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Abstract

We propose a metric for determining whether one version of a system is more secure than another
with respect to a fixed set of dimensions. Rather than count bugs at the code level or count
vulnerability reports at the system level, we count a system's attack opportunities. We use this count
as an indication of the system's "attackability," likelihood that it will be successfully attacked. We
describe a system's attack surface along three abstract dimensions: targets and enablers, channels
and protocols, and access rights. Intuitively, the more exposed the system's surface, the more
attack opportunities, and hence the more likely it will be a target of attack. Thus, one way to
improve system security is to reduce its attack surface.
To validate our ideas, we recast Microsoft Security Bulletin MS02-005 using our terminology, and
we show how Howard's Relative Attack Surface Quotient for Windows is an instance of our general
metric.



 



1 Introduction

Given that security is not an either-or property, how can we determine that a new release of a
system is "more secure" than an earlier version? What metrics should we use and what things
should we count? Our work argues that rather than attempt to measure the security of a system
in absolute terms with respect to a yardstick, a more useful approach is to measure its "relative"
security. We use "relative" in the following sense: Given System A, we compare its security relative
to System B, and we do this comparison with respect to a given number of yardsticks, which we call
dimensions. So rather than say "System A is secure" or "System A has a measured security number
N" we say "System A is more secure than System B with respect to a fixed set of dimensions."

In what follows, we assume that System A and System B have the same operating environment.
That is, the set of assumptions about the environment in which System A and System B is deployed
is the same; in particular, the threat models for System A and System B are the same. Thus, it
helps to think of System A and System B as different versions of the same system.

1.1 Motivation

Our work is motivated by the practical problem faced in industry today. Industry has responded
to demands for improvement in software and systems security by increasing effort1 into creating
"more secure" products and services. How can industry determine if this effort is paying off and
how can we as consumers determine if industry's effort has made a difference?

Our approach to measuring relative security between systems is inspired by Howard's informal
notion of relative attack surface [How03]. Howard identified 17 "attack vectors," i.e., likely op-
portunities of attack. Examples of his attack vectors are open sockets, weak ACLs, dynamic web
pages, and enabled guest accounts. Based on these 17 attack vectors, he computes a "measure" of
the attack surface, which he calls the Relative Attack Surface Quotient (RASQ), for seven running
versions of Windows.

We added three attack vectors to Howard's original 17 and show the RASQ calcuation for five
versions of Windows in Figure 1. The bar chart suggests that a default running version of Windows
Server 2003 is much more secure than previous versions with respect to the 20 attack vectors. It
also illustrates that the attack surface of Windows Server 2003 increases only marginally when IIS
is enabled—in sharp contrast to Windows NT 4.0, where enabling IIS (by installing the "Option
Pack") dramatically increased the RASQ, and to Windows 2000, where IIS is enabled by default2.
As will be discussed in Section 6.3, these differences in RASQ are consistent with anecdotal evidence
for the relative security of different Windows platforms and configurations.

1.2 A New Metric: Attackability

Two measurements are often used to determine the security of a system: at the code level, a count
of the number of bugs found (or fixed from one version to the next); and at the system level, a
count of the number of times a system (or any of its versions) is mentioned in the set of Common
Vulnerabilities and Exposures (CVE) bulletins [MIT], CERT advisories [CER], etc.

Rather than measure code-level or system-level vulnerability, we consider a different measure,
somewhat in between, which we call attack opportunity, or "attackability" for short. Counting the
number of bugs found (or fixed) misses bugs that are not found (or fixed), perhaps the very one that

1For example, Microsoft's Trustworthy Computing Initiative, started in January 2002.
2NT 4.0 measurements were taken on a system where Service Pack 6a had been installed; NT 4.0 with IIS enabled,

with both Service Pack 6a and the NT 4.0 Option Pack installed. IIS stands for Internet Information Server.
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Figure 1: Relative Attack Surface Quotient of Different Versions of Windows [How03]

is exploited; it treats all bugs alike when one might be easier to exploit than another, or the exploit
of one may result in more damage than the exploit of another. Instead, we want a measure—at
a higher abstraction level—that gives more weight to bugs that are more likely to be exploited.
Counting the number of times a system version appears in bulletins and advisories ignores the
specifics of the system configuration that give rise to the exploit: whether a security patch has
been installed, whether defaults are turned off, whether it always runs in system administrator
mode. Instead, we want a measure—at a lower abstraction level—that allows us to refer to very
specific states (i.e., configurations) of a system. Given this intermediate viewpoint, we propose that
there are certain system features that are more likely than others to be opportunities of attack. The
counts of these "more likely to be attacked" system features determine a system's attackability.

Further, we will categorize these attack opportunities into different abstract dimensions, which
together define a system's attack surface. Intuitively, the more exposed the system's surface, the
more attack opportunities, and hence the more likely it will be a target of attack. Thus, one way
to improve system security is to reduce its attack surface.

Suppose now we are given a fixed set of dimensions and a fixed set of attack opportunities (i.e.,
system features) for each dimension. Then with respect to this fixed set of dimensions of attack
opportunities, we can measure whether System A is "more secure" than System B.

In our work, we use state machines to model Systems A and B. Our abstract model allows
Systems A and B to be any two state machines, each of which interacts with the same state machine
model of its environment, i.e., threat model. In practice, it is more useful and more meaningful
to compare two systems that have some close relationship, e.g., they provide similar functionality,
perhaps through similar APIs, rather than two arbitrary systems. The abstract dimensions along
which we compare two systems are derived directly from our state machine model: process and data
resources and the actions that we can execute on these resources. For a given attack, which we define
to be a sequence of action executions, we distinguish targets from enablers: targets are processes
or data resources that an adversary aims to control, and enablers are all other processes and data
resources that are used by the adversary to carry out the attack successfully. The adversary obtains
control over these resources through communication channels and protocols. Control is subject to
the constraints imposed by a system's set of access rights. In summary, our attack surface's three



dimensions are: targets and enablers, channels and protocols, and access rights. Attackability is a
measure of how exposed a system's attack surface is.

