NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

510.6
C28R
93-153

A UNIFYING PRINCIPLE FOR
EXTENSIONAL HIGHER-ORDER LOGIC

by

Michael Kohlhase
Fachbereich Informatik, Unisversitit Saarbriicken
Im Stadtwald, D—6600 Saarbriicken 11, Germany

currently at
Department of Mathematics

Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

Research Report No. 93—153}
January, 1993

University Lihrarios
Fa) € - L Y SR]
Carnegie Melion © pn
Pittsburgh PA 1521 3-3000

A Unifying Principle for Extensional Higher-Order Logic

Michael Kohlhase*

Fachbereich Informatik, Universitat Saarbriicken
Im Stadtwald, D-6600 Saarbriicken 11, Germany
kohlhaseQcs.uni-sb.de
currently at
Dept. of Mathematics
Carnegie Mellon University
Pittsburgh, PA, 15213, USA
kohlhase@cs.cmu.edu

Research Report No. 93-153
Department of Mathematics
Carnegie Mellon University

February 1993

abstract

In higher-order automated theorem proving the extensionality of equality has
not yet been satisfactorily dealt with. This situation is especially unsatisfying
since higher-order logic without extensionality does not admit a natural set-
theoretic semantics.

In this paper we present a version of Smullyan’s Unifying Principle for simple
type theory with extensionality. This result can serve as a tool for the develop-
ment of extensionally complete calculi that are well-suited for mechanization
on computers, and furthermore enables us to give an elegant completeness
proof for Henkin’s original calculus.

*This work was supported by the “Sonderforschungsbereich 314, Kiinstliche Intelligenz” of the Deutsche
Forschungsgemeinschaft (DFG) and the “Studienstiftung des deutschen Volkes”.

§ ity Lihraries
!}ﬂ!“ere\? V' :yv;-e ?';‘:L,"i‘?‘»"“ﬁa*‘

R A A

PP SR
Crrmer@ ob.

Contents

Introduction

Simple Type Theory
21 Syntaxof @
2.2 Classical Formulations of Type Theory

2.3 Substitutions, Lambda-Conversion and Normal Forms

Semantics of Q

3.1 X-Algebras
3.2 X-Congruences
3.3 General Models

Calculi for Q
4.1 Calculi, Derivations and Consistency .
4.2 The Hilbert Calculi ¥ and T€

Unifying Principle for General Models
5.1 Abstract Consistency Classes
5.2 Higher-Order Hintikka Sets
5.3 Unifying Principle for General Models
54 Completeness

Conclusion and Further Work
The Index of defined symbols

A Resolution Calculus for Q
A.1 Resolution in Extensional Type Theory

......................

......................

......................

......................

13
13
15

17
17
19
21
23

25
29

30

1 Introduction

One key objective of the field of higher-order automated theorem proving is finding calculi for
higher-order logic that are well-suited for mechanization on computers. But higher-order logic
is known to be incomplete with respect to the standard model semantics, so in particular
it does not admit calculi that are complete with respect to this class of models. Fortu-
nately there is another notion of semantics for higher-order logic based on a class of simple
set-theoretic models, called general models or Henkin-models, that allows complete calculi
(cf. [Hen50, And72]). Therefore the notion of completeness with respect to general models is
natural for measuring the deductive power of calculi. So far all efforts to find machine-oriented
calculi for higher-order logic that are complete with respect to the general model semantics
have failed. In particular all such calculi known to the author (cf. Huet’s constrained reso-
lution calculus [Hue72, Hue73, Koh93], Andrews’ resolution in type theory [And71], Miller’s
expansion proofs [Mil83] and the TPS procedure [ALCMP84, And89]) are not complete in
this sense. But there exists even another notion of completeness in which all of the above
calculi are complete: the notion of completeness relative to certain Hilbert style calculus ¥.
In general a calculus C is complete relative to a calculus 7, iff C proves all theorems of 7.
It is rooted in the tradition of proof theory, where questions of relative deductive power of
calculi are analyzed without referring to model-theoretic arguments. However it turns out
that ¥ is not complete with respect to general models, so completeness relative to T is a
strictly weaker notion than general model completeness. One Approach to the task of find-
ing machine-oriented calculi in higher-order logic consists in analyzing and overcoming the
shortcomings of the existing, incomplete calculi.

Unifying Principles have become a standard tool for proving the completeness of calculi
for automated theorem proving (see for instance the introductory textbooks [And86, Fit90]).
A unifying principle for a logical system £ is a theorem of the form: If a set of sentences ¢ in
L is a member of an abstract consistency class I', then there exists an £-model for ®. Thus if
we want to show the completeness of a particular calculus C, we first prove that the class I’ of
sets of sentences ® that are C-consistent (cannot be refuted in C) is an abstract consistency
class, then the unifying principle tells us that C-consistent sets of sentences are satisfiable
in L. Now we assume that a sentence A is valid in £, so =A does not have an £-model
and is therefore C-inconsistent. From this it is for most calculi easy to verify that A is a
theorem of C. Note that with this argumentation the completeness proof for C condenses to
verifying that I is an abstract consistency class, a task that does not refer to £-models. Thus
the usefulness of unifying principles comes from the fact that a unifying principle abstracts
away all the model-theoretic analysis in completeness proofs by providing a sufficient set of
proof-theoretic conditions (membership in I') for a calculus to be complete. In this respect
a unifying principle is similar to a Herbrand Theorem, but it is easier to generalize to other
logic systems like higher-order logic. The technique was developed for first-order logic by J.
Hintikka and R. Smullyan [Hin55, Smu63, Smu68].

