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§0 Introduction

Homogeneous objects are often defined in terms of their automorphism groups. Rado's

graph F, also known as the countable random graph, has the property that for any iso-

morphism / between two finite induced subgraphs of T there is an automorphism of T

extending / . This property is the homogeneity of Rado's graph; and any graph whose

automorphism group satisfied this condition is called homogeneous.

The automorphism group of Rado's graph was studied by Truss in [T2], and shown

to be simple. Truss studied also the group AAut(F) of almost automorphisms of Rado's

graph (see [T3] and also [MSST]). This is a highly transitive group extending Aut(r)

(where "highly transitive" stands for "n-transitive for all n"; the group Aut(F) is not

highly transitive).

In this paper we shall study homogeneous families of sets over infinite sets. Our

definition of homogeneity of a family of sets implies that its automorphism group satisfies,

among other conditions, that it is highly transitive. However, while all homogeneous

graphs over a countable set are classified (see [LW]), this is not the case with homogeneous

families over a countable set.

We shall show that there are 22 ° isomorphism types of homogeneous families over a

countable set. This is done in Section 4. Prom the proof we shall get 22 ° many permutation

groups, each acting homogeneously on some family over a/, and each being isomorphic to

the free group on 2H° generators, but such that no two are conjugate in Sym(o;).

In Section 3 we prove the existence of a bi-universal homogeneous family over any

given infinite set. The definitions of bi-embedding and bi-universality are generalization of

definitions made by Truss in his study of universal permutation groups [Tl]. A short survey

of results concerning the existence of universal objects can be found in the introduction to

[KSl]. Results concerning abelian groups are in [KS2], and results on stable unsuperstable

first order theories are in [KS3].

Homogeneous families were studied in [GGK] (where they were treated as bipartite

graphs). There it was shown that the number of isomorphism types of homogeneous

families over u of size Ni is independent of ZFC and may be 1 as well as 2Hl in different

models of set theory.

Model theorists will recognize that uncountable homogeneous families over a countable

set are examples of two-cardinal models which are u-homogeneous as well. Set theorists

may be interested in the following



0.1 Problem: Is it consistent that 2H° is large and that in some uncountable A < 2H°

there is a maximal homogeneous family (with respect to inclusion)?

We wish to remark finally that the existence of 22 ° isomorphism types of homogeneous

families over u) follows from a general theorem about non-standard logics [Sh-c, VIII,§1] (for

more details see also [Sh 266]). The virtue of the proof here (besides being elementary) is

its explicitness and the information it gives about the embeddability of an arbitrary family

in a homogeneous one.

NOTATION We denote disjoint unions by 0 and \J. A natural number n is the set

{0,1,. . . n — 1} of all smaller natural numbers.

§1 Getting started

Let T C V{A) be a family of subsets of a given infinite set A. An automorphism of T is a

permutation a G Sym(^4) which satisfies that X G T ^ &[X] G T for every I C A (By

o\X\ we denote \o{x) : x G X} for X C A) The group Aut(^) C Sym(^4) is the group of

all automorphisms of T.

One way of defining when a family T C V{A) is homogeneous is to demand that the

bipartite graph {A,T, G) is homogeneous, namely that every finite partial automorphism

of this graph which respects the sides extends to a total automorphism. We shall write a

more complicated (though equivalent) definition. This will be needed in what follows.

1.1 Definition: Suppose T C V(A) is a given family of subsets of a set A. A demand

on T is a pair d = (hd, fd) such that hd is a finite 1-1 function from A to A, fd is a finite

1-1 function from T to T and x G X <* hd(x) G fd(X) for every x G domhd,X e domfd.

We denote by D = D(A,F) the set of all demands on T. Let FG(D) be the free group

over the set D(A^Jr). We say that an automorphism g G Aut(.F) satisfies a demand d

if g(x) = hd(x) for x G dom/id and g[X] = fd(X) for X G dom/d. We call a partial

homomorphism (p : FG(D) -+ Aut(.F) a satisfying homomorphism if (p(d) satisfies d for

d G domtp. (By "partial" we mean that (p need not be defined on all generators ofFG(D).)

1.2 Definition: A family T is homogeneous if and only if every d G D is satisSable if

and only if there is a (total) satisfying homomorphism (p : YG(D) —• Aut(^). A group

G C Auk?7 acts homogeneously on T if and only ifG contains the image of a total satisfying

homomorphism, or, equivalently if and only if every demand is satisfied by some element

inG.

When ip is a homomorphism as above, we say that ip testifies the homogeneity of T.



When the set A is clear from the context, we write D(T) instead of D(A, T).

1.3 Examples:

(1) The family T = {{x} : x € A} of all singletons is homogeneous. The group Aut(Jr) is

the group Sym(A) of all symmetries of A.

(2) The family Fin(A) of all finite subsets of A is not homogeneous, although Aut(Fin(A)) =

Sym(yl), because a demand d = (0, {(X, Y)}) cannot be satisfied when X and Y are

finite sets of different cardinalities.

