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Abstract
This is a description of TPS, a theorem proving system for classical type theory (Church's typed

A,-calculus). TPS has been designed to be a general research tool for manipulating wffs of first- and
higher-order logic, and searching for proofs of such wffs interactively or automatically, or in a
combination of these modes. An important feature of TPS is the ability to translate between
expansion proofs and natural deduction proofs. Examples of theorems which TPS can prove
completely automatically are given to illustrate certain aspects of TPS's behavior and problems of
theorem proving in higher-order logic.
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1. Introduction
TPS is a theorem proving system for classical type theory (Church's typed X-calculus [19])

which has been under development at Carnegie Mellon University for a number of years.4 This
paper gives a general description of TPS, serves as a report on our implementations of ideas which
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were discussed in previous papers, and illuminates what can be accomplished using these ideas. Many
of the ideas underlying TPS are summarized in [8], with which we shall assume familiarity.

We start with a brief history of the TPS project
TPS is based on an approach to automated theorem proving called the mating method [5], which

is essentially the same as the connection method developed independently by Bibel [13]. The mating
method arose from reflections [3] on what a proof by resolution [48] reveals about the logical
structure of the theorem being proved, but a distinguishing characteristic of the mating method is that
it does not require reduction to clausal form.

Matings provide significant insight into the logical structure of theorems, but it is not always
easy for people to grasp them intuitively or to relate them to other approaches to theorem proving, so
a procedure for automatically transforming acceptable matings into proofs in natural deduction style
was developed [4]. The ideas in [5], [4], and [30] were implemented in a theorem proving system
which we now call TPSl. This was described in [35] and [6]. It automatically proved certain
theorems of type theory (higher-order logic) as well as first-order logic, and embodied a proof
procedure which was in principle complete for first-order logic, though not for type theory.

As a start toward extending of the mating method to a complete method for proving theorems of
higher-order logic, it was shown in [6] that a sentence is a theorem of elementary type theory (the
system of [1] and [2]) if and only if it has a tautologous development, where a development is the
analogue of a Herbrand expansion of a sentence of first-order logic. Once one has found a
tautologous development for a theorem, one can construct a proof of it in natural deduction style
without further search. Thus, the problem of finding proofs for theorems of higher-order logic can be
reduced to the problem of finding tautologous developments for them, and the search can be carried
on in a context where one can hope to analyze the essential logical structure of the theorem.

Dale Miller explored this subject more deeply, proved an analogue of the metatheorem
mentioned above in which the notion of a development was replaced by that of an expansion proof,
gave the details of an explicit algorithm for converting expansion proofs into natural deduction
proofs, and proved it correct. An expansion proof is an elegant and concise representation of a
theorem of type theory, its tautologous development, and the relation between them. Matings are
naturally embedded in expansion proofs, and Miller's work [36], [37], [38] provided a firm
theoretical foundation for the extension of the matings approach to theorem proving from first-order
logic to higher-order logic.

In [43] and [44] it was shown how to translate natural deduction proofs into expansion proofs,
and an improved method of translating expansion proofs into natural deduction proofs was given.
The papers [44] and [45] also contain discussions of equality and extensionality, and methods of
generating more elegant natural deduction proofs.

About 1985 work started on the design and implementation of a completely new version of TPS
to accommodate the transition from general matings to expansion proofs, take advantage of new
versions of Lisp and new computers, and incorporate various improvements in the program. The
initial woric was done in MacLisp, yielding a program called TPS2, and this was later translated into
Common Lisp to create the current version of TPS, which is called TPS3. TPS3 owes a great deal to
the work Dale Miller did on TPSl in addition to his theoretical contributions. Cari Klapper also
contributed to the development of TPS3. Henceforth we refer to TPS3 simply as TPS, since the
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previous versions of TPS are now obsolete.
The desirability of finding a search procedure in which expansions of the formula are motivated

by the needs of the matingsearch process has long been evident In [31] and [32] a malingsearch
procedure is described in which quantifier replications are localized to vertical paths (thus reducing
the enonnous growth in the number of paths which accompanies replications), and the replications for
each path are generated as needed to permit the construction of a mating which spans that path. The
search space grows and contracts as different vertical paths are considered. This procedure has been
implemented in TPS and has improved its speed very significantly.

TPS combines ideas from two fields which, regrettably, have not achieved much cross-
fertilization. On the one hand, there is the "traditional" work in first-order theorem proving using
such methods as resolution, model elimination, or connection graphs. On the other hand we find
4'avant-garde" proof-checkers and theorem provers for type theories of a variety of flavors, mostly
centered around interactive proof construction with the aid of tactics.

In traditional theorem provers for first-order logic, relatively little attention has been paid to
issues of human-computer interaction, but much attention has been paid to finding complete strategies
which can be implemented very efficiently using, for example, advanced indexing schemes. While
the use of first-order logic produces simplicity and efficiency in basic syntax and certain processes,
many theorems of mathematics and other disciplines can be expressed very simply in type theory, but
only in a rather complex way in first-order logic. This complexity can enormously enlarge the search
space one confronts when one tries to proves these theorems.

On the other hand, tactic-based theorem provers, beginning with LCF [26] and including
systems such HOL [27], Nupri [20], the Calculus of Constructions [21], Isabelle [42] and IMPS [22],
have paid considerable attention to user interaction and to the problem of formulating and supporting
expressive languages for the formalization of mathematics. Techniques developed for first-order
theorem proving, however, have been essentially ignored with the exception of unification, which
now plays an important role in a number of these systems. Another point to note is that some of these
systems chose to work in constructive logics for a variety of reasons, and that classical theorem
proving techniques do not immediately apply in these circumstances. (Only recently has this gap
between classical and constructive theorem proving techniques begun to close [SO] [41].)

TPS unifies important ideas and concepts from both of these lines of research into a single
system. It is based on classical higher-order logic, in which much of mathematics can be formalized
very directly. It provides a natural deduction interface which can take advantage of the underlying
theorem proving engine (the matingsearch procedure). It employs higher-order unification, finds
instantiations for quantifiers on higher-order variables, and uses a machine-oriented representation of
the wff for the search process. It is the combination of these features which makes TPS unique. Of
course, the systems described in [11] and [17] also find proofs automatically by using techniques
which have essential relevance to higher-order logic. TPS is far from comprehensive and the systems
mentioned above have many other features which are not available in TPS. Perhaps closest in spirit to
TPS is the work by Helmink and Ahn [28], who have also proven significant theorems in type theory
(such as Cantor's theorem) completely automatically.



2. An Overview of TPS
Our experience has shown that even if one is primarily interested in the problem of proving

theorems automatically, one needs good interactive tools in order to efficiently investigate examples
which illuminate the fundamental logical problems of finding proofs. TPS has been designed to be a
general research tool for manipulating wffs of first- and higher-order logic, and searching for proofs
of such wffs interactively or automatically, or in a combination of these modes.

TPS handles two sorts of proofs:
1. Natural deduction proofs (natural deductions). These are human-readable (though at

present boringly detailed) formal proofs. Examples are given in the figures below. In
these examples we use Church's convention that a dot in a wff stands for a left bracket
whose mate is as far to the right as is consistent with the pairing of brackets already
present and the well-formedness of the formula. See [4] or [7] for more details about
this formulation of natural deduction.

2. Expansion proofs. These are described briefly in [8], and studied in [36], [37], [38],
[43], [44], and [45]. The structure of an expansion proof is closely and directly related

to the structure of the theorem it establishes, and provides a context for search which
facilitates concentrating on the essential logical structure of the theorem. At the same
time, it abstracts from many details of concrete deductions. This balance between
preservation of formula structure (compared to resolution refutations, for example) and
abstraction of proof structure (compared to sequent derivations, for example) makes
expansion proofs universal structures for cut-free (or normal) proofs. Wallen
[50] provides further evidence for this by showing how expansion proofs can be

adapted naturally to non-classical logics. Despite their many advantages, expansion
proofs have a severe deficiency in that they are distant from formats which can be used
effectively by humans.

TPS has facilities for searching for expansion proofs automatically or interactively, translating
these into natural deduction proofs, constructing natural deduction proofs interactively, translating
natural deduction proofs which are in normal form into expansion proofs, and solving unification
problems in higher-order logic, as well as a variety of utilities designed to facilitate research and
efficient interaction with the program.