In [And71] P. Andrews presented a unifying principle for simple type theory, on which
the relative completeness results of the above calculi are based. It has the form of a relative
consistency theorem: If ® € TI', then ® is consistent with respect to ¥. Therefore this
unifying principle can only lead to the notion of relative completeness introduced above. But
since relative completeness is a weaker notion than general model completeness, it would
be desirable to have a unifying principle for general models to serve as a basis for future

developments of machine-oriented calculi that are complete with respect to the general model
semantics.

In [Hen50] L. Henkin presented a Hilbert-style calculus 3€ for simple type theory, which
is complete with respect to general models. The difference between the Hilbert-style calculus
% used by P. Andrews and FE are the extensionality axioms in the latter. So the basic idea
behind the extension of the results in [And71] is to add the proper treatment of extensionality,
which we have undertaken in this paper.

The main theorem of this report is a unifying principle for general models:

Theorem 5.3.8 (Unifying Principle for General Models) IfT is an abstract con-
sistency class and H € T is sufficiently pure, then H has a countable general model.

Here the definition of abstract consistency class differs from that in [And71] in that we
require three additional clauses that formalize the extensionality of equality and the number
of truth values. The proof of the main theorem proceeds by showing that any member &
of an abstract consistency class I' can be extended to a higher-order Hintikka set H that
contains D. From M we can read off an congruence relation ~3 on the term algebra cwff(X)
that is extensional, since I' has provisions for extensionality. It is then simple to verify that
the quotient algebra cwff(X)/.,, is a general model for X and therefore for H.

The rest of this paper is structured as follows, we will first review simple type theory and
give a careful exhibition of its semantics and calculi (Sections 2 to 4). In Section 5 we will
prove the unifying principle for extensional type theory and relate it to that of type theory
without extensionality. Finally we will use the unifying principle to give a short completeness
proof for a variant of Henkin’s calculus 5.4. In Section 6 we conclude by sketching a couple of
possible applications of the unifying principle. Finally we present some ideas for a resolution
calculus that is complete with respect to general models in appendix A.

The author would like to thank Peter Andrews and Frank Pfenning for stimulating dis-
cussions.

2 Simple Type Theory

In this chapter we will give a formulation of simple type theory, which we will call Q. This
system only differs from Church’s formulation [Chu40] in the use of Henkin’s general model
semantics [Hen50] and the use of equality as the primitive notion (introduced by P. Andrews,
cf. [And86]). Furthermore Q differs from all these systems by not assuming the existence of
description functions.

2.1 Syntax of Q
Definition 2.1.1 (Type Symbols) The set 7 of type symbols is inductively defined by

1. ¢ is a type symbol (denoting the type of individuals).
2. ois a type symbol (denoting the type of truth values).

3. If @ and B are type symbols, then (af) is a type symbol (denoting the type of functions
with domain a and codomain 3).

The type symbols in Tg := {o,t} C 7T are called base type symbols. We will often use the
word “type” as an abbreviation for “type symbol”.

Notation 2.1.2 As syntactic variables for type symbols we use lower case Greek letters. We
use the convention of association to the left for omitting parentheses in type symbols, thus
af3y is an abbreviation for ((af)y). This way the type symbol (af; ...0B,) denotes the type
of n-ary functions, which take n arguments of the types £, ..., Bn and have the range in
the type a.

Remark 2.1.3 In Q it will be possible to view unary functions as elementary objects, be-
cause n-ary functions can be reduced to unary ones by currying (cf. 3.1.2). Thus for simplicity
of the presentation of the logic, we will restrict ourselves to the unary case. Note that with
the use of conventions for eliminating parentheses in type symbols discussed above, we will
regain the appearance of the general case.

General Assumption 2.1.4 For every type symbol a € 7 we assume the existence of a
nonempty set I, of constant symbols of type a and a countably infinite set V, of variable
symbols of type a. .

Furthermore we assume for each a € T the existence of logical constants ¢,o0 € Loac-
All other constant symbols are called parameters. The sets V := V7 := U,cr Vo and
Y := X1 := Uqer Lo are called the set of variables and the signature, respectively.

Definition 2.1.5 The primitive symbols of Q consist of the improper symbols A, [,], the
variable symbols and the constant symbols.
For each o € T we define the set wff, (X) of well-formed formulae of type a inductively

by
1. If A, is a variable or constant of type a, then A, € wff,(X¥).

2. If Aup € wff,3(X) and Bg € wffp(Z), then [A,pBg] € wff,(X).

3. If A, € uff,(X) and Xp € Vg, then [AXp.A,] € wff,5(X).

Obviously each choice of parameters determines a particular set of well-formed formulae,
therefore we speak of a formulation Q(X) of Q. Note that the formulation of Q does not
depend on the choice of the set of variables, because all V, are assumed to be countably
infinite, thus each choice will give rise to an isomorphic set of well-formed formulae.

Notation 2.1.8 We will denote the constants by lower case letters and the variables by upper
case letters. We will use bold upper case letters A,, Bag, C, ... as syntactical variables for
well-formed formulae. The type of an object will be denoted as a subscript, if it is not
irrelevant or clear from the context.

Definition 2.1.7 A variable X, is called free in a well-formed formula Ag, iff it is not in a
well-formed part of the form [AX.B] in A, otherwise it is bound in A. The respective sets
of variables are denoted by Var(A), Free(A) and Bound(A) for a well-formed formula A.
A well-formed formula is called closed, if it does not contain free variables. We denote the
set of closed well-formed formulae of type a by cwff, (X). A well-formed formula of type o is
called a proposition and a closed proposition a sentence.

Notation 2.1.8 In order to make the notation of well-formed formulae more legible, we use
the convention that the group brackets [-] associate to the left and that the square dot .
denotes a left bracket, whose mate is as far right as consistent with the brackets already
present. Additionally we combine successive A-abstractions, so that the well-formed formula
[AX1AX2...AX"AE!...E™] becomes [AX!,..., X" AE!... E™]. Furthermore we shorten
the expression to [AX".AE™] by a kind of vector notation, where X* means X!,..., X k,

To avoid confusion with equality in the logic we will denote the meta-logical relation of
syntactic equality of well-formed formulae by = and in definitions :=.

