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(I) m-Easy Combinators
Given two combinators M and N we define a graph G(M,N) as follows. The points of

G(M,N) are the combinators modulo beta conversion, and we make P adjacent to Q if
there exists an R such that P=RM and Q=RN,or, P=RN and Q=RM. Now the proof theo-
retic properties of the equation M=N are reflected by the properties of G(M,N). For
example, M=N is inconsistent <=> G(M,N) is connected <=> K and K* lie in the same
G(M,N) component In particular if we wish to count steps in proofs it is convenient to
count edges in G(M,N).

Recall that M is easy if it is consistent with every combinator. We say that M is m-easy
if there is no proof with < m-t-1 steps that M is inconsistent with any combinator i.e. if for
each N the diameter of G(M,N) is at least m. Obviously if M is easy then it is m-easy for
each m. Here we shall show that for infinitely many m there are m but not m+1 easy terms.

Define terms E(n),F(n),G(n) as follows:
E(0):=\x. K
E(n+1):=\x.xlE(n)x
F(n) := \x. xxlE(n)(xx) \x. xxlE(n)(xx)
G(n) := \x. F(n)(xx) \x. F(n)(xx).
We shall show that G(n) is n-easy but not 2n+5 easy.
(II) Lower Bounds on the Failure of Church-Rosser

Let M be given. A term X is said to be an F-term of type n,M,k if it has the form
F(n)IE(k1)X1 IE(kt)Xt

where -1<t, k-1<ki, and each Xi is an F-term of type n,M,k. A term Y is said to be a
G-term of type n,M,k if it has the form
(a) Y1 (...(Yt(Vx. Yt+1 (xx) \x. Yt+1 (xx)))...)
where -1<t, and each Yi is an F-term of type n,M,k or
(b) Y1(...(YtN)...)
where 0<t each Yi is an F-term of type n,M,k, and

BT(M) [ BT(N)
m

We define relations l->(k), ll->(k), and >->(k) as follows:
XI->(k)Y <=> X is a G-term of type n,M,k and Y := M.
X ll->(k) Y <=> X := X[Z1,...,Zr], each Zi is a G-term of type n,M,k, and Y := X[M M].
X >->(k) Y <=> there exists a Z such that X - » Z ll->(k) Y.
For 0<t we define the relation >-»(k.t) by
X >-»(k,t) Y <=> there exists Z1,...,Zt-1 X >->(k) Z1 >->(k) >->(k)Zt-1 >->(k) Y.
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We shall prove the following
PROPOSITION: The diagrams

Q « - P ll->(k) R
and

Q (r)<-ll P ll->(k) R
can be completed to

resp.
Q - » Q* ll->(k-1) T (r-1)<-ll R* « - R.

Therefore the diagram
T (r)<-ll Q « - P ll->(k)

can be completed to
R-»U

III
Q ll->(k) U - » X ll->(r-1) Y (k-1)«-ll Z « - T.

when 0<k and 0<r.
From this follows the diamond property
COROLLARY: Q (r)<-< P >->(k) R
can be completed to

Q >->(k-1) T (r-1)<-< R
when 0<r and Ckk.

X is an F-term of type n,M,k and X := F(n)IE(k1)X1 IE(kt)Xt then X has for its head
the head positions of the Xi together with the subterm occurrence F(n)l above.
MATCHING LEMMA: Suppose that Y is a G-term of type n,M, k. If Y is of the form (a) then

all its G-subterms of type n,M,r have the form (a) and are among
the Yi(...(Yt(\x. Yt+1(xx) \x. Yt+1(xx)))...) except in case M=l when they
can have the form (b),the shape F(n)l, and occur at the head
positions of the Yi.

PROOF: First let X be an F-term of type n,M,k. We will show that X has no G-subterms of
type n,M,r except when M=l and these are at the head positions of X. This is proved by
induction and toward this end we let Y be a G-term of type n,M,r of the form (a) or (b)
above. Then
(i) The last component of Y1 is either \x. xxlE(nXxx) or has no normal form; therefore it

=/= I or E(r) for any r.
(ii) If Y := Y1L then L has no narmal form so it =/= I or E(r) for any r.
(Hi) If Y is of the form (a) then \x. Yt+j(xx) has no normal form so it =/= I or E(r) for any r

when j=1,2
(iv) If Y is of the form (a) then \x. Yt+j has order 1 so it is not an F-term or a G-term of

type n,M,s when j=1,2.
Now suppose that Y is a subterm of X. First suppsoe that Y has the form (a). If t=0 then
by (iii) and (iv) Y is a subterm of Xi for some i. If Oct then by (i) and (ii) Y is a subterm
of some Xi. Next suppose that Y has the form (b). If t=1 then by (i) Y is a subterm of



Xi for some i unless Y := F(n)l and Y occupies the leftmost head position of X. But in
this case we have N := I = M. If 1 < t then by (i) and (ii) Y is a subterm of some Xi. In
conclusion our claim follows by induction.

To prove the lemma simply apply the above claim to the Yi after using (iv), and
the unsolvability of G-terms of type n,M,s. This completes the proof of the lemma.
REPLACEMENT LEMMA: Let X be a G-term of type n,M,k. Then the replacement of any

proper G-subterm of type n,M,r by M results in a G-term of type
n,M,k except in case M=l when if Ckk it results in a term which - »
to G-term of type n,M,k-1.