1.3 Contributions and Roadmap

We use a state machine formal framework to support three main contributions of this paper:

• The notion of a system's attack surface.

• A new relative measure of security, attackability.

• A model for vulnerabilities as differences between intended and actual behavior, in terms of
pre-conditions and post-conditions (Section 2.2).

Our "relative" approach has the advantage that security analysts are more willing and able
to give relative rankings of threats and relative values to risk-mitigation controls, than absolute
numbers [ButO3]. We also avoid the need to assign probabilities to attacks.

We view our work as only a first step toward coming up with a meaningful, yet practical way
of measuring (relative) security. By no means do we claim to have identified "the right" or "all"
the dimensions of an attack surface. Indeed, our use of the word "dimensions" is only meant to
be suggestive of a surface; our dimensions are not orthogonal. We hope with this paper to spark a
fruitful line of new research in security metrics.

In Section 2 we present our formal framework and then in Section 3 we explain our abstract
dimensions of a system's attack surface. To illustrate these ideas concretely, in Section 4 we recast
Microsoft Security Bulletin MS02-005 in terms of our concepts of targets and enablers. In Section
5 we give an abstract attack surface measurement function. Again, to be concrete, in Section 6 we
revisit Howard's RASQ metric in terms of our abstract dimensions. In Section 7 we discuss how
best to apply and not to apply the RASQ approach. We close with a review of related work in
Section 8 and suggestions for future work in Section 9.

2 Terminology and Model

Our formal model is guided by the following three terms from Trust in Cyberspace [Sch91]:

• A vulnerability is an error or weakness in design, implementation, or operation.

• An attack is the means of exploiting a vulnerability.

• A threat is an adversary motivated and capable of exploiting a vulnerability.

We model both the system and the threat as state machines, which we will call System and
Threat, respectively. A state machine has a set of states, a set of initial states, a set of actions, and
a state transition relation. We model an attack as a sequence of executions of actions that ends in
a state that satisfies the adversary's goal, and in which one or more of the actions executed in an
attack involves a vulnerability.

2.1 State Machines

A state machine, M = (S, / , A, T), is a four-tuple where S is a set of states, / C S is a set of initial
states, A is a set of actions, and T = S x Ax S is a transition relation. A state s £ S is a mapping
from typed resources to their typed values:



s :

Of interest to us are state resources that are processes and data. A state transition, (s,a,sf), is
the execution of action a in state s resulting in state s*. A change in state means that either a
new resource is added to the mapping, a resource was deleted, or a resource changes in value. We
assume each state transition is atomic.

An execution of a state machine is the alternating sequence of states and action executions:

so a\ s\ 0,2 S2 . . . Si-i a,i Si . . .

where so G J and Vi > O.(si_i,a»,Si) G T. An execution can be finite or infinite. If finite, it ends
in a state.

The behavior of a state machine, M, is the set of all its executions. We denote this set Beh(M).
A state s is reachable if either s G / or there is an execution, e G Beh(M), such that s appears in
e.

We will assume that actions are specified by pre- and post-conditions. For an action, a G A, if
a.pre and a.post denote a's pre- and post-condition specifications, we can then define the subset of
the transition relation, T, that involves only action a as follows:

a.T = {(s, a, s') : S x A x S \ a.pre(s) => a.post(s, s1)}

We model both the system under attack and the threat (adversary) as state machines:

System = (Ss,Is,As,Ts)
Threat = (ST, IT, A T , TT)

We partition the resources of a state machine, M, into a set of local resources and a set of global
resources, ResM = Resj^ I±J Res^. We define the combination of the two state machines, ST =
System M Threat, by merging all the corresponding components3:

• 1ST = IS U IT

• AST = As U AT

• TST = TSUTT

We identify the global resources of S and the global resources of T such that Res^T = Res^ = Restf
and so RessT = Res^ W Res^ l±l ResgT. Finally, ValsT = Vals U Valr- We extend the definitions
of executions, behaviors, etc. in the standard way.

An adversary targets a system under attack to accomplish a goal:

System-Under-Attack = (System M Threat) x Goal
3There are more elegant formulations of composing two state machines; we use a simple-minded approach that

basically merges two state machines into one big one. In the extreme, if the local resources sets are empty, then the
two machines share all state resources; if the global resource set is empty, they share nothing. Thus our model is
flexible enough to allow communication through only shared memory, only message passing, or a combination of the
two.



where Goal is formulated as a predicate over states in SST- Note that we make explicit the goal of the
adversary in our model of a system under attack. Example goals might be "Obtain root access on
host H" or "Deface website on server S." In other contexts, such as fault-tolerant computing, Threat
is synonymous with the system's "environment." Thus, we use Threat to model environmental
failures, due to benign or malicious actions, that affect a system's state.

Intuitively, the way to reduce the attack surface is to ensure that the behavior of System
prohibits Threat from achieving its Goal

2.2 Vulnerabilities

Vulnerabilities can be found at different levels of a system: implementation, design, operational,
etc. They all share the common intuition that something in the actual behavior of the system
deviates from the intended behavior. We can capture this intuition more formally by comparing
the difference between the behaviors of two state machines. Suppose there is a state machine that
models the intended behavior, and one that models the actual behavior:

Intend = (Sint,Iint,Aint,TInt)
Actual = (SAct,IAcuAAct,TAct)

We define the vulnerability difference set, Vul, to be the difference in behaviors of the two machines:

Vul = Beh(Actual) - Beh(Intend)

An execution sequence in Vul arises from one or more differences between some component of
the state machine Actual and the corresponding component of Intend, i.e., differences between the
corresponding sets of (1) states (or more relevantly, reachable states), (2) initial states, (3) actions,
or (4) transition relations. We refer to any one of these kinds of differences as a vulnerability. Let's
consider each of these cases:
1- SAct - Slnt ^ 0

