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1 Introduction

Let E = {Xi,X2,... ,Xm} where the Xt C V for 1 < i < m are distinct.
The hypergraph G = (V, E) is said to be s-imiform if |X,| = 5 for 1 < i < m.
Thus, for example, a 2—uniform hypergraph is a graph. A set of edges
M = {X{ : i € / } is a perfect matching if

(i) ijLje.1 implies X{ n Xj• = 0, and

In this paper we consider the question of whether a random s-uniform hyper-
graph contains a perfect matching. More precisely, where [k] = {1,2,.. . , fc},
we consider the random hypergraph G = G(n,m,s) = (V = [n],E =

X2,...,Xm}) where the X( are chosen randomly (without replacement)

*Department of Mathematics, Carnegie Mellon University, Pittsburgh PA15213,
U.S.A., Supported by NSF grant CCR-9225008

f Department of Mathematics, Uppsala University, PO Box 480, S-751 06 Uppsala,
Sweden, Supported in part by the Goran Gustafsson Foundation for Research in Natural
Sciences and Medicine.

Much of this work was done at the IMA Workshop on Emerging Applications of Probability
at The University of Minnesota

1



from the set PQ of all s-subsets of V. Equivalently we choose a hypergraph

uniformly at random from the set Q(ny m, s) of all ( w ) s-uniform hyper-
graphs with vertex set [n] and TO distinct edges.

To avoid trivialities we assume from now on that n —> oo in steps of size s
so that s | n always.

One of the most interesting and difficult problems in Probabilistic Combina-
torics is to determine the threshold growth for m = m(n) so that when 5 is
fixed

lim Pr(G(n,m, s) has a perfect matching) = 1. (1)

The case s = 2 was solved completely by Erdos and Renyi [6]. This is
the question of when does the random graph Gn,m have a perfect matching
whp.1 The first serious work on this problem for s > 3 was done by Schmidt
and Shamir [10]. Using the second moment method directly, they show that
if m/n3/2 —• oo then G(ny m, s) has a perfect matching whp. Since then,
determining the threshold for (1) has become known as Shamir's problem
which seems to ignore Schmidt's contribution.

Cooper, Frieze, Molloy and Reed [5] considered the problem of perfect match-
ings in random r-regular, s-uniform hypergraphs. Surprisingly, this seems to
be an easier problem and is solvable by the Analysis of Variance method
of Robinson and Wormald [8, 9]. In that paper they make the following
conjecture which we repeat here:

CONJECTURE. Assume s is a positive integer constant and let

m = n(logn + cn)/s.

Then

{ 0 cn -> -oo,
e" c " c c n —• c,

1 cn -> oo.

The right-hand side of the above expression is simply the limiting probability

1An event 6n is said to occur whp (with high probability) if Pr(£n) = 1 — o(l) as
n —• oo.
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There has been no other progress on this problem as far as we can tell. Our
main result is an improvement of the upper bound of Schmidt and Shamir
to

Theorem 1 Lets > 3 be fixed. Ifm/nAlz -> oo, then the random hypergraph
G(n, m, s) contains a perfect matching whp.

(The result and the proof below hold also for 5 = 2, but then the result
by Erdos and Renyi [6] is much stronger.) Our proof is also by the second
moment method, but we obtain some reduction in variance by sampling
randomly from hypergraphs with a fixed degree sequence.

Schmidt and Shamir also considered the s-partite version of the problem.
Here V = [n] is partitioned into s equally large sets Vi, V2,. - . , V3 and the
edges X,, i = 1,2, . . . m are chosen randomly from {X : \X\ = s and \X 0
Vt\ = 1, t = 1 ,2 , . . . , s} i.e. each edge contains a single member of each VJ.
Let G*(n,m,s) denote the random hypergraph produced. We will sketch a
proof of

Theorem 2 Let s > 3 be fixed. Ifm/n4/3 —> 00, then the random hypergraph
Cr*(n, m, s) contains a perfect matching whp.

2 Proof of Theorem 1

We will consider (multi)hypergraphs with a fixed degree sequence. As an
interim model we let G(n, m, s) be defined as follows: let x = xi, #2 , . . . , xsm

be chosen randomly from [n]8m i.e. x is a random sequence of integers from
[n] (sampled with replacement). Let C?(x) be the (multi)hypergraph with
vertex set [n] and edges E{ = {#(,--i)*+i,... ,#«} for 1 < i < m. Note
that G(x) may contain repeated edges and deficient edges with fewer than s
vertices. Let G = G(x) be obtained from G(x) by deleting edge repetitions
and deficient edges.