2.2 Classical Formulations of Type Theory

In the later parts of the paper we will investigate formulations of type theories based on
the more conventional concept of logical connectives and quantifiers. The formulation Q of
simple type theory subsumes these, since we can define the classical logical constants (like
-, V,V as abbreviations in Q. On the other hand, if we take a formulation of type theory,
where the connectives are primitive, the equality constant is definable by the property of
indiscernability.

Therefore the “style” of type theory only depends on the primitive constants present in
the signature. Thus in the assumption 2.1.4 we could also have assumed the existence of a
sufficient subset of the connectives, e.g. {Vooo, 700} and the quantor Il5(0a) and have defined
all other connectives and equality from that. The critical part in this choice is that for the
semantics we have to require that there exists the identity relation on each type in each
model (see [And72]). So it seems more natural to treat equality as primitive in this and the
following chapter, whereas in the calculi in chapters 4 and 5 equality only plays a minor role
and we assume it to be an abbreviation only.

Definition 2.2.1 (Connectives and Quantors)

[The formula | stands for
[Aa = Ba] [QOaaAaBa]

To [qoaa = qooo]

1, DX,To] = A XoXo]

Ho(oa) [qo(oa)(oa)[AXa'To]]

VXaA, [Ho(oa)[AXa'Ao]]

Aooo [AX oYo-[AGooo-Gooo To Ta] = [AGooo-GoooX oYo]]
[AAB] [AAB]

= 000 AX,Y,.X, = .Xo A Y,]

[A = B] [= 000 AoB,)
[A & B] [A=>B]AB=A

oo [QOoo-LO]
Vooo [AXOYO'—"[_'XO] A [_'YO]]
[AV B] [VAB]

[3XAo] | [~VXamAl]
[Aa # Ba] [-"Aa = Ba]

We also call the newly defined constants Ty, Lo, =005 Io(oa)s Aocos Vooos =000y 000 logical
constants. We call them logical connectives and quantors in order to distinguish them

from the equality constant g,nq-
In order to see that these definitions indeed yield the well-known connectives and quantors

we refer to lemma 3.3.4.

Definition 2.2.2 (Leibniz’ Formulation for Equality (Indiscernability))
Qoco = [ANXaYaVPoo.PX = PY]

This formula instantiates to [A4 = Bg) := [VPoa.PA = PB), which can be read as: formulae
A and B are not equal, iff there exists a discerning property P. We will justify this definition
in the semantics by 3.3.5.

2.3 Substitutions, Lambda-Conversion and Normal Forms

In this section we will introduce the closely related notions of A-conversion and substitutions.
The \-conversion relations establish certain well-formed formulae as functions, by giving
interpretations to function application and function equality.

Definition 2.3.1 (Substitutable) A well-formed formula A, is called substitutable for
X, in Bg, iff the following condition holds: If Y € Free(A), then X is not free in any
well-formed part [A\Y.C] of B.

It is easy to see, that if A is not substitutable for X in B and B’ is obtained from B
by replacing all free occurrences of X with A, then B’ has bound occurrences of variables
Y, that were free occurrences in A. We call this situation variable capture. Thus the
condition defined above is sufficient for avoiding variable capture in substitutions.

Definition 2.3.2 (Substitution) A substitution is a map 0:V — wff(X) with finite
support supp(o) := {X € V | o(X) # X}, such that o(X,) € wff,(X). We will write a
substitution ¢ with supp(o) = {X,...,X"} as {X! » o(X?),..., X" — o(X™)}.

Remark 2.3.3 Since every substitution can be extended to a homomorphism o: wff(¥) —
wff(T) (cf. 3.1.11), we will always think of a substitution as a homomorphism. The set of
substitutions is denoted by SUB(X).

Definition 2.3.4 (a-Conversion) If Y does not occur free in C, then [AX.C]=4[AY.0(C)],
where ¢ = {X — Y}. The relation =, is called a-conversion and A is called an alpha-
bethical variant of B, if A=,B.

General Assumption 2.3.5 We assume a-equality to be built into the system. That is, we
regard well-formed formulae as syntactically equal, iff they are alphabetical variants. With
this assumption we have to assume the process of applying substitutions to change the names
of bound variables variables, so that no variables are captured in the process. For a more
rigorous approach we could have used DeBruijns indices [dB72], and all results would still
hold.

Definition 2.3.6 (3-Reduction) We define the 3-reduction relation, that we consider fun-
damental to type theory. We say that B € wff(X) is obtained from A € wff{(X) by an
one-step f-reduction (A — g B), if it is obtained by applying the following rule to a
well-formed part of A:

[AX.C]D —3 0(C)

where ¢ = {X — D}. As usual we will denote the transitive closure of the S-reduction
relation with —— 3. Thus A——gB, iff there is a sequence of one-step §-reductions

A— Al —5...—3 A" —;B
This induces the equivalence relation =g of f-equality on wff(¥).

Lemma 2.3.7 We state the following well-known results. For a detailed discussion we refer
to [HS86].

1. (B-reduction is terminating and confluent.

2. The B-reduced form of a well-formed formula B is of the form [AX".AE™), where A is
a constant or a variable, and the subterms E' are in B-reduced form.

3. A, =p B,, iff the B-reduced forms of A and B are alphabetical variants.

3 Semantics of Q

In this paper we find it useful to study the general model semantics for Q in a more alge-
braic setting than for example in [And86]. In particular the notions of homomorphism and
congruence will be useful later on.