If there is a difference in state sets then there are some states that are defined for Actual that
are not intended to be defined for Intend. The difference may be due to (1) a resource that is in a
state in Actual, but not in Intend or (2) a value allowed for resource in Actual that is not allowed
for that resource in Intend. (A resource that is not in a state in Actual, but is in Intend is ok.)
The difference may not be too serious if the states in the difference are not reachable by some
transition in TAct. If they are reachable, then the difference in transition relations will pick up on
this vulnerability. However, even if they are not reachable, it means that if any of the specifications
for actions changes in the future, we must be careful to make sure that the set of reachable states
in Actual is a subset of that of Intend.
2. IAct - lint ¥" 0

If there is a difference in initial state sets then there is at least one state in which we can start
an execution when we ought not to. This situation can arise if resources are not initialized when
they should be, they are given incorrect initial values, or when there are resources in an initial
actual state but not in any initial intended state.
3. AAct - AInt =£ 0

If there is a difference in action sets then there are some actions that can be actually done that
are not intended. These actions will surely lead to unexpected behavior. The difference will show
up in the differences in the state transition relations (see below).
4. TAct - TInt ± 0



If there is a difference in state transition sets then there is at least one state transition allowed
in Actual that should not be allowed according to Intend. This situation can arise because either
(i) the action sets are different or (ii) the pre-/post-conditions for an action common to both action
sets are different.

More precisely, for case (ii) where A Act = Mnu consider a given action a G AInt. If a.TAct -
a.Tjnt is non-empty then there are some states either in which we can execute a in Actual and not
in Intend or which we can reach as a result of executing a in Actual and not in Intend. Let a*Act-We

and ajnt.pre be the pre-conditions for a in Actual and Intend, respectively, and similarly for their
post-conditions. In terms of pre- and post-conditions, no difference can arise if

• a Act-post => ajnt.post.

Intuitively, if the "actual" behavior is stronger than the "intended" then we are safe.
Given that Actual models the actual behavior of the system, then our system combined with

the Threat machine looks like:

System-Under-Attack = (Actual IX Threat) x Goal
as opposed to

System-Under-Attack — (Intends Threat) x Goal
again with the expectation that were Intend implemented correctly, Goal would not be achievable.

In this paper we focus our attention at implementation-level vulnerabilities, in particular, dif-
ferences that can be blamed on an action's pre-condition or post-condition that is too weak or
incorrect. A typical example is in handling a buffer overrun. Here is the intended behavior, for a
given input string, s:

length(s) < 512 => "process normally" A length(s) > 512 => "report error and terminate"

If the programmer forgot to check the length of the input, the actual behavior might instead be

length(s) < 512 => "process normally" A length(s) > 512 => "execute extracted payload"

Here "execute extracted payload" presumably has an observable unintended side effect that differs
from just reporting an error.

2.3 Attacks

An attack is the "means of exploiting a vulnerability" [Sch91]. We model an attack to be a sequence
of action executions, at least one of which involves a vulnerability. More precisely, an attack, A;,
either starts in an unintended initial state or reaches an unintended state through one of the actions
executed in k. In general, an attack will include the execution of actions from both state machines,
System and Threat.

The difference between an arbitrary sequence of action executions and an attack is that an attack
includes either (or both) (1) the execution of an action whose behavior deviates from the intended
(see previous section) or (2) the execution of an action, a G A Act — Ajnt{^ 0). In this second case,
the set of unintended behaviors will include behaviors not in the set of intended behaviors since
A Act ± A int.

For a given attack, k, the means of an attack is the set of all actions in k and the set of all
process and data resources accessed in performing each action in k. These resources include all
global and local resources accessed by each action in k and all parameters passed in as arguments
or returned as a result to each action executed in k.



3 Dimensions of an Attack Surface

We consider three broad dimensions to our attack surface:

• Targets and enablers. To achieve his goal, the adversary has in mind one or more targets on
the system to attack. An attack target, or simply target, is a distinguished process or data
resource on System that plays a critical role in the adversary's achieving his goal. We use the
term enabler for any accessed process or data resource that is used as part of the means of
the attack but is not singled out to be a target.

• Channels and protocols. Communication channels are the means by which the adversary
gains access to the targets on System. We allow both message-passing and shared-memory
channels. Protocols determine the rules of interaction among the parties communicating on
a channel.

• Access rights. These rights are associated with each process and data resource of a state
machine.

Intuitively, the more targets, the larger the attack surface. The more channels, the larger the
attack surface. The more generous the access rights, the larger the attack surface.

We now look at each of these dimensions in turn.

3.1 Targets and Enablers

Targets and enablers are resources that an attacker can use or coopt. There are two kinds: processes
and data. Since it is a matter of the adversary's goal that determines whether a resource is a target
or enabler, for the remainder of this section we use the term targets to stand for both. In particular,
a target in one attack might simply be an enabler for a different attack, and vice versa.

Examples of process targets are browsers, mailers, and database servers. Examples of data
targets are files, directories, registries, and access rights.

The adversary wants to control the target: modify it, gain access to it, or destroy it. Control
means more than ownership; more generally, the adversary can use it, e.g., to trigger the next step
in the attack. Consider a typical worm or virus attack, which follows this general pattern:

Step 1: Ship an executable—treated as a piece of data—within a carrier to a target machine.

Step 2: Use an enabler, e.g., a browser, to extract the payload (the executable) from the carrier.

Step 3: Get an interpreter to execute the executable to cause a state change on the target machine.

where the attacker's goal, achieved after the third step, may be to modify state on the target
machine, to use up its resources, or to set it up for further attacks.

The prevalence of this type of attack leads us to name two special types of data resources. First,
executables is a distinguished type of data resource in that they can be interpreted (i.e., evaluated).
We associate with executables one or more eval functions, eval: executable —» unitA Different eval
functions might interpret the same executable with differing effects. Executables can be targets and
controlling such a target includes the ability to call an eval function on it. The adversary would do
so, for example, for the side effect of establishing the pre-condition of the next step in the attack.

Writing the return type of eval as unit is our way, borrowed from ML, to indicate that a function has a side effect.