(3) A countable family of random subsets of w is homogeneous in probability 1. The

membership of a point in a random set is determined by flipping a coin.

In [GGK] the following was proved:

1.4 Theorem: Every homogeneous family of subsets of an infinite set A satisfies exactly

one of the conditions below:

(1) T = {0}

(2) T = {A}

(3) T is the family of all singletons of A

(4) T is the family of all co-singletons of A

(5) T is an independent family, namely for every finite function r : T —• {+, —}, the set

BT = f |x€r- 1 (+)^ n f|y€T-»(-) A\Y is infinite, and T is dually independent, namely

for every function r : A —•{+,—} there are infinitely many members of T containing

r""1(+) and avoiding r~1(—). Equivalently, the first order theory of (A, ̂ , 6 ) is the first

order theory of the random countable bipartite graph.



§2 Direct limits and homogeneity

In this section we exhibit a method of constructing homogeneous families as direct

limits. This method will be used in the following sections.

Homogeneity is not, in general, preserved under usual direct limits of families. For

example, an increasing union of homogeneous families need not be homogeneous itself. We

therefore consider here a stronger relation of embeddability, called here "multi-embeddability",

which, roughly speaking, preserves the satisfaction of previously satisfied demands. Direct

limits of this relation can be made homogeneous, as we shall presently see.

2.1 Definition: Let Ti = (Ai,Ti,Di,Gi,(pi), (i = 0,1), be respectively a set Ai, a

family of subsets Ti C V(Ai), the collection of demands Di = D(Ti), an automorphism

group Gi C Ant(Ti) and a partial satisfying homomorphism (pi : FG(Z?t) —• Gi. Let

fi = AiUTiUDiUGi. We call a function $ : f0 -> t\ a multi-embedding of To into Ti

(and write $ : To -> T\) if:

(1) $fw4o is a 1-1 function into A\

(2) $\To is a 1-1 function into T\

(3) $fZ?o JS a 1"! function into D\

(4) $f(7o is a group monomorphism into G\

And the following rules hold for x G AQ, X G To, d G Do and g G Go:

(a) x G X <* $(x) G $(X)

(b) $[dom/id] = domh^d\ $[dom/d] = dom/*(d), $((hd(x)) = h*(d\$(x)) and$((fd(X)) =

(c) *(g(z)) = *(p)(#(a:)) and *(g[X]) =

(d) $(d) € domy?i and $((po(d)) = (pi($(d)) for every d G dom<p0

We say that a multi-embedding $ is successful if in addition to the conditions above

also the following holds

(e) $(d) G domy?i for every d G Do*

2.2 Definition: Suppose I is a directed set and Ti = (A^ Ti, Di, Gi, (pi) is as in definition

2.1 above for i G / . Suppose that ${ : Ti --> Tj is a multi-embedding for i < j , and

(ii) * j f * J = * £ for i < j < k .

Then we call T = (T» : (t G / ) ; (${, (p{)) a direct system of multi-embeddings. We call

T successful if in addition to (i) and (ii) the following condition holds:

(Hi) for every i E I there is j > i such that $J is successful



2.3 Theorem: Suppose (Ti : (i € / ) ; {${,({>{)) is a successful direct system of embeddings.

Let T* = ( A * , r , D * , G * , / ) := lim Ti. Then T* is homogeneous, with <p* testifying

homogeneity, and t ie canonical mapping <&» : Ti —• T* is a successful multi-embedding.

Proof. : We first recall the definition of a direct limit.

An equivalence relation ~ is defined over (Jie/-^ M f°U°ws: Q>~b <̂  (3i < i)($^(a) =

6 V $i(b) = a). Conditions (i)-(ii) above imply that ~ is indeed an equivalence relation.

We define the canonical map $;(a) = [a]^. Next we set A* = Ute/^t /~ and observe the

following:

2.4 Fact: For every infinite cardinal K, if I and every Ai axe of cardinality < K, then

\A*\ < K.

We let T* = \Ji€iFiH G* = Uiei
Gih and D* = \JieiDi/~-

For x*,y* € A*,X* € ?*,<!* € D* and p* € G* we note:

(1) x* € X* iff there is some i € I and x € A^X € Ti such that i € X and $i(x) = x*,

*ipO = x*.
(2) <?*(£*) = y* iff g(x) = j/ for some t € / such that x € Ai,g € G» and $»(a;) = x*,

*i(y) = V* and $i(s) = p*.

(3) (p*(d*) = 5* iff there is i e / such that ^i(d) = p and $i(d) = d*, $i(p) = g*.

We leave verification of this to the reader and that the following hold.

(a) T* C V(A*)

(b) G* C

(c) D* =

(d) ?̂* : D* —* G* is a (total) satisfying homomorphism.

(e) $j$i = $; for i < j in /

We conclude that $; : T* —> T* is a successful embedding for every i G I.