3.1 X-Algebras

Definition 3.1.1 (Partial Functions) Let A;,...,A, and B be sets. The cartesian
product A; X ... X Ay is the set of ordered tuples {(ai,...,a,) | a; € A;}. An (n-ary)
partial function ®:4; x ... X A, — B is a subset of 4; X ... X A, X B, that does not
contain two different tuples having the same first n components. The domain Dom(®)
of ® is the set {(aj,...,as) | (@1,...,8n,a8n41) € @}, the image Im(®) of @ is the set
{an+1 | (a1y...,an,an41) € ®}. A partial function ® C A; X ... x A, X B is called total,
iff Dom(®) = A; X ... X Ap; we will assume all functions in this paper to be total and
therefore sometime use the word function instead. We denote the family of all total functions
by F(Ai,...,Apn; B) and use the clause

®:A; x...x A, — B;(ay,...,an)— b

synonymously for & € F(A,,...,A,;B) and (aj,...,n,b) € ®. The application of a
function ¢ to an n-tuple (a,,...,a,), denoted by ®(a,,...,ay), is the unique value b € B,
such that (a,...,a,,b) € ®.

Remark 3.1.2 The process of applying a function ® to an n-tuple (ay,...,a,) can be con-
sidered as applying ® to the sequence of values a;,...,a, one after the other. The ap-
plication of @ to part of the sequence yields a function that will give a,41, if applied to
the rest of the sequence. This process is called currying. Thus F(A4,,...,A,;B) becomes
F(A1; F(Az;...;F(An; B)...) and therefore we can and will restrict ourselves to unary func-
tions.

Definition 3.1.3 (Extensionality) Two partial functions f,g: A — B are equal, iff they
are equal as binary relations, that is, if Dom(f) = Dom(g) and for all z € Dom(f) we have
f(z) = g(z). This property is called the extensionality of equality.

Definition 3.1.4 (Typed Collection) A collection of sets Dy = {D, | @ € T} indexed by
the set 7 of type symbols is called a typed collection (of sets). Let D7 and &7 be typed
collections, then a collection Z := {Z,: D, — €, | @ € T} of maps is called a typed map
I:Dr — &7

We will often view a typed collection D7 as the union J,¢7 Do and typed maps I: D1 —

Er as maps
I: | Do — U &
a€T a€T

with Im (I IDa) C &,. We will switch the point of view whenever convenient. A collection
{R* C Dy X Dy | a € T} is called a typed binary relation.

Definition 3.1.5 (2-Quasi-Algebra) A X-quasi-algebra A = (D,I) consists of a typed
collection D = D7 of nonempty sets, such that D,g C F(Dg; Dy), and a typed map I: ¥ —
D. The collection D is called the carrier set or the frame of A and the map I the
interpretation of constants.

Example 3.1.8 We can think of the formula A,p € wff,5(X) as a function
A.p: wﬂ.ﬂ(z) - wﬁa(z) ; Bg [AB] .

Thus (wff(X),1dz) is a total X-quasi-algebra. Therefore the set wff(X) is often called the
term algebra for the signature X.

Definition 3.1.7 (Assignment) Let A = (D,Z) be a X-quasi-algebra. A typed map
@:V — D is called an assignment into .A. We denote the assignment 9 with ¥(X) = g,
P(Y)=¢(Y)and Y # X by (¢: X — g).

Definition 3.1.8 (Homomorphic Extension) Let A = (D,T) be a X-quasi-algebra and
¢ an assignment into .A. The homomorphic extension Z, of ¢ to wff(X) is inductively
defined to be a map Z,: wff(¥) — D, such that

1. T(X) = ¢(X), if X is a variable,
2. T,(c) = I(c), if c is a constant,

3. Z, ([AB]) = Z,(A) (Z,(B)),

4. T, ([AX2-Bp]) € F(Da; Dp) is defined by Z,, ((AX.B]) (2) := Z(y.xrez)(B).

For any well-formed formula A, we call Z,(A) € D, the value or denotation of A in
A for the assignment ¢. This definition does not imply that Z,(A) is defined for each
well-formed formula A. This condition is enforced by the following definition.

Definition 3.1.9 (X-Algebra) A X-quasi-algebra A = (D,7) is called comprehension-
closed, iff for each assignment ¢ into A the homomorphic extension Z, of ¢ to wff(X)
is everywhere defined, i.e. Im(Z,) C D. A X-quasi-algebra is called X-algebra, iff it is
comprehension-closed.

These closure conditions for the carrier set D of A assure that the universes of functions
D, are rich enough to contain a value for all Ayp € wff,3(X). For a detailed discussion we
refer the reader to [And72).

A X-quasi-algebra is called full, iff D,p contains all functions Dg — D,,.

Example 3.1.10 The typed sets of well-formed formulae wff(X) and cwff{¥) are -algebras.
Now we can understand why they are traditionally called term algebras for the signature
3.

Definition 3.1.11 (Homomorphism of I-Algebras) Let M = (D,Z) and N = (£,7)
be X-algebras. A homomorphism of X-algebras is a typed map 7: D — £, such that

1. 707 =/J.

2. For all f € Dop and g € Dg, we have: if g € Dom(f), then 7(g) € Dom(7(f)) and
7(H)r(9)] = (flg))-

As usual we define an endomorphism 7 on M to be a homomorphism 7: M — M, an -
epimorphism and a -monomorphism to be surjective and injective X-homomorphisms
respectively. Note that for any assignment ¢:V — M, the homomorphic extension
Z,: wff(¥) — M is a homomorphism of E-algebras.

3.2 ¥-Congruences

Definition 3.2.1 (X-Congruence) Let A = (D,Z) be a X-quasi-algebra, then a typed
binary relation = is called a ¥-congruence on A, iff the following conditions hold:

1. The relation = is an equivalence relation on D.
2. If f € Dop and g = ¢’ € Dy, then f(g) = f(g').
3. If f= f' € Dyp and g € Dg, then f(g) = f'(9).