Obvious example types of eval functions include browsers, mailers, applications, and services
(e.g., Web servers, databases, scripting engines). Less obvious examples include application exten-
sions (e.g., Web handlers, add-on dll's, ActiveX controls, IS API filters, device drivers), which run
in the same process as the application; and helper applications (e.g., CGI scripts), which run in a
separate process from the application.

Carriers are our second distinguished type of data resource. Executables are embedded in
carriers. Specifically, carriers have a function extracLpayload: carrier -> executable. Examples of
carriers include viruses, worms, Trojan horses, and email messages.

Part of calculating the attack surface is determining the types and numbers of instances of
potential process targets and data targets, the types and numbers of instances of eval functions
for executables that could have potentially damaging side effects; and the types and numbers of
instances of carriers for any executable.

3.2 Channels and Protocols

A channel is a means of communicating information from a sender to a receiver (e.g., from an
attacker to a target machine). We consider two kinds of channels: message-passing (e.g., sockets,
RPC connections, and named pipes) and shared-memory (e.g., files, directories, and registries).
Channel "endpoints" are processes.

Associated with each kind of channel is a protocol, the rules of exchanging information. For
message-passing channels, example protocols include ftp, RPC, http, and streaming. For shared-
memory, examples include protocols that might govern the order of operations (e.g., a file has to
be open before read), constrain simultaneous access (e.g., multiple-reader/single-writer or single-
reader/single-writer), or prescribe locking rules (e.g., acquire locks according to a given partial
order).

Channels are data resources. A channel shared between System and Threat machines is an
element of Res^T in the combination of the two machines. In practice, in an attack sequence, the
Threat machine might establish a new message-passing channel, e.g., after scanning host machines
to find out what services are running on port 80.

Part of calculating the attack surface is determining the types of channels, the numbers of
instances of each channel type, the types of protocols allowed per channel type, the numbers and
types of processes at the channel endpoints, the access rights (see below) associated with the
channels and their endpoints, etc.

3.3 Access rights

We associate access rights with all resources. For example, for data that are text files, we might
associate read and write rights; for executables, we might associate execute rights. Note that we
associate rights not only with files and directories, but also with channels (since they are data
resources) and channel endpoints (since they are running processes).

Conceptually we model these rights as a relation, suggestive of Lampson's orginal access control
matrix [Lam74]:

Access C Principals x Res x Rights

where Principals — Users U Processes, Res = Processes U Data, and Rights is left uninterpreted.
(Res is the same set of resources introduced in Section 2.) For example, in Unix, Rights — {read,
write, execute}, in the Andrew file system, Rights — {read, lookup, insert, delete, write, lock,



administer}, and in Windows there are eighteen different rights associated with files and directories
alone; and of course not all rights are appropriate for all principals or resources. More generally,
to represent conditional access rights, we can extend the above relation with a fourth dimension,
Access C Principals x Res x Rights x Conditions, where Conditions is a set of state predicates.

There are shorthands for some "interesting" subsets of the Access relation, e.g., accounts, trust
relationships, and privilege levels, that we usually implement in practice, in lieu of representing the
Access relation as a matrix.

• Accounts represent principals, i.e., users and processes. Thus, we view an account as short-
hand for a particular principal with a particular set of access rights. Accounts can be data
or process targets.

There are some special accounts that have default access rights. Examples are well-known
accounts such as guest accounts, and accounts with "admin" privileges. These typically have
names that are easy to guess.

Part of calculating the attack surface is determining the number of accounts, the number of
accounts with admin privileges, and the existence and number of guest accounts, etc. Also,
part of calculating the attack surface is determining for each account if the tightest access
rights possible are associated with it.

• A trust relationship is just a shorthand for an expanded access rights matrix. For example,
we might define a specific trust relation, Tr C Principals x Principals, where network hosts
might be a subset of Principals. Then we might define the access rights for principal p\ to be
the same as or a subset of those for principal^ if Tr(p\,p2). We could do something similar
to represent the "speaks for" relation of Lampson, Abadi, Burrows, and Wobber [LABW92].
In both cases, by modeling access rights as a (flat) ternary relation, however, we lose some
information: the structural relationship between the two principals (A trusts B or A speaks
for B). We choose, however, to stick to the simpler access rights matrix model because of its
prevalence in use.

• Privilege levels map a principal to a level in a total or partial order, e.g., none < user < root.
Associated with a given level is a set of access rights. Suppose we have a function, privJevel:
Principals —> {none, user, root}, then the rights of principal p would be those associated with
privJevel(p).

Reducing the attack surface with respect to access rights is a special case of abiding by the
Principle of Least Privilege: Grant only the relevant rights to each of the principals who are
allowed access to a given resource.

4 Security Bulletins

To validate our general attack surface model, we described a dozen Microsoft Security bulletins [Mic]
using our terminology [PW03]. The one example we present here illustrates how two different
attacks can exploit the same vulnerability via different channels.

The Microsoft Security Bulletin MS02-005, posted February 11, 2002, reports six vulnerabilities
and a cumulative patch to fix all of them. We explain just the first (see Figures 2 and 3). The
problem is that the processing of an HTML document (a web page sent back from a server or
HTML email) that embeds another object involves a buffer overrun. Exploiting this buffer overrun
vulnerability lets the adversary run arbitrary code in the security context of the user.



We now walk through the template which we use for describing these bulletins.
First we specify the vulnerability as the difference in actual from intended behavior for an action.

Here the action is the processing by MSHTML (the HTML renderer on Microsoft Windows 2000
and Windows XP) of an HTML document D in a security zone Z. The intended pre-condition is
"true," i.e., this action should be allowed in all possible states. However, due to a missing validation
check of the action's input, the actual pre-condition is that the length of the object, X, embedded
in D, should be less than or equal to 512 bytes.