The ability to translate between expansion proofs and natural deduction proofs is one of the
important and attractive features of TPS. It permits both humans and computers to work in contexts
which are appropriate to them. Also, we are much more confident that TPS has correctly proved a
theorem when it presents us with a proof in natural deduction style than we would be if it simply
indicated that it had found an expansion proof.

TPS has a number of top levels, each with its own commands. The main top level is for
constructing natural deduction proofs, and there are others devoted to matings and expansion proofs
and to higher-order unification problems. Another top level is a formula editor which facilitates
constructing new wffs from others already known to TPS. There are editor commands for
^-conversion, Skolemization, transforming to normal forms, expanding abbreviations, counting
vertical and horizontal paths, and many other manipulations of wffs. When one enters the editor,
windows display the formula being edited and the particular part of the wff one is focused on.

Many aspects of the program's behavior can be controlled by setting flags, and there are over



250 of these flags. TPS has a top level called Review for examining and changing the settings of
flags, and for defining and reusing groups of flag settings called modes.

Still another top level is a library facility for saving and displaying wffs, definitions, modes, and
disagreement pairs for higher-order unification problems. Definitions can be polymorphic (i.e.,
contain type variables), and can contain other definitions to any level of nesting. When TPS retrieves
a definition or theorem, it retrieves all the necessary subsidiary definitions. When TPS finishes
proving a theorem, information about the heuristics used and statistics about the search can be stored
automatically with the theorem in the library.

Yet another top level, called Test, permits one to set up experiments in which TPS will
automatically try to prove a theorem a number of times, with different modes for each run, and record
which mode produces the quickest proof. This top level is still rather unsophisticated.

TPS uses a type inference mechanism based on an algorithm by Milner [39] as modified by Dan
Leivant. For example, we supply the following description of a wff: tfa subset b and f(DB)[g x(G)]
in a implies b union c = d". The notation f(DB) means that f has type (8p), i.e., that it is a function
mapping objects of type p to objects of type 5. Similaiiy, the notation x(G) means that x has type y.
From this information TPS determines the types of the function g and the sets a, b, c, and d, and (if
one is using the XI1 window system on one's workstation) prints the wff as

TPS understands various conventions for omitting brackets, but by changing a suitable flag one can
make TPS print the wff above as

One can also eliminate the display of type symbols (which is particularly appropriate when displaying
wffs of first-order logic).

When one wishes TPS to prove a theorem automatically, one presents the theorem to TPS in the
readable form illustrated above (and in the examples in section 6), and all the processing necessary to
put the theorem into the form used by the search process is done automatically.

TPS can display wffs in the two-dimensional format (called a vpform) which was introduced in
[5] to help one visualize the vertical paths through the wff. Examples are given in Figures 5-3 and

5-4 below.
Proofs in natural deduction style can be printed in files which are processed by Scribe or Tex, so

that familiar notations of logic appear in printed proofs as well as in wffs displayed on the screen.
When one is working to construct a proof interactively, the proof can be displayed in a window

called a proofwindow, which is updated automatically whenever a command which changes the proof
is executed. Another proofwindow displays only the "active lines'* of the proof, so that one can
concentrate on the essentials of the problem. One can work forwards, backwards, or in a combination
of these modes, and one can easily rearrange proofs and delete parts of proofs. One can save
complete or incomplete proofs in files, and read them in at another time to continue work. One can
also save the entire sequence of commands one has executed, and re-execute them later.

When one is trying to understand someone else's natural-deduction proof intuitively, it is
sometimes more informative to watch the proof being constructed (working backwards and forwards
at appropriate times) than to read the finished proof. One can arrange to have TPS translate an



expansion proof into a natural deduction proof one step at a time, each prompted by the user, so that
one can watch the natural deduction proof growing in the proofwindows at one's leisure.

Online help is available for all commands, as well as for their arguments. Considerable
documentation [9], [10], [14], [33], [40], [46] has been written, though more is needed. The Facilities
Guides arc produced automatically.

For a number of years the purely interactive facilities of TPS have been used under the name
ETPS (Educational Theorem Proving System) by students in logic courses at Carnegie Mellon to
construct natural deduction proofs. ETPS permits students to concentrate on basic decisions about
applying rules of inference while constructing formal proofs, gives them immediate feedback for both
correct and incorrect actions, and relieves them of many of the trivial and burdensome details of
writing proofs. After reviewing eight programs which support the teaching of logic, the authors of
[25] (which was partially reprinted in [24]) concluded Tor elementary and advanced courses in

mathematical logic for students with a formal background, we choose ETPS, a powerful tool that is
also easy to learn."

If the teacher of a course using ETPS wishes to use a set of rules of inference which is different
from the set which comes with the program, it is quite easy to do this by using what is called the
RULES module of TPS. One simply describes the new rules in a simple lisp meta-language (using the
existing rules as examples), and uses commands in TPS to create the lisp code for executing these
commands. (Of course, much more work would be required if one also wished to be able to
automatically translate expansion proofs into natural deductions using different rules.)

TPS is a large program whose uncompiled source code contains more than 103,000 lines
(including comments) and occupies about 3.75 megabytes. It is portable, runs in a variety of
implementations of Common Lisp, and has been distributed to a number of researchers.

3. Tactics and Proof Translations
The basic tools in TPS for automatically applying rules of inference to construct natural

deductions are tactics, which can be combined using tacticals [26]. A tactic examines a given goal
situation (the problem of deriving a conclusion from a set of assumptions) and reduces it to the
problem of solving a number of subgoals. This is done by applying rules of inference (forward or
backwards) to derive new proof lines or to justify certain lines of the proof while introducing other
lines which may still require justification.

One can use tactics to speed up the process of constructing proofs interactively. TPS has a
command called GO2 which calls a number of tactics to apply mundane rules of inference to
construct the easy parts of the proof, and quickly bring one to the point where some judgement and
insight are needed. The user can choose whether or not to be prompted for approval before each of
these tactics is applied.

The main use of tactics in TPS is to translate an expansion proof into a natural deduction by the
methods of [44]; in this context, the tactics can consult the expansion proof for useful information
through a number of predefined functions. We give two paradigmatic examples of such functions.

When proving a goal [A v B] from some assumptions, we may need to consult the expansion
proof to determine if A by itself already follows from the assumptions. If this is the case, we can
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apply disjunction introduction on the left. If not, the "disj-lefif tactic fails, i.e., it docs not apply. If it
and its dual "disj-right" both fail, we probably want to defer a decision on the goal and try to reason
forwards from the assumptions. For example, when proving [A v B] from [B v A], we need to
distinguish the two cases (either B or A), before we can proceed with the disjunction introduction in
the two subproofs. Expansion proofs arc crucial in determining such information, as in general it is
undecidable whether A or B follows directly. Other proof formats may also contain enough
information to answer such questions, but in many cases it is obscured by preprocessing or other
idiosyncrasies of various data structures devised for search.

Another example is a goal of the form 3xA. In this case, we can determine from the expansion
proof whether there is a substitution term t for x such that [t/x] A is provable from the current set of
assumptions. If so, we can derive the goal by existential generalization; otherwise, we might have to
postpone application of this rule. In some cases, the expansion proof might even indicate that only
the rule of indirect proof will make progress.

Basic tactics may check conditions on the expansion proof and apply appropriate inference
rules. They can be combined with other tactics in different ways which can lead to different styles of
proof construction. The current T P S system contains a number of basic styles which can additionally
be modified through flags. The styles differ in their preference for certain inference rules and in the
granularity of the rules applied. For example, one tactic applies Rule P [7], which uses arbitrary
prepositional tautologies, while another uses only simple rules of inference. Proofs constructed using
the latter tactic are more appropriate for students of logic early in their education, while those
constructed using the former are often more appropriate for mathematical arguments. Using the
former tactic, TPS produces a one-line proof of [[Po « QJ = Ro] = [P = [Q = R]], but when it uses the
latter, it produces a proof 170 lines long.

The currently implemented tactics almost always produce natural deductions in normal form.
This is the primary limitation of the current system, but it is cleariy a consequence of the basic
analytic structure of expansion proofs (and machine-generated proofs in general). The only exception
is the application of symmetric simplification [45] to introduce simple variations of the law of
excluded middle into the deduction.

T P S also partially implements a translation in the other direction, mapping normal natural
deductions into expansion proofs. The utility of this translation is severely limited by the current
restriction to normal deductions and has not been fully explored.