For an equivalence relation = we will denote the equivalence class of f € Dby [f] := [f). :=={g €
Dlg=f}

A X-congruence = is called extensional, iff for all types a and all f,g € D,g the fact
that f(a) = g(a) for all a € Dg implies that f = g.

Lemma 3.2.2 Let A be a term algebra. Then an equivalence relation = that contains the
B-equality relation =g is a L-congruence on A if condition 3.2.1(2) holds.

Proof: We will discuss the assertion for A = wff(¥) as an example for cuff(X).
Let A,p = Bog and D := [AX45.X C], where C € wff3(X) is an arbitrary formula, then
AC=3DA = DB=4BC by 3.2.1(2). Since C was chosen arbitrarily we have 3.2.1(3). O

Lemma 3.2.3 Let A be a X-quasi-algebra and ~ be an eztensional X-congruence on A, then
A/~ is also a T-algebra. Furthermore the canonical projection r.: A — A/; f — [f].
is a L-epimorphism.

Proof: In order to prove that A/, = (D~,I~) is a X-algebra, we have to show that
ap € (D53 Dy) and that Im(ZZ) C D™ for all assignments ¢ into A/.
Let [f] € D3, then we can consider [f] as a map

= 1U/1:05 — Dg;lgl ~ [£(9)]

This map is well-defined: suppose, that f' € [f] and ¢’ € [g], then [f(9)] = [f'(9)] =
[£'(¢)] = [f(g")]- Therefore the above definition depends only on equivalence classes. The
extensionality of ~ ensures, that each function is represented by at most one congruence
class and therefore Dy is a subset of F(Dg; D).

To convince ourselves that x. is indeed a homomorphism of X-quasi-algebras, we note
that by definition 7., is surjective and Z~ = 7. 0Z. Now let f € D,p, and g € Dom(f) C Dg,
then g’ € [g] for all ¢’ € Dom(f) and therefore [g] = 7.(g9) € Dom([f]) = Dom(7~(f))

and 7(f)[x(9)] = [F1(l9]) = [f(9)) = (S (9))- D

10

Definition 3.2.4 (Quotient Algebra) Let ~ be a X-congruence, Dy := {[f] | f € D.}
and ZI~(cqs) := [Z(co)] for all constants c¢,. Then A/ = (D~,I7) is called the quotient
algebra of A for the relation ~.

Lemma 38.2.5 If A is a Z-algebra and ~ is an eztensional X-congruence on A, then A/. is
a X-algebra and 7., is a homomorphism of X-algebras.

Proof: Let ¥ be an assignment into .A/., then there exists an assignment ¢ into A, such
that ¥ = 7. 0. We will prove that the denotation Zj' = n. 0Z, which induces the assertion,
by induction over the structure of well-formed formulae. In order to simplify the notation we
will abbreviate 7. by =.

1. I3(X) = $(X) = 7 0 p(X) = 7(Z,(X))

2. I3(c) = I™(c) = m o I(c) = n(Zy(c))

3. I;(AB) = I7(A)(Z3(B)) = 7 0 L, (A)(7 0 I,(B)) = 7(Z,(AB)

4. IZ(PXAN(T(9)) = TG xon(e))(A) = T(Z(pixag) (A) = 7 0 T, ([AX A])(n(g))

3.3 General Models

Definition 3.3.1 (General Model for Q(X)) A X-algebra M = (D,I) is called a gen-
eral model for Q(X), iff D, is the set {T,F} of truth values and Z(g,qq) is the identity
relation on D,.

We are striving for a general notion of algebraic model, so we only require M to be
comprehension-closed. In particular we do not require M to be full. A full general model is
called a standard model.

Remark 3.3.2 Note that the class of general models defined above is rich in nonstandard
models, since we do not require it to contain a description function. In this detail we differ
from most systems of simple type theory (cf. [Rus08, Chu40, Hen50, And71, And86]), which
do require the existence of a constant ¢,(o,) for each type a. Correspondingly these approaches
require that this constant denotes the function that maps singleton sets to their unique
member in (general) models. Even though our’s may not be the most interesting notion of
general model, we choose not to deal with descriptions in the current paper, since we want
to treat one problem at a time, in this case extensionality.

Remark 3.3.3 Let M = (D,Z) and VN = (£,J) be general models for Q(X), and let
®: M — N be a homomorphism of -algebras, then by 3.3.4(3) and 3.1.11(2) we have
®(T) = ¥(Z,(To)) = Jo0p(T,) = T and &(F) =F.

Lemma 3.3.4 Let M = (D,I) be a general model of Q(X) and ¢ an assignment into M,
then we have

1. I‘P([[’\X'B]AD = I(w:Xo—»I,(A))(B);
2. I([A =B]) =T, iff I,(A) = Z,(B),

11

3. Z,(To) =T and I,(L,) =F,

b T (V)@ B) =T, iffg=Torh =T,

5. Zo(=000)(9,h) =T, iff g=F or h=T,

6. Zo(Nooo)(9,h) =T, iffg=Tand h =T,

7. MEVX.A,] iff T,(A) =T for all assignments), that agree with ¢ off X.

Proof: See Lemma 5401 in [And86].]

Lemma 3.3.5 Let M = (D,Z) be a general model for Q(X) and let Qonn be defined as in
2.2.2, then Z,(Q) is the identity relation on D,.