The intended post-condition is to display the embedded object as long as the ability to run
ActiveX Controls is enabled for zone Z. The actual post-condition, due to the non-trivial pre-
condition, is that if the length of X is longer than 512 bytes, then the executable E extracted from
X is evaluated for its effects. By referring to the pre- and post-conditions of E, i.e., E.pre and
E.post, we capture E's effects as if it were evaluated; this makes sense only for a resource that
is an executable, and thus has an eval function defined for it. Note that most executables, when
evaluated, will simply crash the MSHTML process.

After describing the vulnerability, we give a series of sample attacks, each of which shows
how the vulnerability can be exploited by the adversary. Before giving some sample attacks for
MS02-005a, we explain the parts in our template that we use to describe each attack.

• The goal of the attack.

• A resource table showing for each resource (data or process) involved in the attack whether it
serves as a carrier ("Y" means "yes; a blank, "no"), a channel (if so, "MP" means message-
passing; "SM" means shared-memory; and a blank means it is not a channel), or a target or
enabler ("T" means it is a target; "E", an enabler).

• The pre-condition for the attack. Each clause is a conjunct of the pre-condition.

• The attack itself, written as a sequence of actions. The action exploiting the vulnerability is
in boldface. (More formally, we would specify each action with pre- and post-conditions. For
the attack to make sense, the pre-condition of the attack should imply the pre-condition of the
first action in the attack, the post-condition of the ith action should imply the pre-condition
of the i + 1st action, and the post-condition of the last action should imply the post-condition
of the attack.)

• The post-condition for the attack. This post-condition corresponds to the adversary's goal,
i.e., the reason for launching the attack in the first place. It should imply the goal (see first
item above).

Let's now return to our example. Since MSHTML is used by both the browser and the mailer,
we give two sample attacks, each exploiting the same vulnerability just described.

In the first attack (Figure 2), the adversary's goal is to run arbitrary code on the client. As
indicated by the resource table for Attack 1, he accomplishes his goal by using the web server and
the client browser as enablers. The server-client web connection is the message-passing channel by
which the attack occurs. The HTML document is the carrier of the payload and the MSHTML
process is the target of attack.

The pre-condition for the attack is that the victim should have requested a web page from the
adversary and should have enabled for zone Z the option to run ActiveX Controls, and that the
adversary's site is mapped to zone Z on the victim's machine. The attack itself is the sequence of
three actions: the web server sends an HTML document D with an ill-formed embedded object to

10



Action Vulnerability: MSHTML processes HTML document D in zone Z.

Intended precondition: true
Actual precondition: D contains <EMBED SRC=X> =» length(X) < 512
Intended postcondition: (one of many clauses)

D contains <EMBED SRC=X> A "Run ActiveX Controls" is enabled for Z => display(X)
Actual postcondition: (one of many clauses)

D contains <EMBED SRC=X> A "Run ActiveX Controls" is enabled for Z =>
[ (length(X) > 512 A extract_payload(X) = E) =* (E.pre => E.post )
A length(X) < 512 =» display(X) ]

Attack 1: Web server executes arbitrary code on client.
Goal: Enable execution of arbitrary code on client.

Resource Table

Resource \\ Carrier | Channel

HTTPD web server (process)
server-client web connection C (data)
browser B (process)
HTML document D (data)
MSHTML (process)

Y

MP

Target/Enabler

E
E
E
E
T

Preconditions

• Victim requests a web page from adversary's site S.

• Victim's machine maps site S to zone Z.

• Victim's machine has "Run ActiveX Controls" security option enabled for zone Z.

• Adversary creates HTML document D containing an embed tag <EMBED X>, where length(X) > 512
and extract_payload(X) = E.

Attack Sequence

1. Web server sends document D to browser B over connection C.

2. B passes D to MSHTML in zone Z.

3. MSHTML processes D in zone Z.

Postconditions

• Arbitrary, depending on the pay load.

Figure 2: Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer (I)
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Attack 2: Mail-based attack (HTML email) executing arbitrary code on client.
Goal: Enable execution of arbitrary code on client.

Resource Table

Resource || Carrier

HTTPD web server (process)
server-client mail connection C (data)
Outlook Express OE (process)
HTML mail message M (data)
HTML document D (data)
MSHTML (process)

Y

Channel

MP

Target/Enabler

E
E
E
E
E
T

Preconditions

• Victim able to receive mail from attacker.

• Victim's HTML email is received in zone Z.

• Victim's machine has "Run ActiveX Controls" security option enabled for zone Z.

• Adversary creates HTML document D containing an embed tag <EMBED X>, where length(X) > 512
and extract_payload(X) = E.

• Adversary creates mail message M with D included, where Z ^ Restricted Zone.

Attack Sequence

1. Adversary sends HTML message M to victim via email.

2. Victim views (or previews) M in OE.

3. OE passes D to MSHTML in zone Z .

4. MSHTML processes D in zone Z.

Postconditions

• Arbitrary, depending on the payload.

Figure 3: Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer (II)
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the client browser; the browser passes D to the MSHTML process; the MSHTML processes D as
specified in the vulnerability. The post-condition of the attack is the effect of running the embedded
executable.

In the second attack (Figure 3), the adversary's goal is the same and the vulnerability is the
same. The means of attack, however, are different. Here, the enablers are an HTML mail document
and the mailer process, i.e., Outlook Express. Note that people usually consider Outlook Express
to be the target, but in fact, for this attack, it is an enabler. The channel, carrier, and target are
the same as for the first attack.

The pre-condition is different: the victim needs to be able to receive mail from the attacker
and HTML email received is in zone Z that is not the restricted zone. The attack is a sequence
of four actions: the web server sends an HTML document D with an ill-formed embedded object
to the victim via email; the victim views the HTML document in the mailer process, i.e., Outlook
Express; the mailer process sends D to MSHTML in zone Z; and finally, the MSHTML processes
D as specified in the vulnerability. The post-condition is as for the first attack, i.e., the effect of
running the embedded executable.

5 Analyzing Attack Surfaces

We use our broad dimensions of targets and enablers, communication channels and protocols, and
access rights to guide us in deciding (1) what things to count, to determine a system's attackability;
(2) what things to eliminate or reduce, to improve system security; and (3) how to compare two
versions of the same system. In this section we consider briefly the first two items; Section 6 gives
a detailed concrete example of all three.