While considering how to translate expansion proofs into natural deductions, we have come to
consider various aspects of the question: "How can we take advantage of the information in an
expansion proof for a theorem A when constructing a natural deduction for A?" This emphasizes that
it is the form of the natural deduction which is of primary concern; it is not sufficient to simply
construct an arbitrary one from a given expansion proof.

Translating back and forth between natural deductions and expansion proofs can be used as a
mechanism for intelligent restructuring of natural deductions. This mechanism can transform the
structure of a natural deduction rather drastically. For example, the proof in Figure 3-1 was translated
into an expansion proof, and then back to a natural deduction using symmetric simplification to
produce the proof in Figure 3-2. The original proof consisted of a rather unintuitive, brute force,
indirect proof, while the transformed proof identifies the crucial case distinction which should be



made: either "F1 is true everywhere or not. An even simpler proof could have been obtained using
the lemma [Vx P x v 3x -P x], which is beyond the scope of our current methods. (See [45] for
further discussion.)

Figure 3-1: Original proof of X2119

(1) 1 f- ~3y Vx .P y 3 P x Assume negation
(2) 1 \- Vy .-Vx .P y 3 P x Neg: 1
(3) 1 f -Vx .P y1 3 P x UI: y1 2
(4) 1 f 3x .-.P y1 3 P x Neg: 3
(5) 1 f- -Vx .P y2 3 P x UI: y2 2
(6) 1,6 f- ~.P y1 =5 P y2 Choose: y2

(7) 1 \- 3x .-.P y2 3 P x Neg: 5
(8) 1,6,8 J- ~.P y2 3 P y 3 Choose: y3

(9) 1,6 f- P y1
 A -P y2 Neg: 6

(10) 1,6 f- P y1 Conj: 9
(11) 1,6 f -P y2 Conj: 9
(12) 1,6,8 f P y2

 A -P y3 Neg: 8
(13) 1,6,8 f P y2 Conj: 12
(14) 1,6,8 f -P y3 Conj: 12
(15) 1,6,8 f- 1 RuleP: 11 13
(16) 1,6 f- X RuleC: 7 15
(17) 1 f 1 RuleC: 4 16
(18) f 3y Vx .P y 3 P x Indirect: 17

Figure 3-2: Transformed proof of X2119

(1) f- Vx P x v -Vx P x RuleP
(2) 2 f- Vx P x Case 1: 1
(3) 2 f P w UI: w 2
(4) 2 f- P y1 3 P w Deduct: 3
(5) 2 \- Vw .P y1 3 P w UGen: w 4
(6) 2 f- Vx .P y1 3 P x AB: 5
(7) 2 f 3y Vx .P y 3 P x EGen: y1 6
(8) 8 f- -Vx P x Case 2: 1
(9) 9 f- -3y Vx .P y 3 P x Assume negation
(10) 10 t- -P y2 Assume negation
(11) 10 f- P y2 3 P x RuleP: 10
(12) 10 f Vx .P y2 3 P x UGen: x 11
(13) 10 f- 3y Vx .P y 3 P x EGen: y2 12
(14) 9,10 f- X NegElim: 9 13
(15) 9 f P y2 Indirect: 14
(16) 9 f- Vy 2 p y2 UGen: y2 15
(17) 9 f Vx P x AB: 16
(18) 8,9 f ± NegElim: 8 17
(19) 8 f- 3 y V x . P y 3 P x Indirec t : 18
(20) f- 3y Vx .P y 3 P x Cases: 1 7 19
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The equality relation is ubiquitous in mathematical reasoning, and special mechanisms for
dealing with equality, such as those in [23] and [49], are clearly needed. At present, TPS has no such
mechanisms, and simply defines equality by the Leibniz definition [Xxo Xyo Vq^ .q x D q y] or by
the extensional definition [Xx^ Xy^ Vzp.x z = y z ] for equality between functions or sets, and uses
ordinary laws of logic to prove results involving equality. An example of this is in Figure 3*3, where
we show the main part of a proof constructed automatically for THM104. (This theorem and the
definition of U are discussed further in section 6). In [44] it was shown how an expansion proof for a
theorem involving equality can be translated into a natural deduction containing traditional equality
inferences, and this has been implemented in TPS. The application of this feature is controlled by the
flag REMOVE-LEIBNIZ. Thus, when we change the value of this flag from NIL to T, the same
expansion proof which generated the natural deduction in Figure 3-3 generates the one in Figure 3-4.

Figure 3-3: Main part of proof of THM104 with REMOVE-LEIBNIZ set to NIL

(1) I f - U Xa - U Za Hyp
(2) I f Xya [Xa « y] - Xy . Za - y EquivWffs: 1
(3) 1 f- V q ^ j .q [Xya .Xa - y ] 3 q .Xy .Za - y E q u a l i t y : 2
(5) 1 f- [Xw^ .w Xo] [Xya .X - y] 3 [Xw .w X] .Xy .Zo - y

UI: [Xw^ .w Xa] 3
(6) I t - Xa - X 3 Za - X Lambda: 5
(7) \- q ^ Xa 3 q X RuleP
(8) f- Vq^ .q Xa 3 q X UGen: q^ 7
(9) \- Xa - X E q u a l i t y : 8
(10) 1 f Za - Xa MP: 9 6

Figure 3-4: Main part of proof of THM104 with REMOVE-LEIBNIZ set to T

(1) 1 f V Xa « U Zo Hyp
(2) I f Xya [Xa « y ] = Xy . Za « y EquivWffs: 1
(3) f- Xa * X A s s e r t REFL=
(4) f [Xya .Xa - y ] X Lambda: 3
(5) 1 \- [Xya •Za - y] Xa Subst*8: 4 2
(6) I f Ztt - Xa Lambda: 5

4. Automatic Search
When one asks TPS to find a proof for a theorem automatically, it starts out by searching for an

expansion proof of the theorem, and then translates this into a natural deduction proof. It sets up an
expansion tree to represent the wff, and searches for an acceptable mating [5] of its literals. (An
expansion tree which is appropriately expanded and has an acceptable mating is an expansion proof.)

The search process is controlled by a number of flags. Ideally, TPS would have heuristics to
decide how to set these flags, but at present the user does this interactively before starting the
automatic search. The flags provide a convenient way to explore many different aspects of the
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problem of searching for proofs.
When one is seeking an expansion proof for a theorem of higher-order logic, not all necessary

substitution terms can be generated by unification of formulas already present, so certain expansion
options [8] are applied to the expansion tree which represents the theorem. In [8] we discussed
expansion options which consisted of applying primitive substitutions to predicate variables. These
substitutions introduce a single quantifier or connective, and contain variables for which additional
substitutions can be made at a later stage. However, we do not yet have good heuristics to guide the
process of applying primitive substitutions incrementally, so we currently use a procedure which
introduces substitution terms containing more logical structure, and then searches for a mating
without making further substitutions for the variables in the substitution terms except as dictated by
the unifier associated with the mating. In order to limit the number of forms which must be
considered for the substitution terms, we often use (in addition to projections) terms whose bodies are
in prenex normal form with matrix in conjunctive or disjunctive normal form. We call these
substitutions gensubs (general substitutions). Primitive substitutions are special cases of gensubs.
The logical complexity of the gensubs which TPS will attempt to apply is limited by a flag called
MAX-PRIM-DEPTH. Examples of gensubs for r ^ ^ are given in Figure 4-1. The gensubs for a
variable are determined (up to renaming of auxiliary variables) by the type of the variable. Since a
gensub substitutes a term for just one variable, we shall sometimes use the name of the gensub to
denote the substitution term. The types of quantified variables in gensubs (such as p in the figure) are
chosen from a small fixed set of types which is specified as the value of the flag PRIM-BDTYPES.
One can permit TPS to apply a rather naive algorithm for choosing this set of types by setting another
flag, called PRIM-BDTYPES-AUTO.