Observe that if G has rh <m edges then G is distributed as G(n, m, 5), since
each member of Q(n, m, s) arises from the same number of x € [n]sm in this
way. We define a perfect matching of G(x) to consist of n disjoint edges



of size s and so we see that any perfect matching of G(x) is also a perfect
matching of G. Since ra < m and having a perfect matching is a monotone
property we have

Pr(G(n, m, s) has a perfect matching) > Pr(G(x) has a perfect matching)

and we can concentrate on showing that

G(x) has a perfect matching whp if m/nA^z —> oo. (2)

The degree deg*[i) of i G [n] in the hypergraph G(x) is simply \{j : Xj = i}\.
For a fixed degree sequence d = d\y e/2,..., dn we let

X(d) = {x e [n]srn : degx = d},

where m = s~l £ t dt (we assume that this is an integer).

Schmidt and Shamir worked directly with Q(n,m,s). We will work with
G(x) where x is chosen randomly from X(d). This will eliminate some of
the variability in the number of perfect matchings and enable us to improve
their result.

A degree sequence is said to be e-smooth if it satisfies properties PI—P4
below. The notation used is

dmin = min{dt- : 1 < i < n},

The properties are

P I

P 2

d :

R :

Q ••

dmin

d<

1 ^

= XX1,
n

>o.
en.



P 4 Q < eR.

Note that Jensen's inequality (or the arithmetic-harmonic inequality) implies
R > n/d. Moreover, Cauchy-Schwarz' inequality yields R2 < nQ, and thus
n/d<R< nQ/R or d > R/Q. Hence P4 implies

P5 d > 1/6.

Our proof of (2) is divided into two lemmas. Since the probability of G(n, rn, s)
having a perfect matching increases with m, there is no loss in assuming that
m = o(n).

Lemma 1 If x is chosen uniformly at random from [n]3m where m = urn4/3,
u(n) —• oo and cj(n) = o(n2/3), then whp deg* is e{n)-smooth for some
e(n) -+ 0.

Lemma 2 Let (for each n)dbean e(n)-smooth degree sequence where e(n) —>
0. Let x be chosen uniformly at random from X(d). Then whp

G(x) has a perfect matching.

2.1 Configuration Model

To analyse G(x) where x is chosen uniformly from X(d) we generalise the
models of Bender and Canfield [1] and Bollobas [2] for the case of graphs
with a fixed degree sequence (5 = 2).

Let Wi = {%} x {d{} for i = 1,2, . . . , n and W = ULi Wi- A configuration is
a partition of W into m disjoint subsets of size s. Let SI = fi(d) be the set
of all such configurations, and let F be chosen randomly from Q.

For x = (v, i) GlVwe let a(x) = v. If F e SI and S £ F we let (7(5) =
{a(x) : X € S}. We define the multihypergraph //(F) = ( V , ^ = {<r(S) :
S e F}). It is not difficult to see that fi(F) and G(x),x € X(d) have the



same distribution. (We can generate x € X(d) by taking dt "copies" of
i for 1 < i < n and then placing these 5m copies in random order. The
relationship with fi(F) should be clear.) This idea was used in BoUobas and
Frieze [3] and BoUobas, Fenner and Frieze [4] to analyse random graphs with
minimum degree bounded from below.

Before continuing with the proofs of Lemmas 1 and 2 we need to define a
perfect matching in F G

A perfect matching M of F is a set {Si : i 6 /} C F such that

(i) |a(5,-)| = *, i € / ,

(ii) i, j € Iji 7̂  j implies cr(5t) PI cr(Sj) = 0, and

(iii) \JieIa(Si) = V.

Thus F contains a perfect matching if and only if fi(F) contains one. If M
is a perfect matching of F we let a(M) = {<?(£,) : i € /} be the partition of
[n] into 5-sets that it induces.

We can now begin the proof proper.

2.2 Proof of Lemma 1

We first note that d = sm/n = sun1/3, which shows P2.

Next, dijd2>.**dn are random variables, each having the binomial distribu-
tion Bi(5rn,n""1) = Bi(nd,n~l). By standard estimates, whp

which will account for P I and P4.

For P3 we have already observed that Jensen's inequality implies R > n/d.
For an upper bound, we note that if dmin > d/2, then

1 = 1 d-d,- 1 d-d,- {d-djf 1 d-d* {d-djf
di d ddi d <P (Pdi ~ d d? (P



and thus

Consequently, if 6 = u~l then,

f - -
n \ n

This verifies P3 and the Lemma follows.