5.1 Measuring the Attack Surface

We can define a measure of the system's attack surface to be some function of the targets and
enablers, the channels associated with each type or instance of a target and enabler, the protocols
that constrain the use of channels, and the access rights that constrain the access to all resources.

surf = /(targets, enablers, channels, protocols, access rights)

In general, we can define the function / in terms of additional functions on targets, enablers,
channels, and access rights to represent relationships between these (e.g., the constraints imposed
by protocols on channels, and the constraints imposed by access rights on all resources), or weights
of each type (e.g., to reflect that certain types of targets are more critical than others or to reflect
that certain instances of channels are less critical than others).

We deliberately leave / uninterpreted because in practice what a security analyst may want
to measure may differ from system to system. Moreover, defining a precise / in general, even for
a given system, can be extremely difficult. We leave the investigation of what different types of
metrics are appropriate for / for future work. In Section 6 we give a very simplistic /.

5.2 Reducing the Attack Surface

The concepts underlying our attack surface also give us a systematic way to think about how to
reduce it. We can eliminate or reduce the number of (1) types or instances of targets, processes,
enablers, executables, carriers, eval functions, channels, protocols, and rights; (2) types or instances
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of vulnerabilities, e.g., by strengthening the actual pre- or post-condition to match the intended;
or (3) types or instances of attacks, e.g., through deploying one or more security technologies.

Principles and rules of thumb that system administrators and software developers follow in mak-
ing their systems more secure correspond naturally to our concepts. For example, the tasks specified
in "lockdown instructions" for improving security of a system frequently include eliminating data
and process targets and strengthening access rights. Consider these examples:

Colloquial
Turn off macros.
Block attachments in Outlook.

Secure by default.

Check for buffer overrun.

Validate your input.

Change your password every 90 days.

Formal
Eliminate an eval function for one type of data.
Avoid giving any executable (data)

as an argument to an eval function.
Eliminate entire types of targets, enablers, and channels;

restrict access rights.
Strengthen the post-condition of the actual behavior

to match that of the intended behavior.
Strengthen the pre-condition of the actual behavior

to match that of the intended behavior.
Increase the likelihood that the authentication

mechanism's pre-condition is satisfied.

6 An Example Attack Surface Metric

Howard identified a set of 17 RASQ vectors [How03] and defined a simple attack surface function
to determine the relative attack surface of seven different versions of Windows. In Section 6.1 we
present 20 attack vectors: Howard's original 17 plus 3 others we added later. In Section 6.2 we
present his RASQ calculation for all 20 attack vectors in detail. In Section 6.3 we analyze his RASQ
results: we confirm observed behavior reflecting user experience and lockdown scenarios, but also
we point out additional missing elements.

6.1 Attack Vectors for Windows

Howard's original 17 RASQ vectors [How03] are shown as the first 17 in Figure 4. Upon our5 initial
analysis of his work, we noted that he had not considered enablers, such as scripting engines. Thus,
we subsequently added three more attack vectors, shown in italics. Figure 4 shows how we map the
20 attack vectors into our terminology of channels, process targets, data targets, process enablers,
and access rights.

We describe each in more detail below.

1. Open sockets: TCP or UDP sockets on which at least one service is listening. Since one
service can listen on multiple sockets and multiple services can listen on the same socket,
this attack vector is a channel type; the number of channels is independent of the number of
services.

2. Open RPC endpoints: Remotely-accessible handlers registered for remote procedure calls with
the "endpoint manager." Again, a given service can register multiple handlers for different
RPC interfaces.

3. Open named pipes: Remotely-accessible named pipes on which at least one service is listening.
5Pincus and Wing
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4. Services: Services installed, but not disabled, on the machine. (These are equivalent to
daemons on UNIX systems.)

5. Services running by default: Services actually running at the time the measurements axe
taken. Since our measurements are taken when the system first comes up, these are the
services that are running by default at start-up time.

6. Services running as SYSTEM: Services configured to log on as LocalSystem (or System), as
opposed to LocalService or some other user. (LocalSystem is in the administrators group.)

7. Active Web handlers: Web server components handling different protocols that are installed
but not disabled (e.g., the W3C component handles http; the nntp component handles nntp).

8. Active ISAPI filters: Web server add-in components that filter particular kinds of requests.
ISAPI stands for Internet Services Application Programming Interface; it enables developers
to extend the functionality provided by a web server. An ISAPI filter is a dynamic link library
(.dll) that uses ISAPI to respond to events that occur on the server.

9. Dynamic web pages: Files under the web server root other than static (.html) pages. Examples
include .exe files, .asp (Active Server Pages) files, and .pi (Perl script) files.

10. Executable vdirs: "Virtual Directories" defined under the web server root that allow execution
of scripts or executables stored in them.

11. Enabled accounts: Accounts defined in local users, excluding any disabled accounts.

12. Enabled accounts in admin group: Accounts in the administators group, excluding any dis-
abled accounts.

13. Null sessions to pipes and shares: Whether pipes or "shares" (directories that can be shared
by remote users) allow anonymous remote connections.

14. Guest account enabled: Whether there exists a special "guest" account and it is enabled.

15. Weak ACLs in FS: Files or directories that allow "full control" to everybody. "Full control"
is the moral equivalent of UNIX rwxrwxrwx permissions.

16. Weak ACLs in Registry: Registry keys that allow "full control" to everybody.

17. Weak ACLS on shares: Directories that can be shared by remote users that allow "full control"
to everybody. Even if one has not explicitly created any shares, there is a "default share"
created for each drive; it should be protected so that others cannot get to it.

18. VBScript enabled: Whether applications, such as Internet Explorer and Outlook Express,
are enabled to execute Visual Basic Script.

