
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



 



ANOTHER LOOK AT THE SIMPLEX

METHOD IN LINEAR PROGRAMMING

by

R. N. Pederson

Department of Mathematics
Carnegie Mellon University-
Pittsburgh, PA 15213, USA

Research Report No. 94-168

June, 1994

510.6
C28R
94-168



Carnegie
Pittsbu* t!

Another Look at the Simplex Method in
Linear Programming

R. N. Pederson

"Notation is important. It can even solve problems. But, at some
point, you must do some work yourself." K. O. Friedrichs.

1. Introduction and Statement of the Problem.

Without using any symbols at all, we can give a precise statement of the problem
by saying that it is to find the maximum, if it exists, of a linear function of a finite
number of real variables on a convex plane polyhedron of the same variables. The
simplex method of solving the problem is then to find a vertex of the polyhedron
and then to proceed along edges from one vertex to the next, in a manner that
the linear function increases, until the maximum is reached. All the data needed
to state and solve the problem can be stored in an (m + 1) x (n + 1) matrix A.

The analytical statement of the problem then is to find the maximum of the
objective function

n

22 Am+ljXj + *4m+l,n+l (1-1)

subject to the constraints

J ijXj + A>+i > 0, i = l , . . , m. (1.2)

By defining A to be the matrix comprising the first m rows and first n columns
of A and b to be the transpose of *4i,n+i,..,.4m,n+i, the constraint (1.2) takes the
simpler form

b>0, (1.3)

r



meaning, of course, that each component of the column vector is non-negative.
The vector x is superfluous for the purpose of applying the simplex algorithm.
But, working only with the matrix ,4, can lead to misconception as we shall see
in the next section. But first, let us find another notation for the constraint set
by using A{ to denote the rows of A. Then (1.3) can be replaced by

Li(x) = (Aix) + bi > 0, i = 1,..., m (1.4)

where 6, is the ith coordinate of b and (,) represents the canonical inner product.

2. But, Those Slack Variables are Unnecessary*

Let us re-write (1.3) as
(A C) (C^X) + b > 0 (2.1)

where C is any non-singular n x n matrix, noting that this does not require
an equality. Now, assuming A has rank n, we may apply elementary column
operations to reduced echelon form. If C is the product of the corresponding
elementary column matrices and y = C~1X^ the first n coordinate of (2.1) are

Vi + bi > 0. (2.2)

Then, by making the translation Z{ = j/t- + &«, we may assume the constraint
set to be in, what is commonly called, canonical form. Furthermore, if for one
j , 1 < j' < n, we put Xj = Zj — j3j in (1.1),(1.2) we see that this corresponds to
multiplying the j t h column of the full matrix A by /?, and subtracting it from the
(n + I)1 column; that is, it is an elementary column operation. I prefer doing
elementary row operation on the transpose. Thus the simplex method reduces to
transposing the matrix A and applying elementary row operation until the first
n column are in reduced echelon form, with the restriction that the pivots are to
be picked from the first n rows of AT. The only question that remains is when
to start using the simplex pivoting strategy. After the system is in canonical
form, we must use the simplex strategy; before that we may use instead the
standard Gaussian Elimination Strategy. Note that the simplex strategy requires
picking the maximum positive element of the current column and hence is a partial
pivoting strategy. We shall have more to say about this in Section 5.



3. Empty Sets, Redundant Constraints and Lower Dimen-
sional Sets.

Let us now suppose that the normals of the first n constraints form a linearly
independent set. Then, for any k > n,

Ak = £ a^iAi (3.1)
1=1

and hence

(3.2)
t=i

with

t*=l

It follows from (1.4) and (3.2) that if (a*i,.,..., ctk,n, Ak) are all non-negative, the
fcth constraint is redundant and that if they are all negative the set is empty. If
for some i < n, ctki > 0, ctkji < 0 for j ^ i and Ak < 0, then the iih constraint is
redundant.

In all other cases where none of the numbers (ajki,.,..., ajt,n? Ak) is zero it is
easily shown that the set formed for the first n and the A:th, is non-empty. The
other important special case occurs when A^ = 0 and ctki < 0 for i = 1, ...,n.
Then the entire constraint set is contained in the set where Ln(x) = 0. Hence,
we may use this constraint to eliminate a variable and obtain a lower dimensional
set. This means that, by reducing the number of dimensions, we may assume that
this case does not occur.