2.3 Proof of Lemma 2

We will work with the configuration model and show that if F is chosen
randomly from fi(d) then whp

has a perfect matching. (3)

Let Y(F) denote the number of perfect matchings of F. Since

we can prove (3) by showing that

E(F2)



For positive integers a, 6 with a = sb let

denote the number of ways of partitioning [a] into 6 s-subsets.

Then

where
dS = Y[di forSC[n].

Explanation: there are ^(n) choices for the sets <r(Si),i G / of the perfect
matching. There are then d[n] choices for the sets £,-, i € / and the remaining
factor is the probability that F contains a particular matching.

Furthermore, where v = n/s,

*=0 \S\=ks

Explanation: we have to sum over the probabilities that two matchings
Mi,M2 exist in F. In the above sum k denotes the size of M\ D M<i and
S = {x : x 6 E € (T(M\) 0 (T(M2)} C [n] is the set of a images of elements of
common edges. Having fixed k,S we determine a(M\ fl M2), a(M\ \ M2) and
a(M2 \ Mi). This gives xl>(sk)i(;(n — sA;)2 choices. We then have to actually
choose Mi,M2. If x € 5 there are d*. choices of w such that a(w) = x and
otherwise we must choose two distinct elements to map onto x which gives
us a factor dx{dx — 1) for x G S = [n] \ S. The final factor is the probability
that F contains the two matchings.

Hence,

E(y2) _ " (sk)\ (n - sk)P (s(m -2v + k))\ (sm)\ u\2 (m -- u)\2

E ( y ) 2 " " j ^ A:! (z/-A;)!2 ( m - 2 i / + A:)! m! n! 2(sm-n)! 2 n "^
(4)
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where

Denote the combination of factorials in (4) by a*, so that

= YL akDn-»k- (5)
Jt=O

By Stirling's formula,

ak =

where ek = O(1±I

Let x = k/u, then (6) can be written, using m/u = sm/n = d,

ak =

(7)

with

f(x) = a:loga: + 2(l-a;)log(l -x) + (d-2 + x)log(d-2 + x)
+ dlogd - 2(d - 1) log(d - 1).

We have

f'(x) = logx-21og(l-x)

and find after simple calculations

f(l/d) = f'(l/d) = 0.

(This is thus the minimum of / . )

We turn to the term Dn-Sk in (5).

r



Lemma 3 / / P1-P4 hold, then

Dn-j < Cj exp(j - i 2 - j log(j/R)\ (9)

with Cj = Cj(n) = 0((j + 1)~~1/2 + i?~1/2) (uniformly in j and n) and Cj ~
(27rn/d)""1/2 for any sequence j = jf(n) t/;ii/i j ~ n/d.

Proof: Define the generating function

D(Z)=£ Dn-i*=ii 4-1 ft(^+(4 -1))=ft
0 1 1 1

By Cauchy's formula,

for any simple closed curve 7 around the origin. We let 7 be the circle \z\ = r,
where r will be chosen later, and obtain by taking absolute values

\D(r<#)\r-idt. (10)

We next observe that if 0 < r < 1 and 0 < a < 1, then

|l + a ( r e ' ' - l ) | 2 = ( l - a ( l - r c o s t ) ) 2 + aVsin2t

= (i _ a(i _ r) _ a r ( i _ cost))2 + a?r2 sin21

= (1 - a(l - r))2 - 2(1 - a(l - r))ar(l - cost) +

a2r2( 1 - 2 cos t + cos21 + sin21)

< (1 - o(l - r))2 - 2(1 - o(l - r))ar(l - cost) +

a 2 r ( l -a( l - r ) )2( l -cos*)

< (1 - a(l - r) - ar(l - cost) + a2r(l - cost))2

and thus if 0< r < 1,

|1 + a(re" - 1)| < 1 - a(l - r) - (a - a2)r(l - cost). (11)

(The right hand side is always > 0, since it is so when r = 0 and r = 1).
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If r > 1 we use (11) and the triangle inequality to obtain

|l + a(re"- l ) | < |1 + a(ert - 1)| + |ae"(r - 1)|
< 1 - (a - a2)(l - cost) + a(r - 1), r > 1

Hence we obtain, for every r and dj > 1,

ll + djV'-l)! < l + ^Cr-lJ-^-rfJ^lArXl-cosO

< exp [djl(r - 1) - (dj1 - df)(l A r)(l - cost)]

and

= exp[ i? (r - l ) - ( i l -Q)( lAr) ( l -cos«) ] . (12)

We substitute the estimate (12) in (10) and pause for another lemma.