Proof: Let a,b € D,, then we have Z,(Q) = Z,(AX.A\YVP.PX = PY) by defini-
tion 2.2.2, so obviously Z,(Q)(a,a) = T. Now let a # b € D,, then Z,(Q)(a,b) = T, iff
Z4(Q) =T with ¥ := (¢: X — a,Y — b,P > 7) for all r € D,,. However there is a relation
7= Lpi¥a)(AXY = X) = {a} € Da, since Dyao contains the identity relation I(=ona)
by 3.3.1 that makes Z,(PX = PY) = ra = rb false. Thus we have Z,(Q)(a,b) =F. O

Definition 3.3.6 Let K be a class of models for Q(X), M = (D,I) € K, ¢ an assignment
into M and A, € wff,(X). We say that

1. ¢ satisfies A in M (M |, A),if Z,(A)=T.
2. A is satisfiable in M, iff there is an assignment ¢ that satisfies A in M.

3. A is satisfiable in K, iff there is a model M, such that A is satisfiable in M.
4. Ais valid in M (M E A), iff all assignments into M satisfy A in M.

5. A is valid in K (fFx A), iff A is valid in all M € K.

" Definition 3.3.7 Let K be a class of models for Q(X), then we say a proposition A, entails
a proposition B, in K (A |Ex B), iff for all M € K we have that M |= A implies M | B.

12

4 Calculi for Q

In this section we will introduce the syntactic counterparts of the entailment relation.

4.1 Calculi, Derivations and Consistency

Definition 4.1.1 (Calculus) Let Q(X) be a formulation of type theory, then an infer-
ence rule is an effectively computable relation on wff,(X). Inference rules are traditionally

represented by a schema
ANTE

Succ

where the antecedent ANTE is a set {Al ..., A?} of propositions, the succedent Succ
is a proposition B, and R is the set of tuples (Cl,...,C" D), such that C' and D are
substitution instances of A* and B. In order to give a finite presentation of a calculus the
schemata may be schematic in types and terms. Inference rules with empty antecedent are
called axioms and otherwise proper inference rules. A calculus C for Q(X) is a finite
set of inference rules.

Definition 4.1.2 (Higher-Order Theory) Let Q(X) be a formulation of simple type the-
ory and C a calculus for Q(X), then we call the pair 7 := (Q(X),C) a higher-order theory.
The set wff(X) of well-formed formulae of Q(X) is called the language £(7) of 7. If K is
a class of models for Q(X), then we will also call K a class of models for 7.

Definition 4.1.3 (7-Derivation) Let 7 := (Q(X),C) be a higher-order theory and D be
a finite tree, where each node A in D is labeled with a triple (B,,R,{Al,...,A"}), such
that R € C and (Al,...,A™,B) € R. B is called the assertion, R the justification, and
the set of A' the support of N. D is called a T-derivation, iff each node N with label
(B,R,{A%,...,A"}) has n children N with assertions A‘. Since the theory can often be
identified by the calculus alone, we will often simply speak of C-derivations. Because of the
tree nature, we will often call 7-derivations proof-trees.

Let A, be a proposition and ® be a set of sentences. We call a 7-derivation D a 7-
derivation of A from the set ® of hypotheses, if A is the assertion of the root of D and
the supports of the leaves of D are subsets of ®. If there exists a 7-derivation of A from &,
then we write ® -7 A. Let C be a calculus, then a proposition A, is called a theorem of
T, iff there exists a 7-derivation of A from the empty set of hypotheses.

Definition 4.1.4 Let 7 and 7’ be higher-order theories, then 7" is called an
expansion of 7, iff £L(T) C L(T"),
extension of 7, iff 7’ is an expansion of 7 and every theorem of 7 is also a theorem of 77,

conservative extension of 7, iff for every proposition A, € £(7) we have 1+ A, iff -7 A.

Remark 4.1.5 Since wff(X) is inductively defined from ¥ and the set of variables is fixed, 7’
is an expansion of 7, iff each constant in £(7) is also a constant in £(7’). When expanding
a theory 7 by new constants, one naturally has to add new instances of the schemata of the
rules of inference to the calculus of 7.

13

Lemma 4.1.6 Let T = (Q(X),C) and T' = (Q(X’),C) be higher-order theories, such that T'
is an ezpansion of T obtained by adding new constants to £ (and not changing the calculus).
Then T’ is a conservative extension of T.

Proof: Let A, € wff(X) be a theorem of 7’ and D’ be a T'-proof of A, then we can replace
all the constants in X’ \ ¥ by new variables, and the result will still be a proof for A. Thus
A is a theorem of 7.]

Definition 4.1.7 Let 7 := (Q(X),C) be a higher-order theory, then an inference rule R
is called admissible in 7, iff adding R to the calculus of 7 does not change the set of
theorems. R is called derivable in 7, iff for each A!,..., A" Fx B € R there already exists
a T-derivation Al,...,A™ 7 B.

General Assumption 4.1.8 We assume that in all higher-order theories in this paper, the
inference rules of implication introduction (deduction theorem) and introduction elimination
(Modus Ponens) are admissible rules of inference. This is a sufficient condition to get nice
correspondences between the implication constant = in the logic and the consequence relation
in the model theory. We will justify this assumption for every concrete higher-order theory
later on.

Definition 4.1.9 (7-Consistent) Let 7 be a higher-order theory, then a set & of £(7)-
sentences is called 7-inconsistent or inconsistent with respect to 7,iff ® 7 L,. ® is
called 7-consistent, iff it is not 7-inconsistent. If we are in a formulation of type theory,
where we do not have the constant 1, in the signature, we will define 7-inconsistency by
the derivability of a basic contradiction of the form A, A -A. We call a set ¥ T-consistent
with a set &, iff ® U ¥ is 7-consistent.

Lemma 4.1.10 Let T’ be a conservative extension of T. Then a set ® of propositions is
T -consistent, iff it is T'-consistent.

Proof: Immediate from the definition. (m]

Lemma 4.1.11 If T is a higher-order theory and ® is a T -inconsistent set of propositions,
then there ezists a finite T -inconsistent subset of ®.