Homogeneity of ,F* follows readily from (c) and (d) above. © 2.3



§3 Bi-universal homogeneous families

The result proved in this section is the existence of a bi-universal member in the class of

homogeneous families over a given infinite set.

Let us make the following definition:

3.1 Definition: We call an embedding of structures $ : M —> N a bi-embedding if

for every automorphism g € Aut(Af) there is an automorphism g1 € Aut(iV) such that

$(g(x)) = g'($(x)) for all xe M.

We observe that if / : M —* N is a bi-embedding then / induces an embedding of

Aut(M) into the group of all restrictions to f[M] of elements in the set-wise stabilizer of

f[M] in Aut(JV); that is, an embedding as permutation groups (see [Tl]). We can think

of a bi-embedding as a simultaneous embedding of both a structure and its automorphism

group.

3.2 Definition: A structure M* in a class of structures K is bi-universal if for every

structure M € K there is a bi-embedding $ : M —• M*.

3.3 Remarks:

(1) The definition of embedding of permutation grpups (see [Tl]) is obtained by from this

one by adding the condition that $ is onto.

(2) Example 1.3 (1) above indicates that if a bi-universal family T* over a set A* exists,

then for some A C A* of cardinality \A*\ the restrictions of automorphisms of T* to

A include the full symmetric group Sym(-A).

3.4 Lemma: For every infinite T = (̂ 4, T, D, G, <p) there is a set B such that \A\ = \B\

and a successful multi-embedding

$ : T -> (AOB,V(AUB),D(AOB,V(AGB)),Sym(AOB),<p')

Proof. We specify the points of B. A point in B is a finite function from the power set

of a finite subset of A to {0,1}, namely f e B <& f : V(Df) -• {0,1} and Df C A is

finite. We let 9\A = id. For X € T we define Q(X) as follows: $(X) = I U { / e B :

f(XnDf) = 1}. We let $(c)\A = a and let $(a)(/) = j o a[Df] = DgAf(X) = g(a[X\)

for all X C Df. It is straightforward to verify that $fSym(>l) is a group monomorphism.

We verify condition (c) in the definition of successful embedding (definition 2.1 above).

Suppose X Q A and a € Sym(^l) are given.



eB:g(XnDg) = 1}] =
a[X]0{9{a)(g): g € B A <?(X n Dg) = 1} =

The definition of $\D(P(A) is determined uniquely by condition (b) in 2.1 above. We

need to specify <p' and prove that (d) holds. For this we notice that:

3.5 Claim: The family T = {*(X) : X C A} satisfies that for every finite function

r : T - • { + , - } the set BT = O X € T - I ( + )
 $ W n rVer-i(-)(^U£) \ $(Y) has the same

cardinality as AUB.

Proof. The proof of this is well known. © 3 5

3.6 Corollary: For every demand d on T there is a permutation a G Sym(>lU£) such

that G(X) = hd(x) and $(a[X]) = $[fd(X)] for every x 6 domhd and X G dom/d.

Proof: For every r : dom/d -+ { + , - } it holds that |BT | = \AUB\ = | ^ | where B'T =

Ox€r-M+) $( /d(X))nr iA:€r-i(-) $(A\fd(x)). (This means, informally, that every "cell"

in the Venn diagram of dom/*(d) and every "cell" of the Venn diagram of ran/*(d) is of

cardinality |AUJB|). Therefore it is trivial to extend hd to a permutation that carries BT

onto B'T for every r. © 3.6

Now let us define <p'($(d)) = $(</>(d)) for every d € dom<p and for all d € D \ dorntp

let us pick by claims 3.5 and 3.6 above a permutation y/($(d)) that extends $(d). © 34

3.7 Theorem: Suppose AQ is a given infinite set. There is a successful direct system of

embeddings T = (Tn : (n G u); ( $ ^ , ^ ) > such that:

(1) An is of cardinality \Ao\

(2) Tn = P{An)

(3) Gn = Sym(An).

Proof. Let To = (Ao,V(Ao),D(Jro),Sym(Ao),(po : {e} -> {id>io}>. Now use Lemma 3.4

inductively. © 37

3.8 Theorem: For every infinite set A* there is a homogeneous family T* C V(A*),

and an infinite subset A C A* of cardinality \A*\ such that V(A) = {X PI A : X € J7*}

and Sym(A) C {pf^l : g e Aut(^*)}. Therefore any injection f : A* -+ A induces



a bi-embedding of every family T C V{A*) (not necessarily homogeneous) into T*. In

particular, T* is bi-universal in the class of all homogeneous families over A*.

Proof. By Theorem 3.7 there is a successful direct system of embeddings T = (Tn : (n €

");(*£,¥>£)> such that:

(1) \An\ = \A*\

(2) Tn = V(An)

(3) Gn = Sym(^ln).