Lemma 4 Let

ip(b) = -L f e-^-^dt, b > 0.
— T

7%en y>(6) = 0(1 A fr"1'2), and <p(b) = ̂ 6~1 /2(1 + o(l)) as b -+ oo.

Proof: Clearly y>(6) < 1. On the other hand,

7Vb<p(b) = — 7 e-«l-°*«l^))du -* — 1 e-^'Hu = 4=w 2TT 7 2w J V2TT

as 6 -^ oo by dominated convergence

f exp(-6(l - cos(u/Vb))) < exp (—^u2j when |u| < wVb) .
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We may now complete the proof of Lemma 3. With ip asm Lemma 4, (10)
and (12) yield

A r))exp(Rr - R).

We choose r = j/R and obtain

Dn.j < <p((1 - QIR){RA j))exp(j-R- j\og(j/R)),

which is (9) with Cj = y?((l — Q/R)(RAj)). The estimates for Cj follow
from Lemma 4 because by assumptions P2-P4, n/d —» oo, R ~ n/d and
Q/R -+ 0. •

Continuing with the proof of Lemma 2, we define

g(x) = sx — R/u — 5X log(nx/il)

and obtain by Lemma 3 Dn-3k < ĉ ^ exp(i/g(k/v)) and thus by (5) and (7)

Here we may absorb the factor 1 + £* into cak without changing the estimates
given in Lemma 3.

We also define
h(x) = (s - l)f(x) + g(x)

and obtain

7 = ^ 2 ^ E yTsCsk exp(vh(k/u)). (13)

Differentiation yields, cf. (8),

g\x) = -

I f c i i 5i=l- (14)) +
and (for d > 3)

12



Moreover, g(x) = sx (log ^ - ^ + 1)) < 0, and so, using P 3 again,

h(l/d) = g(l/d) = O U {^ - lj\ = o ( i ) , (16)

h\l/d) = g\l/d) = s\og(Rd/n) = o ^ y \ (17)

h"(l/d) = - d + O(l). (18)

If all dt are equal to d, /2 = n/d and /i has a (local) maximum 0 at 1/d; in
general h has a small positive maximum close to 1/d.

As we will see shortly, the main contribution to the sum in (13) indeed comes
from terms with k/v close to 1/d. Note, however, that for larger x, h(x) has
a minimum and then increases again, and we have to check that h(x) is small
for large x. We argue as follows, assuming that n, and thus d, is large enough
(note that P5 shows that d —* oo).

By (14) and (15), hff increases from —oo to +oo on (0,1); hence h" is negative,
and h concave, on (0, xo] while h is convex on [xo, 1) for some xo € (0,1). By
(14), h"{l/2s) < 0 and thus x0 > l/2s. Moreover, if x G (0,2/d), then (14)
yields

h"{x) < -d/2 + 0(1) < -d/3 (19)

and thus by a Taylor expansion and the inequality ab < 3a2 + j$b2 (a case of
the arithmetic-geometric inequality), using (16) and (18),

(;) ° ^ 4 (20)

In particular, h(2/d) < - ^ + £.

By (17) and (19), also

13



and since hi is decreasing on [0,xo], w e obtain

It follows that the sum of the terms in (13) with 2/d < k/u < x0 is at most,
for some C < oo

_ - =0

We also obtain

while

and, using P3 again,

g{\) = s - R/u + s log(i?/n) = O(l) - s logd + s \og(Rd/n)

= -s\ogd + O(l)

whence
Ml) = (s - 1)/(1) + <j(l) < - logrf + 0(1).

Since h is convex on [xo, 1] we thus find h(x) < max(/i(xo),fo(l)) ^ ""h o n

[XQ, 1], and the contribution to (13) from terms with k/u > XQ is exponentially
small.