Different sets of expansion options are applied to create different expansion trees which are all
subtrees of a master expansion tree. The sets of expansion options are generated in a systematic and
exhaustive way whose details are determined by certain flags. Thus a potentially infinite list of
subtrees is generated; smaller subtrees are explored before larger ones in an attempt to keep the
search space manageable. Of course, this blind generation of sets of expansion options is rather crude.
We look forward to the development of heuristics and metatheorems to improve the sophistication of
this process by guiding or restricting it

Before searching for an acceptable mating of the literals in a subtree, TPS converts the subtree
into an alternative representation called & jform (junctive form). If the connectives truth and falsehood
occur, they are eliminated, with appropriate adjustments in the jform corresponding to the relevant
laws of prepositional calculus. Then TPS tries to build up a mating which spans every vertical path
through the jform by progressively adding links to span the paths. When woiking on higher-order
theorems, it uses Huet's higher-order unification algorithm [30] to check the compatibility of the
connections in the partial mating. A unification tree is associated with the partial mating, and when a
new connection is added to the mating, the associated disagreement pair is added to all the leaves of
the unification tree. When incompatibilities are encountered, the process backtracks. Since higher-
order unification may not terminate, TPS is not permitted to generate nodes of the unification tree
with depth greater than the value of the flag MAX-SEARCH-DEPTH. (If this flag is set to a high
value, TPS will often spend an enormous amount of time generating higher-order unification search
trees.) The search for an acceptable mating within a given jform may not terminate, so when the time

T
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Figure 4-1: Gensubs for r
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Examples o f a d d i t i o n a l gensubs w i t h MAX-PRIM-DEPTH 3:

P13 Xw1^ Xw2p 3w% Vw6
p.

w l W 2 W S W 6 A y-4 5 w l W 2 W 5 W 6 i
w A x: opp^op) w w w w j

P16 X w ^ Xw2p Vw5p Vw%.

j l «_»2 , . .5 f-»6 v/ ^ 9
oppp(op)

A Jr60oPPP(oP) w l w 2 w 5 w 6 V r 6 1

A tr62oPPP(oP) w l w 2 w 5 w 6 V

spent on it reaches the value of the flag SEARCH-TIME-LIMIT, TPS temporarily abandons this
jform and tries another one. It may return to that jform later, but there is also a limit (specified by the
flag MAX-SEARCH-LIMIT) on the total amount of time whidti can be spent on searching for a proof
in any jform. Once an acceptable mating is found, it is converted into an expansion proof, which is
simplified by a process called merging, and then translated into a natural deduction proof.

Now that we have outlined the general procedure TPS uses to find a proof, let us illustrate the
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Figure 4-2: Outline of proof of X5310

(1) 1 f V r ^ j -VPop 3xp r p x 3 3jKo)}) V p r p . j p Hyp
(2) 1 f Vp^ 3xp [Xp Xyp .3x p x 3 p y] p x

3 3Jp<oP) VP I^P^y .3x p x 3 p y] p . j p
UI: [Xp^ Xyp.3xp p x => p y] 1

(3) 1 f Vp^ 3xp [3x p x 3 p x] 3 3jW o W Vp . 3 x p x s p . j p
Lambda: 2

• • •
(98) 1 f- 3 ^ VPop .3xp p x 3 p . j p PLAN3
(99) f- V r ^ ^ [VPop 3xp r p x 3 3jWoW Vp r p . j p]

3 3 j vp .3x p x 3 p . j p Deduct: 98
(100) f Vrofcop) I*** 3Y» r x y ^ » K O » Vx r x .f x]

3 3jWop) Vp^ .3xp p x 3 p . j p A B : 9 9

Figure 4-3: Substitution terms for r ^ ^ for proof of X5310

Original gensub:

P7 rlw 1 5Lw2 VW 4 T 1 2 W1 W2 W4 V r 1 3 w^ w2 w41

v i LAW ̂  A,w p vw p.r opp(op) w w w v r op^) w w w j

Result of substituting for the free variables of P7:

M [Xw1^ Xw2p Vw^.w
1 w2 v -w1 w4]

Alphabetic variant of M:

Ml [Xp^ Xyp Vxp.p y v ~p x]

Cruc i a l s u b s t i t u t i o n term in F igure 4 -2 :

N [Xp^ Xyp.3xp p x 3 p y]
use of gensubs by discussing how TPS proves theorem X5310, which may be found at the end of
section 6. In order to understand X5310 the reader is advised to first look at the companion theorem
X53O8. The outline of a simple proof of X5310 is in Figure 4-2. The theorem to be proved is in line
(100), but the alphabetic variant of it in (99) is easier to work with. The problem is to derive (98)
(which is the Axiom of Choice) from the hypothesis in (1). The key step is to instantiate the quantifier
Vro«op)in W ^ ^ ^ t c r m f̂ Pop typ-^Xp p x 3 p y]f which we shall call N. Doing this yields (3),
whose antecedent is easily provable, and whose consequent is (98).

In the search for a proof, TPS eventually considers the set of expansion options which simply
substitutes gensub P7 of Figure 4-1 (which is also displayed in Figure 4-3) for r ^ ^ . TPS finds an
acceptable mating of the associated jfonn, and applies the unifier associated with the mating to the
free variables r 1 2 ^ ^ and r 1 3 ^ ^ of P7 to obtain the wff M of Figure 4-3; an alphabetic variant of
this is the tenn with which TPS instantiates V r ^ ^ in the natural deduction proof. For convenience
we display the alphabetic variant Ml of M, which can be transfonned to the wff N mentioned above

I T
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by applying elementary logical equivalences.
Note that while the quantified variable in P7 occurs in both the left and the right scopes of the

disjunction, this is not the case for Ml. Thus the gensub P7 is truly a general wff which can take
several forms, one of which is M.

While the use of prenex normal forms in this context drastically reduces the number of sets of
expansion options which must be considered, and seems not to complicate the search for an
acceptable mating as long as the quantifiers thus introduced need not be duplicated, one does pay a
price for using the prenex formula M instead of the miniscope formula N. The natural deduction proof
for XS310 which TPS constructs is 57 lines long and is rather clumsy. It may be possible to remedy
this by modifying the procedure so that it repeats pan of the process after the correct instantiation
terms have been discovered and put into miniscope form.

As noted in [8], restricting expansion terms to some normal form may (depending on other
details of the implementation) entail loss of completeness of a proof procedure, but for the present we
are content to explore the benefits of using gensubs. Questions related to combining this method of
instantiating quantifiers on higher-order variables with other methods, such as those of [11], [16], and
[17], need further study. Some of the examples found in these papers are discussed below.

TPS can duplicate quantifiers during the search for a mating by using outermost-quantifier
duplication [5] or by using path-focused duplication [31]. It can also generate sets of expansion
options in several ways, and there are several implementations of both first- and higher-order
unification algorithms. These basic facilities are combined into a number of search procedures in
TPS. Much remains to be done in exploring the relative merits of various search techniques in
various situations, and strategies for systematically incrementing the flags which control the size of
the multi-dimensional search space.

Some of the search procedures in TPS take into account the fact that for any subformula of the
form [A v B], any path which passes through A has a variant which passes through B, and both of
these paths must be spanned by an acceptable mating. Therefore, when the matingsearch procedure
comes to B, if A has no mate, then no mate for B will be sought. Also, if A has a mate, but no mate
for B can be found, then the search will backtrack, throwing out the mate for A and all links which
were subsequently added to the mating.

Since the search procedures used by TPS treat the paths very systematically (and
unimaginatively) in their natural order, TPS requires very little space to keep track of what it has
done. (This may be contrasted, for example, with resolution systems which store vast numbers of
clauses). The higher-order unification procedure does introduce many auxiliary variables, but they
are used only briefly, and it was found that by simply uninteming them a great deal of space could be
reclaimed. Consequently, TPS can run for weeks without running out of space (particularly on
problems of first-order logic). However, for many theorems one clearly needs to use more flexible
heuristically-guided search procedures. It is a significant problem to find a good balance between
applying sophisticated search heuristics and limiting the amount of memory required to keep track of
the process of exploring the search space.