By Theorem 2.3 and the side remark 2.4 it follows that the family T* obtained by

the direct limit is a homogeneous family of subsets of a set A** of size |vl*|, and we

may assume that A** = A*. The canonical map $o ls a successful multi-embedding,

and therefore in particular a bi-embedding. Let A be the image of AQ under $o- As

To = V(A0) and Go = Sym(A0), we conclude that V(A) = {X D A : X e F*} and

Sym(A) C {g\A : g e Aut(^*)}. The Theorem is now obvious. Q) 33

§4 The number of isomorphism types of homogeneous families over LO

In this section we make a second use of the method of direct limits as introduced in Section

2 to determine the number of isomorphism types of homogeneous families over a countable

set. It was conjectured in [GGK] that this number is the maximal possible, namely 22 °.

An isomorphism between two families TQ C V(AQ) and T\ C V{A\) is, of course, a 1-1

onto function / : AQ —> A\ which satisfies X € FQ <=> f[X] G T\.

To obtain 22 ° non isomorphic homogeneous families over a countable set, it is enough

to obtain 22 ° different such families; for then dividing by isomorphism, the size of each

class is 2N°, and therefore there are 2H° classes (see below).

The technique used to achieve this is embedding a family T C V{A) in a homogeneous

family T1 C V(A*) for A* DA in such a way that {X D A : X e T'} = T. In other words,

we will "homogenize" a family T "without adding sets" to T. Thus, starting with distinct

.F-s we obtain distinct homogeneous f-s.

4.1 Lemma: There is a pair of countable sets AQ C A* (in fact, for every pair Ao Q A* of

countable sets satisfying A* \ Ao inSnite) such that for every family T C V{A§) satisfying

Fin(̂ 4o) Q F there is a homogeneous family T1 C V(A*) satisfying {XdA0 : X € T1} = T

This lemma determines the number of isomorphism types of homogeneous families

over a countable set:

8



4.2 Corollary: There axe 22 ° isomorphism types of homogeneous families over a count-

able set.

Proof. There are 22K° different families {Ta : a < 22*0}, such that Fin(ylo) Q F<* Q

V(AQ). For each To. there is, by 4.1, a homogeneous family T^ C V(A*) that satisfies

{X n Ao : X G ^4} = ?<*. Therefore, a ^ /? implies that ^ # J^. Let us define an

equivalence relation over 22 °: a ~ (3 <=> there is an isomorphism between T^ and T'p.

There are at most 2**° many members in an equivalence class [<*]~, as there are 2H° many

permutations of A*, and therefore at most 2N° many different isomorphic images of T1^.

As 2H° x 2*° = 2N°, while 22*0 > 2H°, there must be 22*0 many equivalence classes over

~ , and therefore 22 ° many isomorphism types of homogeneous families over A*. Q) 4 2

We prepare for the proof lemma 4.1. Before plunging into the formalism, let us state

the idea behind the proof. We use the set of demands over a family and the free group

associated with this set to construct a successful extention in which the automorphisms

act freely. Thus, we can control sets in the orbit of an "old" set so that their intersections

with the "old" set is either finite or "old".

We need some notation: Let FG(D) be the free group over the set D = D(T) for

some family T. If T is countable, this group is also countable. We view FG(D) as the

collection of all reduced words in the alphabet C = D U {d"1 : d G JD} (a word is reduced

if there is no occurrence of dd"1 or d"1d in it) and the group operation, denoted by o, is

juxtaposition and cancellation (so w\ o w2 is a reduced word, and its length may be strictly

smaller than lgt^i + lg ̂ 2)- We let c range over the alphabet C, and let c"1 denote d"1

if c = d or d if c = dT1. We denote by e the unit of the free group, which is the empty

sequence (). For convenient discussion we also adopt the notation hc and / c , by which we

mean hd and fd if c = d and the respective inverses (h*)"1 and ( /d )~ a otherwise. Now we

can define:

4.3 Definition: Suppose that T = (T» : (i G / ) ;$ ; ) is a successful direct system of

multi-embeddings. For every j G / :

(1) A homomorphism (j : FG(D;) -> Gj is defined by ^(d) := (pj($(d)).

(2) We call a word w = Co . . . c* G FG(Dj) new ifci is not in the range of$\ for all I < k

and alii < j . A word w G FG(Dj) is old if it is in the range of^\ for some i < j .

(3) For a word w G FG{Dj) and X G Ti we define what fw(X) is. Let w = wowx ...wi

where for each k < I the word Wk is either new or old. For a new word Wk = <Pk . . . c£

we denote by fWk the composition / c* . . . /C2. If this composition is empty, we say



that fWk is not defined. Ifwk is old, then £j(w) G Aut (^ ) and induces a 1-1 function

fWk : Tj —» Tj. Let fw be the composition f w i . . . fw°. If this composition is empty,

we say that fw is not defined.

(4) Analogously to the definition in (3), we define hw.

To prove lemma 4.1 we need an expansion of the technique of direct limits by some

more structure. This is needed to enable us to handle uncountably many demands by

adding just countably many points. We first define (a particular case of) inverse systems.

Then we form direct limits of inverse systems to obtain a pair of sets as required by the

lemma.