Let Si denote the sum of the remaining terms in (13), i.e. the sum of the terms
with k < 2v/d. Defining k(y) = [v/d + yjvjd\ = u(
we rewrite the sum as an integral,

(21)

14



where 0 < 6 < 1. For any fixed real j/, P2 yields k(y) ~ v/d; hence
csk(y) ~ (27rn/d)~1/2 by Lemma 3. A Taylor expansion yields

h(k(y)/u) =

Hence the integrand in (21) is asymptotically equal to

We can use dominated convergence in (21), because (20) yields

while P2 and P3 yield R'1 = O(d/v) and thus, rather crudely

(-?).)•
which implies \f%csk(y) = 0 ( 1 + |j/|), so the integrand is O((l + \y\)e y2l12).
We thus get

00

which completes the proof of Lemma 2.

3 Sketch proof of Theorem 2

We obtain the same expressions for E(y) and E(Y)2 as before, except that
n! = (si/)\ is replaced by v\s, and similarly (sm)\ by m!5 and (n - 5rn)!
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by (u — m)\s\ moreover, Ds^k) is replaced by n?=i D^-ki where D\' =
Ilfci <fo E|A|=i n,€A(*i ~ l)i (<k)i b e i n S t h e degrees in the f th partition.

This gives

where Stirling's formula yields

ak = (2TTZ/X(1 - x)2d{d - 2 + a:)(d - i)-«) ( j"1 ) / a (l + ft)^-W

with the same /(x) as before.

Let us define R^ = I ^ L i ^ 1 anc^ ^ = £ | = 1 i?^. Since logx is concave,
^ < slog(R/s), and Lemma 3 yields

n rfS-j < n 4
e=i t=\

or

e=i t=i
The proof is completed as before with minor diflFerences; the important fact
is that for x ~ 1/d,

ak - pi

and

while we get a final factor (27rv/d)1/2 from the integration over y as before. D

4 Complements

4.1 The number of perfect matchings

In the case m/n4/3 —* oo but m = O(n3^2) (exactly the case not covered by
Schmidt and Shamir [10]), our method also yields the asymptotic distribution
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of the number Y of perfect matchings, which turns out to be log-normal. For
simplicity we consider only the multihypergraph G(n,m,s); we believe that
the result carries over to G(n, m, s) and G*(n, m, s) (with slightly diflFerent
constants) but we have not investigated this in detail. We conjecture also
that the result below remains true when m/n^2 —» oo, which in that case
would yield an asymptotic normal distribution of Y, but that cannot be
proved by the present method.

Theorem 3 Let s > 2 be fixed. Ifm/n4'3 -+ oo but m = O{n*l2), then, for
the model G(n, m, s),

m
n3/2

where

n , sm / 1\ n2 (3s + 2)n3

an = - I n ( 1 - - ) n -
s n \ sj

I n ( 1 ) n - 7 T 2 i o a 2
s n \ sj 2s2m 12s3m2

This result is new also for the case 5 = 2 (graphs), although Janson [7] has
obtained similar results for G(n, m) = G(n, m, 2) when m/n3/2 is bounded
below. In the overlapping case m x n3/2, the result of [7] can be written as
above with an replaced by an + 3/4; in other words, the distributions of Y
for G(n, m, 2) and G(n, m, 2) differ asymptotically by a shift by a factor e3/4.
(It can be shown that the deficient edges (loops) in G(n,m,2) contribute a
factor e""1/2 and the multiple edges a further factor e""1/4.)

Proof The proof of Lemma 2 shows that if d is an 6(n)-smooth degree
sequence where e(n) —• 0, then for the model G(x) with x chosen uniformly
at random from

Moreover,

t = l

with
tp(n)t/>(sm — n) _ n! (5m — n)! m!

n ~ if)(sm) ~ v\(m — v)\{sm)V

17



Hence,

—¥— •£ 1 (22)
K II, di

and thus
In Y - In ^ ]}</,) -^0 . (23)

It follows by Lemma 1 that (22) and (23) hold also for G(x) with x chosen
uniformly at random from [n]am. In the remainder of the proof we will use
this model, i.e. G{n,m,s), and it suffices to show that for this model

~ j (in ^ n <*,) - <*») - N(0, is-2), (24)

or, equivalently, using again d = sm/n,

d ' " 'N " * ' - « „ ) ^ N ( 0 , i ) . (25)

We first note that Stirling's formula yields

ln&n = (s — l)v\nv + {s — l)(m — i/)ln(m — v) — (s — l)mlnm

= (s - l)u((d - 1)ln(d - 1) - dlnd) + \ Ins + o(l)

= ( l - s - i ) n ( - l n d - l + l + ^ L + O(d- 3 ) )+I ln S + o(l). (26)

Next, by the proof of Lemma 1 whp dmin > d/2, and then a Taylor expansion
yields

(27)

18



where

sk = £(<*,• - d)k.