19. Jscript enabled: As for (18), except for Jscript.

20. ActiveX enabled: As for (18), except for ActiveX Controls.
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20 RASQ Attack Vectors
Open sockets
Open RPC endpoints
Open named pipes
Services
Services running by default
Services running as SYSTEM
Active Web handlers
Active ISAPI Filters
Dynamic Web pages
Executable vdirs
Enabled accounts
Enabled accounts in admin group
Null sessions to pipes and shares
Guest account enabled
Weak ACLs in FS
Weak ACLs in Registry
Weak ACLs on shares
VBScript enabled
Jscript enabled
ActiveX enabled

Formal
channels
channels
channels
process targets
process targets, constrained by access rights
process targets, constrained by access rights
process targets
process targets
process targets
data targets
data targets
data targets, constrained by access rights
channels
data targets, constrained by access rights
data targets, constrained by access rights
data targets, constrained by access rights
data targets, constrained by access rights
process enabler
process enabler
process enabler

Figure 4: Mapping RASQ Attack Vectors into Our Formalism

6.2 Attack Surface Calculation

In Howard's calculation, the attack surface area is the sum of independent contributions from a set
of channels types, a set of process target types, a set of data target types, a set of process enablers,
all subject to the constraints of the access rights relation, A.

surfA = surf*h + surf£t + surf$t + surf£e

This simple approach has a major advantage in that it allows the categories to be measured
independently. This simplification comes at a cost. For example, since interactions between services
and channels are not considered, Howard's RASQ calculation fails to distinguish between sockets
opened by a service running as administrator and (less attackable) sockets opened by a service
running as an arbitrary user.

Figure 5 gives a table showing each of the four terms in detail. Each term takes the form of
a double summation: for each type (of channel types, chty, process target types, pity, data target
types, dtty), and process enabler types, pety, for each instance of that type, a weight, CJ, for that
instance is added to the total attack surface. For a given type, r, we assume we can index the
instances per type such that we can refer to the ith instance by r2. For weight functions, CJ, that
are conditional on the state of the instance (e.g., whether or not an account is default), we use the
notation (cond, v\, V2) where the value is v\ if cond is true and V2 if cond is false.

For channels, access control is factored into the weights in one very limited case: Howard gives
a slightly lower weight to named pipes compared to the other channels because named pipes are
not generally accessible over the Internet. An alternate, more general approach to modeling this
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chty
socket
endpoint
namedpipe
nullsession

w(cj)
1.0
0.9
0.8
0.9

ptty
service
webhandler
isapi
dynpage

u(pi)
0.4 + def{pi) + adm(pi)

1.0
1.0
0.6

where
adm(pi) =

{default{Pi), 0.8, 0.0)
(run-as-.admin(pi), 0.9, 0.0)

~ ^ = Ed€*wEfii^(*)
dtty
account
file
regkey
share
vdir

w(rfi)
0.7 + adff(di) + pue(di)
(ti>eoJfci4CL(di), 0.7, 0.0)
{weakACL(di), 0.4, 0.0)
(«;eaJki4CL(di), 0.9, 0.0)
(executable{di), 1.0, 0.0)

where
adg(di) =
gue(di) =

G AdminGroup, 0.9, 0.0)
= "guest", 0.9, 0.0)

SUVJ% = T,eepetyT,eie{IE,OE}U(ei)
pety
vbscript
j script
activex

u(ei)
(app-executes.vbscript(ei), 1.0, 0.0)
(app-executes-.jscript(ei), 1.0, 0.0)
(app-executes-activex(ei), 1.0, 0.0)

where IE = Internet Explorer
OE = Outlook Express

Figure 5: Howard's Relative Attack Surface Quotient Metric
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situation would be to calculate a "local attack surface" and "remote attack surface," each of which
is appropriate for different threats.

For process targets, the weight function for services makes use of the access rights relation
explicitly by referring to whether a service is a default service or if it is running as administrator.

The influence of the access rights relation is the most obvious for data targets, since it is used
to determine whether an account is in a group with administrator privileges and whether it is a
guest account. Note that we view an account as a shorthand for a subset of the access rights, i.e.,
a particular principal with a particular set of rights. Access rights is also used to determine the
value of weakACL on files, registry keys, and shares. The predicate weakACL is true of its data
target if all principals have all possible rights to it, i.e.,"full control".

The weights for process enablers are the count of the number of applications that enable a
particular form of attack. Here, we consider only two applications, Internet Explorer and Outlook
Express; in general, we would count others. Script-based attacks, for example, may target arbitrary
process or data targets, but are enabled by applications that process script embedded in HTML
documents. Malicious ActiveX components can similarly have arbitrary targets, but any successful
attack is enabled by an application that allows execution of the potentially malicious component.

Our reformulation of Howard's original model shows that there are only 13 types of attack
targets, rather than 17; in addition, there are 3 types of enablers.

6.3 Analysis of Attack Surface Calculation

The results of applying these specific weight functions for five different versions of Windows are
shown in Figure 1. As mentioned in the introduction, the two main conclusions to draw are that
with respect to the 20 RASQ attack vectors (1) the default version of a running Windows Server
2003 system is more secure than the default version of a running Windows 2000 system, and (2) a
running Windows Server 2003 with IIS installed is only slightly less secure than a running Windows
Server 2003 without IIS installed.

While it is too early to draw any conclusions about Windows Server 2003, the RASQ numbers
are consistent with observed behavior in several ways:

• Worms such as Code Red and Nimda spread through a variety of mechanisms. In particular,
Windows NT 4.0 systems were at far greater risk of being successfully attacked by these worms
if the systems were installed with IIS than if they were not. This observation is consistent
with the increased RASQ of this less secure configuration.

• Windows 2000 security is generally perceived as being an improvement over Windows NT 4.0
security [WeeOl]; the differences in RASQ for the two versions in a similar configuration (i.e.,
with IIS enabled) reflect this perception.

• Conversely, Windows 2000 (unlike Windows NT 4.0) is shipped with IIS enabled by default,
which means that the default system is actually more likely to be attacked. This observation
is consistent with anecdotal evidence that many Windows 2000 users (including one author
of this paper) affected by Code Red and Nimda had no idea they were actually running IIS.