4.4 Definition: a sequence T = (Tm : m < v), where Tm = (Arn,Jrm,Dm
9G

m, (pm), is

called an inverse system if:

(1) Fm C V(Am), D = D(Am,Jrm), Gm C Aut(.Fm) and (p™ : FG(Dm) -> Gm is a

partial satisfying homomorphism.

(2) A171 and T™ are countable

For m <mf

(3) Am C A™'

(4) rc{in4m:iefm'}

(5) Gm C {g\Am :geGm\g\Am€ Sym(ylm)}

For a demand d € D m ' we define d\Am iffdomhd U ra.nhd C Am and for every distinct

X, Y € domfd U ran/** the sets XnAm and Y D Am are distinct. When d\Am is defined,

hdtAm = hd and fd(Am is obtained from fd by replacing every X 6 dom/d U ran/d by

Xr\Am. Clearly, when d\Am is defined, it belongs to Dm, and every d G Dm equals d'\Am

for some df G Dm' by (3) and (4).

Ifw = co...ck€ FG(Dm') and Ci\Am is defined for every i < k, we define w\Am as

CQ p l m . . . Ck \Am (it is obvious what cf>lm is). The restriction \ is a partial homomorphism

from FG(Dm ') onto FG(Z)m). The last condition is

(6) Ifd G domy>m' and d\Am is defined, then d\Am G dom^m and ^m(df^lm) = ^(d) p l m

(the operation of(prn'(d) on Am depends only on d\Am when dfam is defined).

4.5 Definition: Given an inverse system T = (Tm : m < u)) we define the inverse limit

UmT = T* = {A*,T*,D*,G\<p*) as follows:

(*) ^ = Um^m-
For every x G A* let m(x) be the least m such that x G A171.

10



(b) r = { X C A * : (X CiAm € Tm) for all but finitely many m). For X G T* we let

m(X) be t ie least such that XC\Am e F™ for every m > m(X).

We call X € T* bounded if X C Am for some m.

(c) G* = {g e Sym(A*) : (g\Am € Gm) for all but finitely many m}. Let m(g) be the

least such that g\Am € Gm for every m > mg.

It is easy to verify that G* C Aut(^*).

(d) D* = D(F*)

It is easy to verify that for every d* € D* there is some m(d*) such that for all

m > m(d*) it b true that d*\Am is defined, and d*\Am e Dm.

(e) (p*(d*) = Um^rn,. Vm(d* t^m) and is defined iff d* \Am € domv?m for all m> md>

4.6 Definition: Suppose that To = {TQ1 : m < u) and Ti = (T^ : m < u) are inverse

systems, and let UmT0 = To = ( j l o ^ A h G W v i ) andlimT! = Ti = (A1,Ti,Di,Gi,(pi)
m

be their respective inverse limits. We call a sequence ($ : T™ —> Tf1 : m < u>) of multi-

embeddings an inverse system of multi-embeddings if for m <m! we have:

(2) $ (X) \A? = $(X n Atf) for every X e T?' for which X D Atf G

(3) 1 (g)\Af = $((/[io
m) for every g 6 G% for which g\A% G Gm

When ($ : T™ —» TJ11 : m < a;) is an inverse system of multi-embeddings we define a
m

multi-embedding $ = lim$ : To —> T\ as follows:

(P ^ ) for p € G5
m

Call $ = lim$ a multi-embedding of inverse systems.

4.7 Claim: If To = (Tg1 : m < u} and Ti = (Tf1 : m < a;} are inverse system and

($ : TQ71 —> T p : m < u) is an inverse system of multi-embeddings such that every $ is
m

successful, then $ = lim $ is also successful.4

Proof. Suppose that d G Do and we shall show that $(d) G dom^i. There is some m^ such
m m

that for all m > m^ the restriction d\Am is defined. As $ is successful, $(dfAm) belongs

to domip™ for m > md. Therefore <pi(\Jfn>ntd $(d\Am) = (pi($(d)) exists and belongs to

G\. ©4.7

11



We shall construct a two dimensional system T = (T™ : n,m < u) and successful
m

multi-embeddings $£+ 1 : T™ -> T ^ such that for every n,

(1) T n = (T™ : m < u) is an inverse system.

(2) ($n+1 iTn <UJ) is an inverse system of successful multi-embeddings.

Then a direct system will result: Tn = limTn and $£+ 1

Let To
m = (m + 1,-P(m + l),D(V(m + l)),{id},{(e,id)}). Clearly, To = UmT0 =

Suppose now that Tn = limT™ is defined, where T™ = (A^,T^,D^,G^,(p^), and
tn

that $£_! = lim$£_1 is also defined (when n > 0)

We assume, for simplicity, that $£-i f^n-i = id (if n > 0) and, furthermore, iden-

tify FG(£>£L2) with its image under 5£-i> and write FG(I?^L1) C FG(JD^) as well as

FG(Dn-i) C FG(Z?n). Thus, the new words of FG(JDn) coincide with FG(Dn \ Z)n-i),

and similarly for FG(D^).