We note from (3.2) and (3.3) that, when the constraint set is in canonical
form, *4t>+i = 0, i = l,...,n, so the a^s and Ak are just the coefficients of
the constraint equation. From this point on we shall assume that the set is in
canonical form. The origin will be called the basic vertex, the first n constraints
the basic constraints and the rest of the constraints the non-basic constraints.

4. The Simplex Algorithm with a Non-Degenerate Basic
Vertex.

A vertex which is the intersection of more than n-planes is called a degenerate
vertex. This means that, when the basic vertex is non-degenerate, all of the non-
basic constraints have non-zero constants. The simplex strategy then is to increase

T



by one the number of positive constants among these until they are all positive
and then to increase the constant in the objective function.

Let us assume that the constraints are ordered so that

Ai n+1 > 0, i < p and if p < m
(4.1)

0, p<i <m.

Our first objective is to increase p by one when it is less than m. The first step is
to choose k to maximize

{ A p J : A P t j > 0, \<j<n}. (4.2)

When p < m, the results of Section 3 insure that we may assume the above set
to be non-empty; when p = m + 1, it is only empty when we have found the
maximum.

Next, we choose £ to maximize the negative numbers

( A }
:v<p-l, Ai/tk<0}. (4.3)

Suppose that the above set is empty. If p = m + 1 and Am+itk > 0 there is
no maximum while if Am+i^k < 0 we may set xk = 0 and continue in one less
dimension. If p < m we simply set £ = p .

Next, we interchange the £th non-basic constraint with the &th basic constraint
and put the constraint set back into canonical form. This requires applying Gaus-
sian elimination to the kth column of AT. The new elements of the matrix then
are

Ak = 4- (4-4)

and when i ^ I,

(4.7)



In particular,

^f1 > 0 (4.8)
since, whether £ = p or £ < p, At,n+\ and Atk have opposite signs. If i ^ £ and
£ < p — 1, we see from (4.7) that ^ j n + 1 is the sum of two positive numbers when
Aijk > 0 and that when Aik < 0 it is positive as a consequence of the choice
(4.3) of £. Hence, in any case, the first p — 1 constants remain positive and if
£ = p, Ap,n+i is also positive and we have increased p by one. But we also see
from (4.7) that if £ < p,

^ fn+l > A,n+1 (4.9)
Since the constraint set has only a finite number of vertices, we shall, in a finite
number of steps either find the set to be empty, prove that A'pn+1 > 0 or arrive
at a degenerate vertex.

5. The Case of a Degenerate Vertex.

The case of a degenerate vertex occurs when there are zero constants Aiin+i = 0.
Suppose that we apply the previous strategy to the basic constraints and the
non-basic constraints with non-zero constants. Then we see from (4.7) that when

= 0,

and since Atj < 0, Aik > 0, we have *4(>+i > 0 whenever Aiyk > 0. There is
no reason that this should be the case, but, by applying the simplex strategy to
the first n column of ^4, with the A:th playing the roll of the constants, we can
use the simplex strategy to achieve this. Because the algorithm is slightly more
complicated when the degeneracy is of higher order, it is convenient to introduce
constants a^ ,^ satisfying, after reordering the constraints and variables

Ai7k = 0, n + 1 < i < ak

>0, ak<i<pk (5.2)

< 0, /3k<i
with an+2 = m. The cases ak = n + 1, fa = ctk ar*d fa =.c*fc+i are used to indicate
that the corresponding set is empty.

Now we apply the following algorithm to the constraint set in canonical form.



[1] k = n + l

[2] Reorder the constraints so that (5.2) is satisfied.
Now, we are ready to pick the current constraint indexed by p. The
choice agrees with 4.1 when k = n + 1.

[3] If k = n + 1 or fa < a*+i, set p = fa and proceed to [5].
Now, when we arrive at line [4], we have k < n + 1 and fa = <**+i.
This means that the elements of the pivot column below the zeros in
the kth row of AT are all zero so we can take advantage of the remark
preceding (5.1) noting that, because k < n the current pivot row has
already been chosen in the line [5].

[4] Replace k by k + 1 and proceed to [7].
Now we are ready to pick the current pivot row of A7.