It remains to analyse these random variables. Note first that

Si = 0. (28)

We claim that, for each k > 2,

ESfc = O(ndW2l), (29)

VarSfc = O(ndk); (30)

more precisely

ES2 = nd(l ) = nd + O(d), (31)

ES3 = nd+O(d), (32)
ES4 = 3na + O(nd)j (33)

and, moreover,
n"1/2d-1(52 - E52) 4 N(0,2). (34)

Postponing the proof of these claims, we find

Var (dn-l'2d-kSk) = O((P"k) = o(l), k > 3, (35)

and thus
dn~1/2 (cTfc5fc - d~kESk) ^ 0 , Jfc > 3. (36)

Moreover, if k > 5, then

Ullf Cv fJi J L. — 1 / 1 ffc #X I ~*~ \J I »fc Vw I *""" v/l 1 / • l u l l

V y \ I

and thus also
dn-l'2d-kSk -^0 , fc > 5. (38)

Using (28), (38) and (36) in (27), we obtain

dn'1'2 (in n di - (n In d - \d~2S2 + ^ " 3 E S 3 - \d~AESM A 0, (39)

19



and, by (31)-(33),

- (nlnd - \nd~x + \nd~2 - \nd~2)\

^ 0 , (40)

whence (36) yields

dn"1'2 (\nX\di - nlnd+^nd-1 + ^nd'A 4 N(0, ±). (41)

Finally, (25) follows by (41) together with (26), which easily yields

ln&n + nlnd - \ndTl - ^mT 2 = an + o(l). (42)

It remains to verify (29)-(34). We will be somewhat sketchy. First, ES* =
riE(d\ — d)fc, with d\ ~ Bi(nd, n"1). We introduce the centered indicator
variables

Iji = { 1 n ' r * ~\ •' 1 < J < nd, 1 < i < n.

Then dt- — d = ^ Jjt, and standard arguments yield (expanding the power
and using the independence of the Xi)

This proves (29) and more careful estimates yield (31)-(33). (Alternatively,
we may verify (31)-(33), and (29) for the values of k that we need (k < 6),
using formulae for the first moments of a binomial distribution.)

It may be similarly shown that

Cov (fa - d)k, (d2 - d)k) = 0{n"ldk)

and thus

< nE(di - d)2k + n(n - l)Cov ( ( ^ - df, (d2 - d)k) = O(ndk),

20



which is (30).

Finally, the central limit theorem (34) may be proved by the method of
moments. For example, if we introduce the indicator variables Jjk = I(XJ =
xk), h k = 1 , . . . , nd, then

and thus

nd

It is now fairly straightforward to estimate the moments (or, simpler, cumu-
lants) of S2 — ES2 and obtain (34). We omit the details. •

4.2 Further remarks

As stated above, Schmidt and Shamir [10] used the second moment method
directly on <7(n, m, s), thus proving the result when Y can be approximated
(in L2) by some non-random number cn (depending on n and m), i.e. when
Y/cn —> 1 in L2 for some cn (say cn = EF). The conditioning used above
means that in this paper we treat the more general case when Y can be ap-
proximated by a function of the vertex degrees. The conditional expectation
of Y given the vertex degees is given by (6), which shows that the appro-
priate approximating function is a constant times the product of the vertex
degrees; the proof of Theorem 3 shows that we can write this as

C exp ( 2 log dt) « < exp (- J>,- - df /2d)

and thus we can as well approximate by a function of n and the sums of
vertex degrees and squares of vertex degrees. In the case s = 2 (graphs)
this is the same as taking a function of the numbers of vertices and edges
and the number of paths of length two in the random graph, or equivalently,
the numbers of trees of orders 1, 2 and 3 in the graph. This was suggested
as a probable good approximation (for the number of perfect matchings as
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well as for some other related variables) in Janson [7]. The argument there
was not rigorous, but was based on an orthogonal expansion which suggested
that only these terms are important when d >> n1/3, just as only the total
number of edges is important when d >̂ n1/2. The same argument suggests
that a suitable approximation for d > n1/4 can be found as an (exponential)
function of the numbers of trees of orders up to 4 in the random graph. For
hypergraphs the corresponding thing would be to take the numbers of pairs
and triples of hyperedges that are connected in the edge graph. The same
ought to apply for d » nlll for any fixed £, (counting trees up to order £), but
we see no way of performing a variance calculation to justify this rigorously.
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