As a sanity check, we also measured the RASQ in two "lockdown" configurations: applying IIS
security checklists to both NT 4.0 with IIS [TecOla] and Windows 2000 [TecOO]. Since the tasks
specified in the lockdown instructions include disabling services, eliminating unnecessary accounts,
and strengthening ACLs, the RASQ unsurprisingly decreases: on Windows NT 4.0, from 598.3 in
the default configuration to 395.4 in the lockdown configuration; on Windows 2000, from 342.2 in
the default to 305.1. These decreases are consistent with users' experience that systems in lockdown
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configurations are more secure; for example, such configurations were not affected by the Code Red
worm [TecOlb].

Our set of 20 attack vectors still misses types and instances, some of which also need more
complex weight functions:

• For channels, some IPC mechanisms were not counted; for example COM is counted if DCOM
is enabled, but otherwise it is not.

• For process targets, we did not handle executables that are associated with file extensions that
might execute automatically (i.e., "auto-exec") or be executed mistakenly by a user. Also,
we did not count ActiveX controls themselves as process targets, only as process enablers,
i.e., whether applications such as IE and OE were set up to invoke them.

• The model treats all instances of each type the same, whereas some instances should probably
be weighted differently. For example, a socket over which several complex protocols are
transmitted should be a bigger contributor to the attack surface than a socket with a single
protocol; and port 80 is well-known attack target that should get a higher weight than other
channel endpoints.

• Just as for process targets that are services, for other types of process targets the weight func-
tion should take into consideration the privileges of the account that the process is executing
as. For example, for versions of IIS < 5.0, ISAPI filters always run as System, but in IIS 6.0,
they run as Network Service by default.

These missing attack opportunities and refined weight functions suggest potential enhancements
to Howard's RASQ model and the attack surface calculation.

7 Discussion of the RASQ Approach

We have some caveats in applying the RASQ approach naively:

• Obtaining numbers for individual attack vector classes is more meaningful than reading too
much into an overall RASQ number. It is more precise to say that System A is more secure
than System B because A has fewer services running by default rather than because A's RASQ
is lower than B's. After all, summing terms with different units does not "type check". For
example, if the number of instances in one attack vector class is N for System A and 0 for
System B, but for a different attack vector class, the number is 0 for System A and N for
System B, then all else being equal, the systems would have the same RASQ number. Clearly,
the overall RASQ number does not reflect the security of either A or B with respect to the
two different attack vector classes.

• The RASQ numbers we presented are computed for a given configuration of a running system.
When an RASQ number is lower for System A than System B because certain features are
turned off by default for System A and enabled by default for System B, that does not mean
that System A is inherently "more secure"; for example, as the owner of System A begins to
turn features on over time it can become just as insecure as System B. On the other hand,
if 95% of deployed systems are always configured as System A initially (e.g., features off by
default) and remain that way forever, then we could say in some global sense that we are
"more secure" than if those systems were configured as System B.
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• Do not compare apples to oranges. It is tempting to calculate an RASQ for Windows and one
for Linux and then try to conclude one operating system is more secure or more attackable
than the other. This would be a big mistake. For one, the set of attack vectors would be
different for the two different systems. And even if the sets of attack vectors were identical,
the threat models differ.

Rather, a better way to apply the RASQ approach for a given system is first to identify a set
of attack vectors, and then for each attack vector class, compute a meaningful metric, e.g., number
of running instances per class. Comparing different configurations of the same system per attack
vector class can illuminate poor design decisions, e.g., too many sockets open initially or too many
accounts with admin privileges. When faced with numbers that are too high or simply surprising,
the system engineer can then revisit these design decisions.

8 Related Work

To our knowledge the notion of "attackability" as a security metric is novel. At the code level,
many have focused on counting or analyzing bugs (e.g., [CYC+01, Gra90, LI93, SC91]) but none
with the explicit goal of correlating bug count with system vulnerability.

At the system level, Browne et al. [BMAF01] define an analytical model that reflects the rates
at which incidents are reported to CERT. Follow-on work by Beattie et al. [BAC+02] studies the
timing of applying security patches for optimal uptime based on data collected from CVE entries.
Both empirical studies focused on vulnerabilities with respect to their discovery, exploitation, and
remediation over time, rather than on a single system's collective points of vulnerability.

Finally, numerous websites, such as Security Focus [Foe], and agencies, such as CERT [CER] and
MITRE [MIT], track system vulnerabilities. These provide simplistic counts, making no distinction
between different types of vulnerabilities, e.g., those that are more likely to be exploited than others,
or those relevant to one operating system over another. Our notion of attackability is based on
separable types of vulnerabilities, allowing us to take relative measures of a system's security.

9 Future Work

Our state machine model is general enough to model the behavior an adversary attacking a system.
We identified some useful abstract dimensions such as targets and enablers, but we suspect there
are others that deserve consideration. In particular, if we were to represent configurations more
explicitly, rather than as just states of the system (in particular the resources and access rights),
then we can more succinctly define what it means for a process to be running by default or whether
an account is enabled.

Further into the future we imagine a "dial" on the workstation display that allows developers
to determine if they have just increased or decreased the attack surface of their code. We could flag
design errors or design decisions that tradeoff performance for security. For example, consider a
developer debating whether to open up several hundred sockets at boot-up time or to open sockets
on demand upon request by authenticated users. For a long-running server, the first approach is
appealing because it improves responsiveness and is a simpler design. However, even a simple attack
surface calculation would reveal a significant increase in the server's attackability; this potential
security cost would need to be balanced against the benefits.

Measuring security, quantitatively or qualitatively, has been a long-standing challenge to the
community. The need to do so has recently become more pressing. We view our work as a first step
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in revitalizing this research area. We suggest that the best way to begin is to start counting what is
countable; then use the resulting numbers in a qualitative manner (e.g., doing relative comparisons).
Perhaps over time our understanding will then lead to meaningful quantitative metrics.
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