[5] Reorder the variables so that APik-i maximizes the positive coefficients
<Ap,i, i < i < k — 1 when it is non-empty. If it is empty proceed to [10].
If otk = n+1, we are ready to begin the updating subroutine. Otherwise,
we decrease A; by 1 and return to [2].

[6] If ctk > n + 1, decrease £ by 1 and return to [2].
When we arrive at line [7] we know that the k — 1 t h row of AT is the
current pivot row and, before updating, we must find the current pivot
column.

[7] If the set {i < p : A^k-i < 0} is non-empty, choose £ to maximize the
ratios Ai^lAi^-i- Otherwise set £ = p.
Now, we are ready to interchange the constraints indexed by k — 1 and
£ and then put the matrix back into canonical form.

[8] Return the matrix to canonical form by applying Gaussian elimination
to reduced echelon form to AT using the element indexed by ^, k — 1
as pivot.

We note that, since the elements Aij, j > k — 1, are all zero the
elementary row operation correspond to adding zero to the rows of
AT indexed by j > k. Hence the a / s and /?/s, j > k so they are
unchanged. We now redefine the a / s and pf& for j < k returning to
[2]-

[9] Return to [2].

The program will terminate at [10].



[10] The maximum is *4m+i|Tl+i.
We have tacitly assumed the maximum to exist, leaving to the reader
the task of adding the lines, explained in Section 3, regarding empty
sets, redundant constraints, lower dimensional problems and problems
with no maximum.

6. Small Pivots and Degenerate Vertices*

In running the above algorithm, it is crucial that one distinguish between non-zero
numbers and zeros represented by round-off errors. The author has studied this
problem extensively on the Radio Shack Color Computer and on the Tandy 1000.
Computing, respectively, to 9 and 16 places, base 10. The Random Number
generator was used to supply the data and, computing to places base 10, the
test for determining whether or not a number in zero was by comparison with
7? 2 < 7 < p/2. In order to increase the probability that the set is not empty, the
probability that the origin satisfying a constraint is set at p, 0 < p < 1. With no
other restriction, a degenerate vertex has never been found. By building in the
condition of degeneracy, e.g. by applying a similarity transformation to a known
degenerate situation and adding more constraints, the program seems to work
as well as in the non-degenerate case. The problem, in each case, is checked by
re-running the program on the constraints forming the final basic vertex and by
evaluating the objective function at the intersection of their planes.

We have also never found an ill-conditioned matrix with the random number
generator. By putting in the Hilbert matrix [4], prob 169, p. 337, we find the
obvious difficulty. However, by computing to a sufficient number of places, we
have always been able to overcome the difficulty.

7. Further Methods of Speeding Up the Program.

The Simplest Method of Speeding Up the Program is to remove the redundant
constraint using the test of Section 3, noting that the test requires only sign-tests
of quantities that are computed anyway. Its disadvantage is that a constraint that
shows up as redundant in one coordinate system does not necessarily in another.
The number of degenerate constraints can be increased by adding the condition
that the objective function be greater than its value at the current basic vertex.

Another method of possibly speeding up the program is to use the fact that



once a vertex has been found we know that the constraint set is non-empty. Then
we can eliminate a variable using any of the constraints. If the constraint used
was redundant, the new set will be empty. Otherwise, we obtain the maximum
on an (n — l)-dimensional face. The weakness of this method is that we lose time
when we use a redundant constraint to eliminate a variable. Further tests for
redundance and empty sets are given in [2] and [3].

References

[1] Dantzig, Linear Programming and Extension, Princeton Univ. Press.

[2] Pederson, R. N., A Necessary and Sufficient Condition that a Non-Degenerate
Linear Constraint Set be Empty or Contain a Redundant Constraint. (Submit-
ted for Publication).

[3] Pederson, R. N., Sign Configurations of the Coefficients of a Linear Constraint
Set and Redundant Constraints. In preparation.

[4] Polyn, G., Szego, G., Problems and Theorems in Analysis, Springer-Verlag,
New York, Heidelberg, Berlin, Berlin, 1972.

[5] Strang, G., Linear Algebra and its Applications (3rd Ed.), Harcourt, Brace,
Jovanovich, San Diego.

[6] Wu, S. and Coppin, R., Linear Programming and Extension, McGraw Hill.

Acknowledgement

I would like to thank Jenny Bourne Wahl for criticizing an earlier version of
this manuscript.



MAR 1 » 200*

Q1375 fi5m