Following (and slightly extending) terminology introduced by Huet [30], we refer to literals
whose atoms are headed by predicate variables as flexible, and to literals whose atoms are headed by
predicate constants as rigid. In first-order logic all predicate symbols may be regarded as constants, so
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flexible literals need not be considered. However, they do frequently occur in higher-order logic, for
example when the Leibniz definition of equality is instantiated. Applications of gensubs to the head
variables of flexible literals create even more such literals. Since flexible literals can be mated with
arbitrary literals, the search space associated with finding an acceptable mating for a wff which
contains many such literals can be extremely large. Two heuristics, each controlled by a flag, are
available in TPS for trying to cope with this problem. First, the user can set the flag MAX-MATES to
limit the number of mates which any literal-occurrence may have. (It is fairly rare to encounter
examples of acceptable matings in which literals have many mates.) Since the algorithm for
constructing matings in TPS tries to span each path by mating the first available pair of literals, and a
flexible literal typically occurs on many paths, this limit quickly excludes from consideration many
matings which the unification process would find incompatible only after considerable work. Second,
one can rearrange the jform before the search for a mating commences. If the user sets the flag
ORDER-COMPONENTS to the value PREFER-RIGID1, TPS applies an algorithm to rearrange the
jform (using the commutativity and associativity of conjunction and disjunction) so that rigid literals
tend to be encountered by the search process before flexible literals; this postpones finding mates for
flexible literals until constraints introduced by mating other literals have been introduced.

Additional complexity arises when one mates a pair of flexible literals. Mating such a pair can
cause either literal to become the negation of the other (after substitution, ^-reduction, and
elimination of double negations). Both possibilities must be considered, since the variables in these
literals may occur in other literals too. When TPS considers adding such a pair to the mating, it puts a
disagreement pair corresponding to it into the leaves of the unification tree, and proceeds with the
unification process. If this process encounters a disagreement pair of the form <A, ~B>, where A
starts with a constant but B does not, it replaces this pair with <~A, B> and continues. Thus, in a very
economical fashion TPS finds which way of mating these literals is ultimately compatible with the
unification problem for the entire mating.

If one is working on a theorem which is too hard for TPS to prove all by itself, one can still use
the automatic facilities of TPS to provide assistance. One can use the interactive facilities of TPS
(supplemented by GO2) to develop the general outline of the proof in natural deduction style, and ask
TPS to help by automatically proving certain lines of the proof from other specified lines.

5. An Example
One of the most interesting theorems which TPS has proved automatically is THM15B:

Vfu.3gu [ITERATE+ f g A 3xl.g x = x A Vzt.g Z = Z D Z = X ] D 3y rf y = y
TPS takes about 2.5 hours to prove this theorem, which asserts that if some iterate of a function f has
a unique fixed point, then f has a fixed point (The definition of ITERATE* is in section 6.) The
theorem appears in [34], where it is pointed out that the theorem is useful in the theory of functional
equations. It was posed as a problem for theorem provers in [1], and it is gratifying that we are
finally able to prove it automatically. It is a hard theorem for TPS because so many flexible literals
are created when the definition of equality is instantiated.

The very natural though overly detailed proof which TPS finds is shown in Figures 5-1 and 5-2.
Let us summarize it by providing comments for some of the lines of the proof. TPS starts out by

IT
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Figure 5-1: Proof of THM15B - part 1

(1) 1 f 3gu . ITERATE+ fu g
A 3xx .g x - x A Vzt . g z = z D z = x Hyp

(2) 1,2 f ITERATE+ fu gu A 3xx .g x - x A Vzt .g z - z z> z - x
Choose: gtt 1

(3) 1,2 t- ITERATE+ fu gu RuleP: 2
(4) 1,2 \- 3 \ .gu x - x A Vzt .g z - z z> z = x RuleP: 2
(5) 1,2 f- VPo(u) .p fw A Vj u [p j => p Ax, f . j x] 3 p gtt

w EquivWffs: 3
(6) 1 , 2 ,6 f- gu xx = x A Vzt . g z - z 3 z - x Choose: xt 4
(7) 1 , 2 , 6 f- gu xx = x RuleP: 6
(8) 1 , 2 , 6 f Vzt .g a z • z D z - x, RuleP: 6
(9) 1 ,2 ,6 f gu [fu xl] = f x o f x = x UI: [fu xt] 8
(10) 1,2 \- [Xju VPW .P [fu . j x,] v -P . j . f x] f

A Vj [ [Xj VP .P [f . j x] v -P . j . f x] j
r> [Xj VP .P [f . j x] v -P . j . f x] .Xx f . j x]

3 [Xj VP .P [f . j x] v -P . j . f x] gtt

UI: [Xju VPW.P [fu. j x,] v - P . j . f x] 5
(11) 1,2 f VPW [P [fu . f xx] v -P . f . f x]

A Vj u [ VP [P [f . j x] v ~P . j .f x]
D V P .P [f . f . j x] v -P . f . j . f x]

z> VP .P [f .gu x ] v -P .g . f x Lambda: 10
(12) f Pw [ftt . f x j v ~P . f . f x RuleP
(13) f- VPW .P [fu , f x,] v -P . f . f x UGen: POT 12
(14) 14 f VPW .P [fu . j u xv] v -P . j . f x Hyp
(15) 14 f [Xwx W

9
W .fu w] [f . j n xx) v -[Xw W9 . f w] . j . f x

UI: [Xwt W
9 ^ . ^ w] 14

(16) 14 f W9 [fw . f . j u x j v -w9 . f . j . f x Lambda: 15
(17) 14 f V w \ .W9 [fu . f . j t t x,] v -W9 . f . j . f x UGen: W9

OT 16
(18) 14 \- VPW .P [fu . f . j n xx] v -P . f . j . f x AB: 17
(19) f VPW [P [fu . j u x j v -P . j . f x ]

=> VP .P [ f . f . j x] v -P . f . j . f x Deduct: 18
(20) \- Vj t t . VPM [P [fw . j x t] v ~P . j . f x]

•=> VP .P [f . f . j x] v -P . f . j . f x UGen: j u 19
(21) t- VPW [P [fu . f x l] v -P . f . f x ]

A V j u . VP [P [f . j x] v -P . j . f x ]
r> VP .P [f . f . j x ] v - p . f . j . f x

RuleP: 13 20
(22) 1 ,2 f VPW .P [fu .g t t x t] v ~P . g . f x MP: 21 11
(23) 1 ,2 \- gu [fw J^] - f [g x ] v - . g [f x ] - g . f x

UI: [-.gtt.fu xj 22
(24) 1,2,24 \- gu [fu xvl * f .g x Case 1: 23
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Figure 5-2: ProofofTHM15B-part2

(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

(35)

1,2,25
1,2,25
1,2,25
1 , 2
1 , 2 , 6
1 , 2 , 6
1 , 2 , 6
1 , 2
1

f

f
f

f
\-
f-

f

-T
gu [fu x%] = f
gw [fu x,] = f
gu [fu xj - f
£ V aes V

11 i

3Yi - f u y • y
3yx . fu y « y
3y . f y •= y

g .f x

.g x

.g x
X

3gu
 U[ ITERATE+ f u g

A 3xx

3 3yt . f y = y
Vf . 3gu [

3 3yt .f

.g x - x A Vzt .g z =

ITERATE+ f g
A 3xt .g x = x A Vzt

y - y

Case 2
Refl=
RuleP

: 23
: 25
: 26

Cases: 23 24 27
Subst=:

MP:
EGen: :

RuleC:
RuleC:

Z 3 Z — X]

Deduct

. g z = z 3 z =
UGen: i

28 7
29 9
KX 30
4 31
1 32

: 33

x ]
:u 34

assuming that g is an iterate of f,

(3) 1 ,2 J- ITERATE* fu gu RuleP: 2

that x is a fixed point of g,

(7) l r 2 , 6 f gu KX - x RuleP: 6

and that x is the only fixed point of g.

(8) 1 , 2 , 6 t- Vzt . g u z - z 3 z - x l RuleP: 6

In lines (5) and (10)-(28) TPS then gives an inductive proof, based on the definition in (3), of the fact
that

(28) 1 ,2 f- gu [fu xx] - f . g x C a s e s : 23 24 27

Of course, (28) follows from the fact that f commutes with all its iterates. No knowledge about
commutativity or iterates is built into TPS except the definition of ITERATE+. TPS decides to prove
(28) simply by applying general logical principles in its search for an expansion proof of the theorem.
From (7) and (28) TPS concludes that

(29) 1 , 2 , 6 f gtt [fu xx] - f x S u b s t - : 28 7

Line (29) shows that f x is also a fixed point of g, so it must be the same as x:

(9) 1 , 2 , 6 f gu [fu x j = f x 3 f x - x UI: [fu x j 8
(30) 1 , 2 , 6 f fu xt - x MP: 29 9

Thus x is a fixed point off.
It is natural to wonder how such a proof can be found, so let us see how TPS does this. In the

preprocessing stage, it negates the theorem and eliminates the definitions, obtaining:

F
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3f t t.3g t t [VPo(u) [p f A Vj t t [p j z> p.Xx, f . j x] 3 p g]
A 3x.g x = x
A Vzx.~[g z = z] v z « x]
A Vy t .~.f y - y
It then expands the equality formulas using the Leibniz definition, and puts the wff into negation
normal form, obtaining:

3f t t.3g t t [VPo(u) [-p f v 3 j u [p j A - p A x , f . j x] v p g]
A Sx.Vq^ [~q [g x] v q x]
A Vz t.3q [q [g z] A -q z] v Vq. -q z v q x]
A Vyt 3q .q [f y] A - q y

It then skolemizes the fonnula (using capital letters as skolem constants) and displays the fonnula
(with type symbols deleted) in a vpform which is shown in Figure 5-3.