Proof: Let D be a T-derivation of L, from ®. As D is a finite tree, the set ¥ C & of labels
of the leaves of D is finite. Thus ¥ is a 7-inconsistent and finite subset of ¥. O

Definition 4.1.12 (Soundness) Let 7 be a higher-order theory and K a class of models
for 7, then 7 is called sound with respect to K, iff each theorem of 7 is valid in K.

Theorem 4.1.13 Let K be a class of models for Q(X) and T = (Q(X),C) be a higher-order
theory that is sound with respect to K. Furthermore let ® C cuwff,(¥).

1. IfAl,...,A" b1 B, such that B is false in some M € K, then M |= Vi, [-AY).
2. If M€K, then ¥ := {A, € cuff,(¥) | M | A} is T-consistent.

14

8. ® is T-inconsistent with A',...,A™, iff & k7 V,[-A"].

Proof: We will show the first assertion by induction on the size of the 7-derivation D of
B from ®. Since 7 is sound with respect to K, the proposition L, cannot be an axiom of 7,
thus the base case is vacuously true. For the inductive case let M = (A,Z) € K be a model
such that Z,(B) = F, and let D end in an application of the rule R := Al,...,A™ B € C.
Since 7 is sound with respect to K and implication introduction is admissible in 7", we have
that Z,(Al,...,A" = B) = T and therefore Z,(V",[~Af]) = T. Therefore one of the
premises of R is false in M and by induction we get the assertion.

To prove the second assertion consider the contrapositive statement: Let ¥ be 7-
inconsistent and ® := {Al,..., A"} be an T-inconsistent subset of ¥, then Al,...,A™ 7 L,
and therefore one of the A’ is false in M by the first assertion, which contradicts the as-
sumption.

For the third assertion we note that if & is 7-inconsistent with Al,..., A" then
®,A ... ,A"Fr -Al 50 ® 7 Al = = A™ => -A! and therefore & 7 V™ ,[~A"].
The other direction is immediate. O

4.2 The Hilbert Calculi ¥ and 3¢

In this section we review the calculi ¥ from P. Andrews’ “Resolution in Type Theory” paper
[And71] and ¥& from L. Henkin’s “Completeness in the Theory of Types” paper [Hen50].
Note that these differ only in the treatment of extensionality.

Definition 4.2.1 (Andrews’ Calculus ¥) The calculus ¥ consists of the following axioms
and axiom schemata:

[y

. [poVvrl=p

- Po=[p=1p]

- [PV go] = gV P]

4. [po = @) = [ro VD] = [r V4]
5. My(oa)Foa = FXa

(U

6% VXo[Ya V FouX] =Y V I (oe) F

and the (-conversion, Modus Ponens, substitution, and universal generalization inference
rules

A=43B A A=B A
B = MP
B B
A, X A X
o a Subst o o UG
AB, ,(00)A

where the lower rules have the proviso that the variable X is not free in A.

Definition 4.2.2 (Henkin’s Calculus T¢) The extensional variant ¢ of T is obtained
from T by adding the following axioms

15

10° X, & Y,]=>.X =Y
10%. VXg[FopX = FY]|=2> X =Y

These axioms are traditionally called the axioms of extensionality, even though at only 10*
corresponds to the extensionality of equality as defined in 3.1.3. Originally the word “exten-
sionality” was used for predicates, that are extensionally equal (co-extensive), if they denote
the same sets. However in our formulation of type theory predicates are proper functions
and therefore this notion of extensionality can be broken down to the above axioms. Note
that axiom 10° formalizes the fact that all intended models can only have exactly two truth
values (cf. 5.2.6).

Remark 4.2.3 We have adopted the numbering from [Chu40]. To be precise in [Hen50]
Henkin introduces the additional axiom of choice

for dealing with the description function ¢ and proves that system complete. This simplifies
that completeness proof, since in a logic with the axiom of choice we do not have to postulate
the countable infinit set fo existential witnesse ¢™, which we have to our system. However the
reduced calculus ¢ as defined above is also complete (cf. 5.4.5) with respect to the definition
of general models without descriptions (cf. 3.3.2).

Theorem 4.2.4 (Soundness) ¥ and T are sound with respect to the class of general mod-
els.

Proof: In § 52 of [And86] all axioms of TE are proven to be theorems of Q and all rules of
inference are proven to be derivable. O

Theorem 4.2.5 (Deduction Theorem) IfH,A,t¢c B,, then Ht¢c A = B, whereC =%
orC =%E.

Proof: We refer to Lemma 5240 in [And86). O

In section 5.4 we will prove a completeness theorem for T€ and show that ¥ is not complete
with respect to general models by exhibiting a counterexample.

16

5 Unifying Principle for General Models

In this chapter we will introduce the unifying principle for extensional type theory. The
definitions and constructions are similar to those in [And71], therefore we will extend these
to the case of general models and discuss the non-extensional case as we go along. As in
the intensional case the proof of the unifying principle formalizes the process of extending a
given consistent set ® of sentences and constructing from it a term model for ®. The most
significant difference is that in the extensional setting we work with general models instead
of v-complexes and obtain a completeness theorem with respect to general models.

5.1 Abstract Consistency Classes

Definition 5.1.1 A set ® C wff(X) is called sufficiently pure, iff for each a € 7 there is
a countably infinite set C, C X, of constants that do not occur anywhere in .

Definition 5.1.2 Let T be a class of sets.

1. T is called closed under subsets, iff for all sets S and T the following condition holds:
if SCTand T €T, then S €T.

2. T is called of finite character, iff for every set S the following condition holds: § € T
iff every finite subset of S is a member of I'.

Lemma 5.1.3 IfT is of finite character, then I" is closed under subsets.

Proof: Suppose S CT and T € I'. Every finite subset A of S is a finite subset of T, and
since T is of finite character we know that A € I'. Thus S € T. O

Remark 5.1.4 For reasons of legibility we will write S *a for S U {a}, where S is a set. We
will use this notation with the convention that * associates to the left.