Let (Jm-^n* ^ e the disjoint union of Z?£\ We view An as a subset of the following

set Bn+i = {xw : x € An,w € FG(\JmD™)}. The expression xw is the formal string

XCQ . . . cw where w = CQ ..., c^, and a; is identified with xe (where e is the empty string).
4.8 Fact: Bn+\ is countable.

The fact holds because each D™ is countable.

Now define B^ = {xt^ :xeA™,w£ F G ( U m . < m ^ ' ) } . Clearly, ^ C J9^+1.

Next we define an operation fn+i(c) : Bn+i —> Bn + i for every c € Z>n (there are, of

course, uncountably many c-s!).

We want that £n+i(c)fl?£+1 to depend only on c\A% whenever c\A% is defined.

If x 6 dom/ic, we let £n+i(c)(x) = hc(x).

For all other points in J9n+i, we let ^n+i(c)(xt^) = xw o (c\A™) if m is the least such

that xw € B™ and c\A^(e C2
m) is defined.

There is a unique extension of £n+i to a homomorphism from FG(J9n) to Sym(2?n+i),

which we also call £n+i-

4.9 Claim: For every w e FG(Dn) there is some m(w) such that:

(1) ££1^ is invariant under £n+i(w) for all m> mw.

(2) Ifw T£ e then for every xv € Bn+i \ A™w, we have £n+i{w)(xv) = xv o w ^ xv.

Proof. (1) is clear from the definition. For (2) notice that if cfAJ1 is defined then the

finitely many points in domhc belong to Afi1. Then £n+i(c)(xv) = xv o (
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Prom 4.9 (2) it follows readily that £n+i is, in fact a monomorphism, as for every

w £ FG(do) there is some mw for which wlA™ is defined.

Let ?n + 1(ctA^) = fn+i(c)r£n+i for all c G Dn for which c\A% is defined.

Now we can define An+i = {£n+i(w)(x) : x 6 An,w G FG(Dn)} and A™+1 = An H
m

B™+x = {£(w)(x) : x e Aff.w G FG(D^). (We remark that An+X ^ £n+i, because when

x € dom/ic, the point xc $ An+x)-

Clearly, An + i is invariant under £n+i(w) for every w € FG(Dn), and also A™+a is, if

w \A™W is defined.

Having defined An+x we let $£+ 1 : A™ —̂  AJ^+1 be the identity. Therefore also

$£+ 1 \An is the identity.

Now let us define $£+ 1 \T£. For every X e F™ and xto e AJ^+1 we determine whether

xw € $n+ 1(^0 by induction on the length of w.

If lg w = 0 then necessarily xw = x, and we let x G $o(-^O ^ ^ € -^ for every X G J7^

and x € A™.

Suppose that this is done for all words of length k and that lg we = fc + 1.
Distinguish two cases: when c is old and when c is new.

First case: c is old, namely c € C^LX (this case does not exist when n = 0). Here we

have that £n(c) = ^n(c) is defined, and is an automorphism of T™. Let xwc G $

Second case: c is new. Let xwc € I s + 1 ( * ) <* aw € Sn+1(/cl(-X"))- In t h e ri6ht

hand side we mean that /c~ (X) is defined and xw 6 $£ + 1 ( / c

Now we can set $?+1(X) = lL>m(X) ^ n + 1 ^ H A™.

4.10 Fact: For every old w G FG(Pn) and every X e F n it ioJds that $%+l ((pn(w)[X]) =

tn+iiwWpHX)] (rule (c) in 2.1).

The proof of the fact is straightforward using induction on word length.

4.11 Claim: For every w € FG(Dn) and every X g f B there is m > mw such that

(1) fw(X) is defined iff fw1A~ (X n A™) is defined

(2) fw~x (X) is defined iff fw~' rA» (X n A^) is defined

(3) for every x G An with m{x) > m, £n+i(w)(x) = x{w\A™(x)) € K+H*) ** x e

Z^"1 (X) CwJiere by « € / ^ ( X ) we mean that fw~* (X) is defined and x € / "" ' (X)) .

Proof. If /W(X) is defined, then / * ^ r (XflA^) is defined whenever tof-A^ is defined and

equals fw(X)nA™. Conversely, if fw(X) is not defined, then there is some m>mw such
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that X<~\A% ^ Y n A™ for all Y € dom™ (if there is one X for which fw(X) is not defined,

then domfw is necessarily finite) and therefore fw*A™ (X D A%) is not defined.

Prom the definition of £n+i and m(x) > mw it follows that fn+i(x) = x{w\A™).

From the definition of $%+1\Tn it is immediate that x(w\A%) G $£+1(A") <* x €

©4.11

4.12 Fact: $£+ 1(X) n 4™+1 depends only onXnA™ whenever XDA™ e T™. Q> 4 12

Now we can define ^ n + 1 = {^n+1(W)[$^+1(X)] : X G ̂ n ,w € FG(Dn)}.