PROOF: Suppose first that M=/=l. Let Y be a G-term of type n.M.k with a proper G-subterm
Z of type n,M,r. By the Matching Lemma if Y has the form (a) then the replacement of Z by
M is a G-term of type n,M,k and of the form (b). If Y is of the form (b) then the result of
replacing Z by M remains of the form (b) since Z is unsolvable and its replacement in N
yields a term whose Bohm tree still ] the Bohm tree of M. Now if M = I then Z can occur at
the head positions of the Yi if Z := F(n)l. These Yi are F-terms of type n,M,k and of the
form

F(n)IE(k1)U1 IE(kt)Ut
and the replacement of Z yields

IE(k1)U1 IE(kt)Ut ->
E(k1)U1 IE(kt)Ut ->

U1 IE(k1 -1 )U1 ...IE(kt)Ut
since 0< k and k < k1+1, which is an F-term of type n,M,k-1. This proves the lemma.

We can now proceed with the proof of the proposition. We remark here now that
in case M=l ,k-1 and r-1 can be replaced in the corollary by k and r. In this case >-»(k)
is Church-Rosser. However this already follows from the Replacemant Lemma by the
theorem of Mitchke.
PROOF OF PROPOSITION: First suppose that X := X[Z1,...,Zr] where the Zi are G-term
occurrence of type n,M,k which are pairwise disjoint We can follow each Zi is a reduction
X - » Y . It can be copied.projected (deleted), and beta (educed internally. Thus we can
write Y := Y[Z11,...,Z1s(1),...,Zr1,..Zrs(r)] where Zi -»Zi j for -1<j<s(i)+1 so that

thus we have
Y[M,...,M,...,M,...,M] <-ll Y « - X

Next suppose X'[U1,...,Up] := X := X"[V1,...,Vs] where the Ui are G-subterm occurrences
of type n,M,k and pairwise disjoint and the Vj are G-subterm occurrences of type n,M,r
and also pairwise disjoint. Each Ui can contain one or more Vj say Ui := Ui[Vi1,...,Vit(i)]
and by the Replacement Lemma Ui[M,...,M] is a G-term of type n,M,k unless M=l in which
case Ui[l,...,l] - » t o a G-term of type n,M,k-1. Similar remarks hold for the Vj. Let Z1,...,Zq
be the maximal occurrences in the union of the two sets {U1,...,Up} and {V1,...,Vs}. Then
we have X := X'"[Z1,...,Zq] and

X'"[M,...,M] (r-1)<-< X'[M,...,M] <-ll X ll-
This completes the proof of the proposition.



COROLLARY (strip lemma): Hie diagram Z (k)<-< X >-»(k,t) Y can be completed to
Z >-»(k-1,t) U (k-t)<-< Y provided 0<t<k+1.

(Ill)
REDUCTION LEMMA: Suppose that P and Q are connected in G(G(n),l) by a path of

length k<n+1 then there exists an R such that
P >-»(n-k,k+1) R (n-k,k+1)«-< Q

where M := I.
PROOF: By induction on k. When k=0 the lemma follows from the Church-Rosser theorem.
Suppose now that we have a path P := P(0), P(1),...,P(k) := Q where k < n+1. We have by our
induction hypothesis that there exists an R such that P >-»(n-(k-1),k) R (n-(k-1),k)«-<
P(k-1). We distinguish two cases.
Case 1 ; P(k-1) = Tl and Q = TG(n). We are assuming that k>0 so TG(n) >->(n-(k-1)) Tl. By
the Proposition there exists an R* such that P >-»(n-{k-1),k) R* (n-(k-1),k)<<-< Tl. Again by
the Proposition there exists an R" such that

P >-»(n-(k-1),k+1) R** (n-(k-1),k+1)«-< Q.
This completes the proof for this case.
Case 2 ; P(k-1) = TG(n) and Q = Tl. By the Proposition there exists an R* such that

P >-»(n-(k-1),k) R* (n-(k-1),k)«-< TG(n) .
By the strip lemma corollary to the Proposition there exists an R** for the following
diagram

TG(n) >->(n) Tl >-»(n-k,k) R** (n-k)<-< R* (n-(k-1),k)«-< P.
Finally by the Proposition there exists an R*** such that

Q >-»(n-k,k+1) R*** (n-k,k+1)«-< P
and this completes the proof of the lemma.
COROLLARY: Suppose that k<n+1. Then there is no path in G(G(n),l) connecting the

combinators K and K* of length <k+1.
PROOF: K and K* are >->(n-k) normal.

We can now prove the following
THEOREM : G(n) is n-easy but not 2n+5 easy.
PROOF: Suppose that K and K* are connected in G(G(n),M) by a path. If M=/=l then by the
Replacement Lemma and the theorem of Mitchke >-»(n) is Church-Rosser ;so this is im-
possible. Thus M=l. But by the Corollary to the Reduction Lemma such a path must be
longer than n. Thus G(n) is n-easy. Clearly there is such a path of length 2n+5 so G(n) is
not 2n+5 easy.
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