li
Jr R-

lim
00

The jump relation (3.4) holds for So[<p] also and the result follows.
We are going to treat the problem (3.10) as a compact perturbation of

a coercive form. We set, for U = (Uy y>), W = (Wy ̂ ) ,

Ai>(U,W) = I fiVU • VW + UV - J / <pV~
JQ 2 Jr

(3.21)

with ki as in (3.20). Then we consider the problem,

j4£(Z/,W0 = Jr , (W), T-B'Q{U^)^T-K2^) (3.22)

From (3.21) and Proposition 3.1 we have,

Re(A$>(l<, U) + B'0(U, tp)) = f MVU-VU + \U\2-Re f S0[<p}<f
JQ Jr

for some K > 0. It follows that (3.22) has a unique solution.
Next we consider the problem

A0(U, W) = R\(W) , Ifi&(W, ^) = ^ 2 ( V 0 (3.23)

We see that (3.23) and (3.22) differ only by the terms

- [ U~V-+T I No[ip]V~
JQ Jr

Since No maps -ff_i/2 into H3/2
 w e s e e that this term represents a compact

perturbation. Thus existence for (3.23) is reduced to uniqueness and this
we establish now.

13



Let U = (U,(p) be a solution of (3.23) for Kx and K2 equal to zero. If
we put V = 1, V7 = 0 o n the first equation we find

or, by Proposition (3.2), m[(p] = 0. Now define U in ft+ by U — <So[</>].
We have AJ7 = 0 in ft+ and U = Q{\x\~l) as \x\ —• oo. Further we have
J7+ = So[<p], U+ = \<p + N0[(p]. The second equation in (3.23), with K2 = 0
and m[<p] = 0 gives U~ = So[<p] = U+. Then returning to the first equation
we have, with K\ — 0,

-r I l±v + No\<p])U- = 0

Elliptic theory yields LU = 0 in ft, / /{ /" = r (±<p + iV0[v>]) = rJ7+. Thus

i7 is a solution of Po(0,0,0) and by Theorem 3.1 U = 0 in R2 . But U =
So[<f\ in 17+ hence we must have So[(p] = 0 in ft+. We assert this implies
<p = 0. Indeed if we consider «So[<̂ ] in ft it must be identically zero since
<SoM~ = «So[<̂ ]+ = 0. Then the jump relation (2.4) implies ip = 0. Thus we
have uniqueness and can infer existence for (3.23).

Finally we consider the problem,

(3.24)

This problem has a solution. Moreover if we put V = 1 in the first equation
we find m[ip\ = —(27rr)~1iiri(l) so that the second term on the right of
(3.24) cancels the extra term in B'Q and (3.24) is equivalent to (3.10) and we
see also that (3.11) holds.

4 Remarks on long time asymptotics

The analysis in this section is very formal for the reason indicated in the
introduction. We believe however, that the results are correct.

We want to study approach to steady state and we first make precise
our assumptions on the data. We assume,

/ (* , t) = foo(x) + /(Z, t),fl(x, t) = #oo(z) + g(x, t),h(x,t) = fcoo(x) + h(z, t)
(4.1)

14



/ is to be such that the maps t —• tkf{>,t) are in Zi(0,oo : H1/2(T)) for
k = 0,1,2. It will follow that / will have a Laplace transform F which
satisfies,

F = fooP'1 + F0 + FlP + 0(p2) as p -> 0. (4.2)

Here,

Fo(x) = r°f(x,t)dt, Ft(x) = r°tf(x,t)dt (4.3)
Jo Jo

Analogous results are to hold for g and h. It follows that the functional T
in (2.7) has the form,

T(p) = T-iP~x + To + Tip + O(p2) as p -> 0. (4.4)

From (4.3), and its analogs for g and hy together with (2.7), we have

r /
T

= f (J°° ~h(x,t)dt) W(x)dx + rj (j°°g{x,t)dt\ W{x)dcr
(4.5)

We substitute the estimates (4.2) into (3.19) . We decompose the result as

uP =

VI = R
(4.5)

Theorem 4.1 The function U£ is the Laplace transform of,

u1 = (2irT)Z(goo, h00)log2t + U0{F-x) + {2KT)-1Z{G0, fTo)x(0 (4-6)

where x(t) = 0 for t < |,x(<) = t~l f°r * > \-

15



Proof : We have only to identify the quantities p^S.p'1 and S. p x is the
transform of 1 which identifies the second term in (4.6). For the first we
have,

f°° e~pt log 2tdt = p~l f°° e ^ l o g 2rj - logp)d?y = -dp'1
Jo Jo

For the third we have,

oo

f°° e-rH^dt = e~pt log 2t + p f°° e~p* log 2tdt = -6
Jl/2 1 / o Jo1/2

So far our results are rigorous. Now, however, we wish to invoke the
complex inversion formula for the Laplace transform. Thus we assume the
solution up of P(/,^r,/i) can be recovered from Up by

pc+ioo

/

c-f-ioo
e^Up{x,p)dp (4.7)

_—too

It is here and in the calculations below that we would need estimates for Up

for large p. Let us proceed formally.
We insert (4.5) into (4.7). We can identify the term involving Up as u1.

Up has a limit at Re p = 0 so we take c = 0 in (4.7) for that term. Thus our
formal calculation gives up(x,t) = wx(x,/) + u2(x,t) where,

u2(x,t) = (27T)"1 / e^U2
p(x,in)dr, (4.8)

We show, formally, that u2(x,t) = 0 C-jp) as t -»• oo. As a first step

we deal with the terms p(logp)2 and plogp in (4.5). We have,

I ™ e - * r 2 d t = -*- 1 c-"* | f > - p T e - P H ' U t

= e-P - pe"P( log <|~ - p2 j°° e~pt log <df
(4.8)

- p2 / e-P* log td* + p2 / e"pt log <<ft
7o ^o
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for some a,/3,7. Also

" ' d t = p I

t- IT t e"pt

+ f (logp)2

+a' + fi'p + TV+)(p3) as p ->• 0.
(4.9)

The conclusion from (4.8) and (4.9) is this. If we set

0 t<1 0 t< 1

7i(«) = ; 72(0 = +\

then the transforms Fi(p) and ^ ( p ) of 71 and 72 satisfy,

ri(p) = piogp + f i(p), r2(p) = p(iogp)2 + f 2(p)

where f 1 and F2 have continuous derivatives of order less than or equal to
two in Re p > 0.

Thus we can further decompose U* into U%fi + Upt2 where U^ = aTi(p)+
bT2(p)y for some constants a and 6 and (72

2 is twice continuously differen-
t ia te in Rep > 0. We have then, formally,

r+00

u\x, t) = a7i(<) + 673(0 + (2*)-1 / e>*Ul2(x, it])dr) (4.9)

We assume that we can integrate by parts twice and obtain,

This is of order t""2 and we obtain the result in (1.5). Once again we empha-
size this result would require some detailed information about the behavior
of Up for large p.
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