Let JF- , = {U+1(w)(X): X G ̂ + 1 , W G FG(D~)}.

4.13 Claim: J ^ . j is countable for every m.

Proof: The fact follows by the countability ofFG(D™) and 4.12. Q 4 1 3

We finished defining Tn+i and ($£+1 : m < a;), and verified that Tn+i is an inverse

system, that (ijj*1 : m < u) is an inverse system of successful multi-embedding and that,

consequently, $JJ+1 : Tn —* Tn+\ is a multi-embedding of inverse systems.

Let T* = (A*,^7*, J9*,G*,y>*) = limTn. We show that the conclusion of lemma 4.1

holds for the pair of sets AQ and A*. Clearly, these sets are countable and A$ C A*. So

all we need is:

4.14 Claim: For every family T C V{A§) which includes Fin(j4o) there is a homogeneous

family T1 C T* such that T^AQ = T.

Proof. Suppose that T C V(Ao) is a family which includes Fin(>lo). We work by induction

on n and define T'n C V(An) for every n:

(2) K+i = tol^W]: ^ € FG^TO), JT G ̂ }
Let r = {$n(X) : X G J^}.

We claim that

(a) T' C "̂* and <p* \D(T') testifies that T' is homogeneous.

(b) {XnA0:XeJr'}= T.

To prove (a) suppose that d G Dtf1) is a demand. Then there is some n and a demand

dn G D(F'n) such that $n(dn) = d. As $^+1 is successful, £n{d) = <pn+1 ($^+1 (*»)) == P

is defined. Now $n+i(^) = y>*(d) satisfies rf and is an automorphism of T*. Why is it also

an automorphism of T'l Because of (2) above.

To prove (b) we notice that it is enough to prove by induction that for every n and

X G T'n+i, we have

14



(*)n X PI An G Tn or is bounded.

For then it follows by induction that X 0 Ao G T for every n and X £ Tn\ if

X f l A n 6 f n w e have that X n A o G J7 by the induction; if X D An is bounded, then

X H Ao is finite and again in T.

So let us prove (*)n. We have to show that for every w G FG(Dn) and every X € Tn

the set fn+i[$J£+1(X)] n An belongs to Tn or is bounded. We show something stronger.

(**)n For every X G Tn and w G FG(£>(j;)) if /W(X) is defined then ^n+1[$^+1(X)] =

• ^ ( / " ( X ) ) (and therefore U+ilK*1 (*)] HAn = $£+ 1 ( /"(*)) n An = /«(X) €
^ ) . If /W(X) is not defined, then f n + ^ + H * ) ] n An is bounded.

Suppose first that fw(X) is defined. Then obviously it belongs to T!^ because w G

FG(D{Tn)). It is easy to check that Zn+i(™)(xv) G $£+ 1 ( /"(*)) & xv G

So assume that fw(X) is not defined, and we want to prove that £n+i(

An is bounded.

If fw(X) is not defined, then X £ T&nfw~ . It is sufficient to see that the set

is bounded, because this set equals £n+i(tt;)[$£+1(J\T)] fl An. By 4.11 there is a large

enough m > m(w) such that for all x G An with m(x) > m we have that

= Tn+ i (x) = x(w\A^) G T ^ 1 ^ O A***) «> x G

, . - 1

But / w (X) is not defined, and therefore £n+i(w)(z) ^ $£+1(X) for all x G An with

m(x) > m, which is what we wanted. (Q) 4 \

We give a corollary of this proof.

4.15 Corollary: There is a collection of 22 ° permutation groups overu, (Ga : a < 22 °)

such that;

(1) Every Ga is isomorphic to the free group on 2Ho generators.

(2) Every Ga testifies the homogeneity of some family T& C V(v)

(3) Ifa<(3< 2K°, then Ga and Gp are not isomorphic as permuatatio groups.

Proof. We have shown that there are 22*0 many homogeneous sub-families of F*, F^ for

a < 22*0. The restriction of cp* to FG(D(A*,J7
Q)) is a monomorphism of the free group

over a set of cardinality 2*° into G* which testifies homogeneity of T&. This gives us
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22 ° different groups satisfying (1) and (2) in the corollary. To obtain (3), divide by the

relation "isomorphic via a permutation of u/", and pick a member from every equivalence

class. As in each class there are 2H° many members at the most, we get that there are

22 ° classes. @ 4 15

We now wish to show that there is no homogeneous family over u) such that every

homogeneous family over u is isomorphic to one of its subfamilies. This will follow from

the next lemma about the number of pairwise incompatible homogeneous families over a

countable set. Two families over u) are incompatible if for some X C cv the set X belongs

to one family while the set u \ X belongs to the other. For every X C u) let us denote

X° := X and X1 := u \ X.

4.16 Lemma: There is a collection {Fa : a < 22*0} of pairwise incompatible homoge-

neous families over u).

4.17 Corollary: There is no homogeneous family over u such that every homogeneous

family over u> is isomorphic to one of its subfamilies.