Figure 5-3: Vpform forTHM15B

| V p 2

1 1
| ILEAF11
1 I-P2 F°
1 1
1 1

| VzC

1 1
1 1
1 1

1
1
1 •

1
1

v |

! ~ P 2

LEAF14
P2 [J° P 2 ]

LEAF15
[Xx1 F° . J° p 2 x1]

Vq°
| LEAF21 LEAF22 |
|~q° [G° X°] v q° X° |

LEAF28
z° [G° z(

LEAF29
-QO Z 0 Z 0

VyO
1
I

1
1
1

D] 1 Vq1

I v ILEAF32
| l-q1 z° v
1

LEAF37 |
1 y° [F° y°] |

LEAF38 |
~Ql yO yO |

1 1 1
I LEAF10 I |
1 v p 2 G° | |
1 1 1
1 1

LEAF33 |
q1 X° |

1 1

1 1

1 1

It men stans the search for an expansion proof. It considers, in turn, the following substitutions
for the predicate variable p ^ (shown as p2 in Figure 5-3) which was introduced in the definition of
ITERATE+:

oset-0: None.
oset-1: A,w2,,.pi . w2

A p<
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iVp11?1

LEAF149
_ p l l F 0 w a

LEAF150
_pl2p0wa

I

Figure 5-4: Vpfoim for expanded foim of THM15B

|Vw17

ILEAF155 LEAF156 |
| p n J w 1 7 V p 1 2 J w 1 7 |

LEAF158
-p1 1[A.x1F°.Jx1]Wb

LEAF159
-p1 2[A.x1F°.Jx1]Wb

Vz°

where
J i s
Wa i s
Wb i s

v |LEAF161 LEAF162
|pllG0w18 v p12G0w18

VqO
LEAF21

I LEAF28
|Q° z° [G° zc

I
I LEAF29
I ~Q° z° z°

Vy°
I

I
I
I

LEAF22
v q° X°

I Vq1 |
I v |LEAF32 LEAF33 | |

v q1 X° | |l-q1 z° v q1 X°
I

LEAF37
yO [ F 0

LEAF38
I

[J° Aw8 Vw7 . p 1 1 w8 w7 v p 1 2 w8 w7]
[W2 Aw8 Vw7 . p 1 1 w8 w7 v p 1 2 w8 w7]
[W3 Aw8 Vw7 . p 1 1 w8 w7 v p 1 2 w8 w7]

oset-2: Xw^.p3^^ w3 v
oset-3: A,w4

u Bw3^
o s e t - 4 : A,w5

u V w 4
w

o s e t - 5 : X,w6,, 3w5^.
U 5 > e L D - /VW u - J W m * P o(oiXu)

W 4 W 3

W 5 W 4

V p< W6 W5

w 7 ww wA P o(oiXu)

It spends about 19 minutes exploring each of these expansion options. Finally it comes to

o s e t - 7 : Xw8
u V w ^ . p 1 1 . ^ . w8 w7 v P 1 2 ^ ^ w8 w7

It applies the substitution and preprocesses to obtain a jfoim which is displayed in Figure 5-4.
It searches on this jfoim for an acceptable mating, and finds the following:

(LEAF28 . LEAF162) (LEAF38 . LEAF33) (LEAF37 . LEAF32)

r
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(LEAF29 . LEAF22) (LEAF21 . LEAF161) (LEAF159 . LEAF156)
(LEAF158 . LEAF155) (LEAF150 . LEAF149)

The substitution associated with the mating is:

Q ^ Tk.»122 O ^ T TT^ Y ^ 1 l«*0 « -»122
* 01 i ** on *• w I**

z° -> F° X°
z i * £ u A i

-.11 _> I w * 2 3 5lw124 W 1 2 4 F° W 1 2 3 X°
* O(0tXU) U Ol II I

v ~w7.w8.F° X°] .F° w125

1 8 -> l»l22 Q° IP°w18
0l -> l»l22

x Q°ou IP°

P12o«nXu)

yo . > xo

Let us examine the computation of the important compound substitution for the predicate
variable p ^ . The substitution term from oset-7 is:

3Lw8 VW 7 n 1 1 w8 w7 v D 1 2 w8 w7

<K<nXu)

Applying flie substitutions for p 1 1 ^ ^ and p 1 2 ^ ^ ^ produces:

l . [Xw123
u Xw124

m w 1 2 4 .F° u .w 1 2 3 X°x] w8 w7

X 1 2 0 X ^ 1 2 1 1 2 0 0 ° 8 7u m u x

[Xw120
u X w ^ . - w 1 2 1 ^ 1 2 0 ^ 0 X°] w8 w7

^-normalizing transforms this to:

Xw8
tt Vw7

ol.w
7 [F°u .w8 X°J v ~w 7 .w 8 .F° X°

TPS makes alphabetic changes of the variables to convert this to:

M u VPol.P [F°u . j X°J v - P . j . F 0 X°

TPS then constructs an expansion tree from this mating, merges it, and constructs the natural
deduction proof in Figures 5-1 and 5-2, guided by the information in the expansion tree. To see how
this works, let us look at two stages in this process.

By applying rules of inference in both forward and backward directions in a rather natural way,
and using the substitutions for z^ and y°x, TPS constructs the partial proof displayed in Figure 5-5. At
this stage the proof contains only lines 0M9) and (30)-(35). TPS is planning to prove (30), and it
knows that only (5), (7), and (9) need be actively used to do this. The other lines are inactive, and will
not be used again in the process of constructing the proof. This status information is represented
simply as (30 9 7 5); the first entry is the number of the line to be proved, and the other entries are
numbers of lines which may now be used to prove that line. In the figure we display the active lines
and only the numbers of the inactive lines which arc now present in the proof.

TPS next derives (10) by applying universal instantiation to (5), using the substitution for p ^
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Figure 5-5: Early stage in construction of proof of THM15B

(1-4)
(5) 1,2 t- VPo(u) .p fu A Vj u [p j => p .Xxx f . j x] z> p gu

EquivWffs: 3
(6)
(7) 1,2,6 f- g xl - x RuleP: 6
(8)
(9) 1,2,6 f- gu [fn x j - f x 3 f x - x UI: [ftt x%] 8

• • •
(30) 1,2,6 J- f xx - x PLAN21
(31-35)

discussed above. This makes (S) inactive, so the status information is now (30 10 9 7).
With a few more inferences the proof reaches the form in Figure 5-6. Now the status

information is (28 11 9)(30 29 11 9), which means that both (28) and (30) are to be proven.

Figure 5-6: Later stage in construction of proof of THM15B

(1-8)
(9) 1,2,6 f- gu [fu x J - f x i D f x - x UI: [fu xx] 8
(10)
(11) 1,2 f VPW [P [fu . f x j v ~P . f .f x]

A V j u [ VP [P [f . j x ] v - P . j .f x]
=> VP .P [f . f . j x] v ~P .f . j . f x]

z> VP .P [f .gu x] v ~P .g .f x Lambda: 10

(28) 1,2 t- "g^ [fu x j - f .g x PLAN28
(29) 1,2,6 f- gtt [fu x j = f x Subst=: 28 7
(30) 1,2,6 f- fu xx = x PLAN21
(31-35)

It is hard to explain exactly how TPS decided to infer (29) from (7) and (28) without a detailed
discussion of the tactics for dealing with equality which were invoked by setting the flag REMOVE-
LEIBNIZ to T for this proof. Suffice it to say that (7) is descended from LEAF21 and LEAF22 in
Figure 5-4, (28) is descended from LEAF161, and LEAF21 is mated to LEAF161 in the expansion
proof. (The process is easier to understand when REMOVE-LEIBNIZ is NIL, but the proof thus
obtained is not so elegant)

Similarly, the antecedent of (9) is descended from LEAF28 and LEAF 29, and (29) is descended
from LEAF22, so the mating between LEAF29 and LEAF22 guides the derivation of (30) by Modus
Ponens (MP) from (9) and (29).