Proof, (of Corollary) Suppose to the contrary that J7* is a homogeneous family over CJ with

this property. By Lemma 4.16 pick a collection {FQ : a < 22 °} of pairwise incompatible

homogeneous families over u. For each a < 22 ° fix a permutation aa which embeds Fa

in T*. By the pigeon hole principle there are a < (3 < 22 ° and a permutation a such that

aa = ap = a. As T& and Tp are incompatible, let us find a set X C cu such that X° e Fa

and X1 e Pp. Now aQ(X°) = a(X°) e T\ and up{X
l) = a{Xl) € T*. This means that

in T* there is a set and its complement. This contradicts Theorem 1.4 that states that

there is no homogeneous family over u that contains a set and its complement. @ 4 17

We prove now lemma 4.16.

Proof. We use the direct system of inverse systems from the proof of lemma 4.1. The

pairwise disjoint families will be over A* rather than over a>, but as this is a countable set

this makes no difference.

Let the variable 7/ range over the set of all functions TJ : V(Ao) —• 2 which satisfy

ri{X) + rj(Ao \ X) = 1 for all X C i 0 . These are functions that select exactly one element

from each pair of a set and its complement (for example, characteristic functions of ultra

filters). There are 22 ° such functions.

For every function TJ : V(A0) -> 2 as above let J* = {X C Ao : r)(X) = 1}. The

collection {Tv : TJ : V(Ao) —» 2} is a collection of 22 ° pairwise incompatible families over
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Ao- For every m < u let J^ 'm be the projection of Tv on A™.

We know that for every T^ there is a homogeneous family T't] over A* whose projection

on AQ equals Tn (modulo finite sets). However, it is NOT true that {T^ : rj: V(Ao) —* 2}

is a collection of pairwise incompatible families. In fact, $Q(X°) D $Q(X1) is not empty

for every X C AQ.

What we shall do now is refine the extension operation is such a way that not only

the projection on Ao is preserved, but also the disjointness of X° and X1. This will be

achieved by removing some of the points of A*.

We define by induction on n a subset Dn C Dn and a subset En C An. Restricting

ourselves to the points of E = | J n En will provide the desired conservation property.

Let Eo = -Ao. Let Do = \JVD(EO,J^).

4.18 Fact:If d € Do then for no X C Ao is it true that both X°,Xl belong to ran/d .

We remove, thus, from the collection of demands all demands which mention simul-

taneously a set and its complement in their range.

Let us now define E\ as follows:

Ei = {xw :xeEo,w = co...ck€ FG(M Z)™) & x i dom/c°}

The variation on to the proof of 4.1 is that only a proper subset of words is being

used. Hence, E\ C A\

4.19 Claim: For every X C Ao it holds that $J(X°) n $l(xl) n Ei = 0.

Proof. By induction on the length of w G FG(\JmD^) we shall see that xw $ $l(X°) n

If lgw = 0 then xw = x G Eo = Ao. As *J(X) n Ao = X for all X, it follows that

Now suppose that lgtuc = k + 1. By the definition of the G relation over the set A\

we know that xwc G $J(X°) iff there is some Y such that xw G *J(y) and fc(Y) = X°.

Similarly, xwc G ̂ oC^1) i f f t h e r e ** some Z s u c h t h a t xw € $h(z) ^ d / c ( 2 ) = x*• B u t

X° and X1 cannot both appear in ran/c because c G D™. Therefore xwc is not in the

intersection. © 4.19

Now we should notice that E\ is invariant under (,\{w) for all w G YG(DQ). Also, for

every w G FG(D0) and every XCEoit holds that ei(w)[$S(X0)]n6(w)[$S(A:1)nE1 = 0.

Let JFJ = {6(t«)[$S(X)] : X G F0,w G Do}.
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We proceed by induction on n, defining Dn and En+i for all n > 0.

First, let us view each 77 : V(Eo) -> 2 as a partial function 7/ : T\ —• 2 by replacing

every X C 2£0 by $o(^O- Next extend each 77 to contain ^1 in its domain, demanding that

We refer to the resulting extended function also as 77 to avoid cumbersome notation.

For every 77 let Tn,\ = {X e Fi : t](X) = 1}.

Now define Dx = \JvD(FvA).

Define 2?n+i e'z ,Fn+i as before. We should check the following:

4.20 Claim: For all X € fn it holds that $£+1(*°) n K+H*1) n En+1 = 0.

Proof. By induction of word length. The case which should be added to the proof of 4.19

is the case when c as old, and is easily verified.

Having done the induction, we set E = (Jn En. For every 77: V(EQ) —* 2 let T'n be the

homogeneous family obtained from Tn as in the proof of 4.1. The reader will verify that

(1) For every X C Eo it holds that $0(*°) n ^oC^1) n E = 0

(2) For every 77: V(EQ) —* 2 the family -F f̂-E is homogeneous.

This completes the proof. © 4.16
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