Since the consequent of (11) is essentially the assertion in (28) (modulo the Leibniz definition
of equality and the symmetry of disjunction), it can be seen that the same general methods suffice to
complete the construction of the proof.

F
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6. Theorems Proved Automatically
While TPS is still in a rudimentary state as a system for automatically proving serious theorems

of type theory, it is a well developed platform for experimenting with these theorems and developing
ideas about the basic issues involved. In this section we discuss some examples of theorems which
T P S has proved completely automatically.

Naturally, TPS can be used to prove theorems of first-order logic, but we focus mainly on
examples from higher-order logic. For ease of reference, we list the theorems in the order of their
labels; these simply reflect the way examples have been put into our library over the years. Theorems
(such as X2129) whose names start with an "X" are exercises in [7] (or will be exercises in the next
edition), and are available in TPS and ETPS whether or not one has any library files.

When T P S proves a theorem in automatic mode, it records the time used to do a number of
things, including searching for an acceptable mating (search), merging the expansion proof (merge),
translating the expansion proof into a natural deduction proof (translate), and printing the proof on
the screen (print). It also records the total time used to do all these things and produce a natural
deduction proof of the theorem (total). For each example below we give the internal runtime minus
garbage-collect time used by TPS for some or all of these processes while running on a Hewlett
Packard Apollo 9000 model 735 woikstation equipped with 208 megabytes of RAM. Times are in
seconds (sees), minutes (mins), or hours (krs), as seems most convenient These numbers are useful
only for their approximate magnitudes; they are quite dependent on how various flags are set, and in
many cases probably do not represent optimal settings of the flags. It should also be noted that the
time to produce output on the screen is not negligible. In one run for THM47 which is reported
below, the total runtime was 11.31 seconds. However, when we ran this again in a mode which
minimized output to the screen, the total runtime was 9.S0 seconds.

It will be noted that in many cases the process of translating an expansion proof into a natural
deduction takes a surprisingly large amount of time, even though it involves no deep search or
backtracking. This is because the conditions checked on expansion proofs in some steps of the
translation are computationally expensive in order to arrive at the most natural proof possible with the
current tactics. Furthermore, no attempt has been made to optimize this part of the program.

Definitions

The definitions below, which are used in various theorems we shall discuss, are built into TPS
or stored in the TPS library, and the user can easily add more definitions to the library. The way TPS
handles definitions during the search process is determined by the settings of certain flags, such as
REWRITE-DEFNS and REWRTTE-EQUALITIES. When these flags are set to T, TPS simply
eliminates these definitions from the theorem while preparing the expansion tree for the search
process. In some cases, this expands the search space in a very undesirable way, and more
sophisticated ways of deciding when to instantiate definitions in the search process are clearly
needed. (Discussions of this issue may be found in [12], [15] (where "peeking" is discussed), and
[51].) Once T P S finds an expansion proof, the translation tactics cause the definitions to be handled

rather naturally in the final natural deduction proof.
We remark that a wflf of the form [Xxa B], where B is a statement about xa, denotes the set {xa I

B}. Also, [Poa xa] means [xa e P J . Binary operators are often written in infix position.
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e (set membership): Xxa Xp^ p x

C(subset): [Xp^Xr^Vxa.pxz>rx]

u (union): [Xp^ Xrw Xza .p z v r z]

U (union of a collection of sets): [kw^^ Axa Bs^ . W S A S X ]

n (intersection of a collection of sets): [Xw^^ X*a Vs^.w s 3 s x]

o (composition of functions): [Xf^ Xgfe ta^ f .g x]

INJECTIVE: [WapVx|XVyp.fx = f y 3 x = y]

# (image): [Xf^ Xx- Xza Btp.x t A z = f t]
L# f^ x^] is the image of the set x^ under the function f̂ .

U (unit set): [Xxatya .x = y]
[U x] is customarily written as {x}.

IND:Vp o l .p0 l AVx l [px3p .S u x]DVxpx
IND expresses a simple induction axiom for the natural numbers. 0x is zero, and
Su is the successor function.

ITERATED [XfaaXgaaVp0(aa).pf A Vj a o [pj3p . fo j ]z>pg]
[ITERATE+ f g] means that g is a composition of one or more copies of f. Note
how easy it is to express this inductive definition in type theory.

ITERATE: [Xf^ Xgaa VPo(aa).p [Xua u] A VJaa [p j 3 p.f o j] z> p g]
[ITERATE f g] means that g is a composition of zero or more copies of f.

H0M0M2: [Xh^ Xfo Xg^ Vx. Vyp .h [f x y] = g [h x] .h y]
2 h f

g^ yp y g y
0M0M2 h f g] means that h is a homomorphisra from objects of type (3 to

objects of type a, where f and g are binary operators on the types p and a,
respectively.

MAPS: [Xh^ Xu^ Xv^ Vx-.u x D v.h x]
[MAPS h u v] means that the function h maps the set u into the set v.

-CLOSED: [Xh^ hx^ M A P S ^ ^ ^ h u u]
[h -CLOSED u] means that the set u is closed under the function h.

HOM: Xh^ Xr^ XL. Xs^ Xgaa.f -CLOSED r A g -CLOSED s A M A P S ^ ^ ^ h r S A Vxp.r x z> h
[fx] = g.hx
[HOM h r f s g] means that h is a homomoiphism from <r,f> to <s,g>, where r
and s are sets, f is a unary operator on r, and g is a unary operator on s.

Theorems

THM15B: Vfu.3gll[ITERATE+ f gA3x t .gx = x A Vzt.gZ = Z D Z = X]D3y t . f y = y
(search: 2.5 hrs total: 2.5 hrs)

This theorem was discussed in section 5.

T H M 3 0 : R ^ ^ c S ^ s V F ^ ^ F R c # F S (search:0.56sees translate: 1.19sees total:2.52sees)

X Y
UNIFY-VERBOSE MAX:
(search: 9.93 sees total: 11.31 sees)

THM47: V ^ VYX .VQ^ [Q Xz> Q Y] • VR^ . V ^ R Z Z D R X Y
Run with MATING-VERBOSE MAX and UNIFY-VERBOSE MAX:
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Run with MATING-VERBOSE SILENT and UNIFY-VERBOSE SILENT:
(search: 8.02 sees total: 9.50 sees)

THM47 shows the equivalence of two ways of defining equality in type theory:
the Leibniz definition, and the intersection of all reflexive relations.

THM48: VF^ VG^INJECTTVE F A INJECTIVE G 3 INJECTIVE.F o G
Trial with REWRITE-EQUALITIES set to T:

(search: 89.74 sees total: 91.43 sees)
Trial with REWRITE-EQUALITIES set to NIL:

(search: 0.04 sees total: 0.81 sees)
THM48 asserts that the composition of injective functions is injective. The
definition of equality which is contained in the definition of INJECTIVE is
actually not needed in order to prove this theorem, and the time required to prove
the theorem is dramatically affected by whether the equalities are instantiated or
not.

^ ^ t S c T D F ^ ^ T c F S l ^ ^
Vxa [F [G [F S]] x s FS x] (search: 11.79 sees total: 12.75 sees)

Next we have two examples which were discussed in [8] as examples of theorems which require
instantiations for set-variables which cannot be obtained by unification from literals in the theorem.

THM104: VXa VZO XJ X = U Z z> X = Z (search: 9.67 sees total: 10.55 sees)
The proof referred to here was obtained using the Leibniz definition of equality,
and uses a projection as an expansion term. However, if we change the value of
the flag REWRTTE-EQUAL-EXT so that TPS uses the extensional definition of
equality between sets, no expansion option is needed, and the times for the proof
are: (search: 0.14 sees total: 1.22 sees)

THM112: VP o l3M o ( w )VGuVH t t .MGAMHr>M[GoH]AVY lJ>Y3P.GY
(search: 6.13 sees total: 6.13 sees)

THM112 asserts that for any set P, there is a set M of functions mapping P into P
which is closed under composition. TPS quickly finds a trivial proof where the set
M is [Aw .~ho A h], i.e., the empty set of functions. To make the problem slightly
less trivial, we excluded this solution in the statement of THM112A below.

THM112A: VPm BM^.M [ ^ x] A V G U VH U .M G A M H 3 M [G o H] A VYX.P Y D P.GY
(search: 4.4 mins total: 4.4 mins)

For the proof of THM112A, TPS finds that it suffices to let M be [Afu V u ^ [f u]
v ~P u]. This can be rewritten as [Xftt Vu^P^ u z> P.f u], and denotes the set of
functions which map P into itself.

THM117C: Vx^ Vzt [ Z E X D 3 y t . y e x A V W ^ R ^ y w z>~wex] A Vxlt [Vy \ [y 1 e s ^ A R x l y 1 z>
P o l yl]z>Pxl]3Vx2 l .x2esiDPx2 (search: 0.19 sees total: 1.63 sees)
This is the TRANSFINITE INDUCTION theorem of [11] (page 396) expressed
in the language of type theory. Think of Ryw as saying that y > w. The theorem
asserts that if R is a well-founded relation and P is an inductive property over R
restricted to the set s, then everything in s has property P.

THM129:INDAVx l-»-olu0 lxxAVxVy1Vz l[-»-yxz3 + [Suy]x.Sz]z>VyVx3z + y x z
(search: 0.57 sees total: 2.33 sees)
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THM130:INDAr o l l 0 l 0AVx l Vy l [rxyz>r[S u x] .Sy]3Vx3yrxy
(search: 0.51 sees total: 1.18 sees)

This is a theorem in which the conclusion is weaker than the statement which
must be proved by induction. From the hypotheses TPS proves Vxl r^ x x by
induction, and from this derives the desired conclusion Vxl 3yx r^ x y. No
special mechanism for deciding what to prove by induction is built into TPS; it
falls naturally out of a purely logical analysis of the structure of THM130.

THM131: Vhl^ VM^ Vsl Vfl Vs2o(X Vf2w VsS^ VO^HOM hi si fl s2 f2 A HOM h2 S2 f2 S3
f3 3 HOM [h2o hi] si fl s3 f3
(search: 30.5 mins merging 62 mins translate: 3.99 sees total: 36.8 mins)

This example, which asserts that the composition of homomoiphisms is a
homomorphism, was suggested in [18], though the formulation of the theorem
given there in terms of the primitives of axiomatic set theory makes it much
harder to prove. It may be enlightening to compare this with THM133 below,
which is much easier for TPS since the closure of the sets under the appropriate
functions is dealt with implicitly through the use of types in THM133.

THM133: Vhl^ Vltf- Vfr VfZ^ V f S ^ . H0M0M2 hi fl f2 A H0M0M2 h2 f2 f3 3
H0M0MZ[h2 </Kl] fl f3 (search: 3.38 sees total: 5.15 sees)

THM134: Vzt Vgll .ITERATE* [Xx l z]gDVx.gx = z (search: 0.05 sees total: 1.02 sees)
THM134 can be paraphrased as saying that the only positive iterate of a constant
function is that function.

THM135: Vf^ V g l ^ Vg2aa.ITERATE f gl A ITERATE f g2 3 ITERATE f.gl o g2
(search: 3.4 mins total: 3.5 mins)

This theorem asserts that the composition of iterates of a function is an iterate of
that function.

In the next two theorems [DOUBLE u v] means that 2u = v, and [HALF u v] means that the
greatest integer in u/2 is v.

THM300A: Vi^ Vvv [HALF^uvs V Q ^ . Q O ^ A Q [ S U 0 ] 0 A VX, V y J Q x y D Q [S.S x].S y] z>Q
u v] A DOUBLE^ 0 0 A Vx Vy [DOUBLE x y 3 DOUBLE [S x].S.S y] 3 Vu
Vv.HALF u v 3 DOUBLE v u v DOUBLE [S v].S u

(search: 83.56 sees total: 88.13 sees)
THM301 A: VUl Vvt [DOUBLE^ u v s VQ^.Q 0x 0 A VX, Vyx [Q x y 3 Q [Sw x].S.S y] 3 Q u v] A

HALFmi 0 0 A HALF [S 0] 0 A VX Vy [HALF x y 3 HALF [S.S x].S y] 3 Vu
Vv.DOUBLE u v 3 HALF v u (search: 56.90 sees total: 62.79 sees)

THM303: EVEN^ 0x A Vn, [EVEN n 3 EVEN.SU.S n] A [ODD^ [S 0] A Vn.ODD n 3 ODD.S.S n] A
INDAVn[NUMBERo lnsEVENnvODDn]3VnNUMBERn

(search: 33.8 mins total: 33.9 mins)
After assuming the antecedent, TPS proves Vxt [NUMBER^ x A NUMBER .Su

x] by induction (using IND), and from this derives Vi^ NUMBER^ n. Note that a
direct inductive proof of Vi^ NUMBER^ n does not work.

BLEDSOE-FENG-SV-I1: VA^ [A Ox A Vxl [A x 3 A.l+tt x] 3 A nj A Pm O A VX [P X 3 P.1+ x]
3 P n (search: 0.14 sees total: 0.61 sees)
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This is Example II from [17].
BLEDSOE-FENG-SV-I2: VA^ [A Ox O A VXX VyJA x y 3 A [su x].s y] 3 A i^ mj A P^ n 3 P m

(search: 8.15 sees total: 9.91 sees)
This is Example 12 from [17].

X2115:Vxj3y lPw lxy3Vz lPzz]AVu13v l[PuvvMwUAQo l .fu luv]AVw l[Qw3~M.g l lw]
3 Vu 3v.P [g u] v A P u u

(search: 0.12 sees merge 0.72 sees translate 2.57 sees total: 4.73 sees)
X2116:Vx13y1[Po lx3Ra i lx[gu .h l ly]APy]AVw l[Pw3P[gw]APJiw]3Vx.Px33y.RxyA

P y (search: 0.42 sees total: 0.93 sees)

X2129:3xVy[PxsPy]«[3xQxsVyPy]s .3xVy[Qx»Qy]2 .3xPxsVyQy
(search: 0.14 sees merge: 44.05 sees translate: 70.87 sees print: 5.67
sees total: 122.48 sees)
This was presented as a challenge problem by Andrews at the Fourth Workshop
on Automated Deduction in 1979. Other researchers (see references cited in
[32] and [47]) have found ways to deal with this problem, often by making

reductions of it in the preprocessing stage. TPS found a refutation for this
problem using path-focused duplication. The natural deduction proof is 584 lines
long.

X5200: x u y = UAv.v = x v v = y (search: 13.45 sees total: 16.62 sees)

X5205: # f̂  [ n w ^ c O .# [# f] w (search: 4.44 mins total: 6.31 mins)

X5304: - S g ^ Vf^ 3j .g j = f (search: 0.09 sees total: 0.43 sees)
This is the Simple Cantor Theorem for Sets, which TPSl could prove [6]. It is
stated here for comparison with X5305 below, which is harder to prove.

X53O5: Vs^ . - S g ^ Vf^ .f c s 3 3ja .s j A g j = f (search: 0.37 sees total: 1.42 sees)
We call this the General Cantor Theorem for Sets. It says that there is no
mapping g from a set s onto its power set.

X53O8:3}m) VPop [3xp p x 3 p.j p] 3 . Vxa 3yp r ^ x y s 3 ^ Vx r x.f x
(search: 0.31 sees total: 1.21 sees)

The Axiom of Choice (for type (J) is [3JWoW Vpop.3xp p x 3 p.j p]; it asserts that
there is a choice function j ^ which chooses an element jp(op)Pop from every
non-empty set p . . X5308 shows a consequence of this axiom.

X5310: Vr^^IVx^Syprxy 3 3fp(0p)Vxrx.fx]33jp(0p)Vp_3xpp X3p.jp
(search: 21.7 mins total: 21.8 mins)

X5310 implies the converse of X53O8 (suitably generalized) when a is (op). The
proof of this theorem was discussed in section 4.

7. Conclusion
Much additional development and study of TPS is still needed. Nevertheless, it already

provides a rich environment for exploring the complexities of theorem proving in higher-order logic.
With the aid of TPS, one can think in a concrete way about these problems. TPS is also a convenient
tool for proving theorems interactively or semi-automatically.
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