Definition 5.1.5 (Abstract Consistency Class) A class T of sets of sentences is called
an abstract consistency class, iff ' is closed under subsets and for all sets & € T the
following conditions hold:

1. If A, is atomic, then A ¢ ® or [-A] ¢ &.

2. If A, € &, then A] *® € I', where A] is the the S-normal form of A.
3. f--A,€P,then AxPcT.

4. AvBe®d, then®+xAcTord+xBeT.

5. If -[AVB] € &, then $+-A *x-B€T.

6. If I,(o0)Aoa € ®, then ® + [AB] € T for each B, € wff,(X).

7

- i =1l (0a)Aoa € ®, then ® * =[Ac] € T for each new constant c,.

Theorem 5.1.6 The class {S C cuwff,(¥) | S is T-consistent} is an abstract consistency
class.

17

Proof: We can obviously prove the conditions 5.1.5(1) to 5.1.5(5) in by elementary use of
the propositional axioms and the substitution rule. For 5.1.5(6) we note that an appropriate
substitution instance of 4.2.1(4) together with Modus Ponens gives the result. O

Theorem 5.1.7 For each abstract consistency class T' there ezists an abstract consistency
class A, such that T C A and A is of finite character.

Proof: We will follow [And86). Let
A := {S C cuff,(X) | every finite subset of S is in T'} .

To see that I' C A, suppose that & € I'. T is closed under subsets, so every finite subset of

® is in I" and thus & € A.
Next let us show that A is of finite character. Suppose ® € A and V¥ is an arbitrary finite

subset of ®.

By definition of A all finite subsets of ¥ are in I, and therefore ¥ € A. Thus all finite
subsets of ® are in A whenever ¥ is in A. On the other hand suppose all finite subsets of ¥
are in A. Then by the definition of A the finite subsets of ¥ are also in I', so ® € A. Thus

A is of finite character.
Now we show that A is an abstract consistency class and ® € A. By lemma 5.1.3 it is

closed under subsets.

1. Suppose there is an atom A, € ®, such that ~A € ®. Then {A,~A} € T contradict-
ing 5.1.5(1).

2. Let [--A,] € ®, and ¥ be any finite subset of # * A and © := (¥ \ {A})*x[--A]. O is
a finite subset of ®, so © € I'. Since T is an abstract consistency class and [--A)] € O,
we get © x A € I'. We know that ¥ C © * A and T is closed under subsets, so ¥ € T'.
Thus every finite subset ¥ of ® * A is in T, therefore by definition ® * A € A.

3. Suppose that [A, V B,] € &, but neither ® * A nor ® * B are in A. Then there are
finite subsets ®, and &g of ®, such that &, * A ¢ ' and &g * B ¢ I' (since all finite
subsets of ® are in I'). As ¥ := &, U &g * [A V B] is a finite subset of ®, we have
¥ € T. Furthermore ¥ * A € T or ¥ x A € T', because I is an abstract consistency class
and [A VB] € V. T is closed under subsets, 5o @4 * A €T or g *B € I. This is a
contradiction, so we can conclude that if [AVB] € ®,then #x A € Aor ®+B € A.

4.-7. are treated analogously to 2. (see [And86]).

We have verified all conditions of 5.1.5 and thus proven the assertion. D

Definition 5.1.8 (Extensional Abstract Consistency Class) An abstract consistency
class T is called an extensional abstract consistency class, iff the following additional

conditions hold for all sets ® € I':

8. If =[A,p = Byg) € ®, then for each variable or parameter cs that does not occur in @,
®x[-Ac=Bc]eTl.

9. If {A,,B,} C ®,then 2*x[A=B] €.

18

10. If {[~A,),[-B,]} C &, then & x[A = B] € T.

Theorem 5.1.9 For each eztensional abstract consistency class T’ there ezists an eztensional
abstract consistency class A, such that T' C A and A is of finite character.

Proof: To convince ourselves that the additional conditions for extensional case hold we
will redo the proof for 5.1.8(8) as a model for the rest.

Let A,,B, € ® and ¥ be any finite subset of ® * [A = B]. Then © := (¥ \ {A}) x[~-A]
is a finite subset of ®, and therefore ® € I'. Since I' is an abstract consistency class and
A,B € O, we have © «[A = B] € I'. Furthermore ¥ C © x A and T is closed under subsets,
so ¥ € I. Thus every finite subset ¥ of & x [A = B] is in I, therefore by definition we have
®«[A=B]eA. a

5.2 Higher-Order Hintikka Sets

In this section we turn our attention to the so-called higher-order Hintikka sets, which play
a significant role in the proof of the unifying principle. Since higher-order Hintikka sets are
maximal closures of I'-consistent sets of propositions they allow computations that resemble
that in a model.

Definition 5.2.1 (Higher-Order Hintikka Set) Let T be an abstract consistency class
and H € T. A set H is called maximal in T, iff for each sentence D, such that H+*D €T,
we already have D € I'. A set H € I is called a higher-order Hintikka set for I' and H,
iff H is maximal in " and H C H.

We will need some technical properties of higher-order Hintikka sets in abstract consis-
tency classes for manipulating formulae.

Theorem 5.2.2 IfT is an abstract consistency class, and H is a higher-order Hintikka set
for T', then the following statements hold:

For any sentence A, we have: A € H, iff [~A] ¢ H.
[--AleH, if AeH.

A, eEH, iff AleN.

If A,=4,p,B,, then we have A € H, iff B € H.
[AVB]eH,iff A€ HorBeHXN.

-s[AVB]€eH, iff ~A€H and -B € K.

Mo(0a)Ava € H, iff for each B, € wff,(X) we have AB € H.

NS X o e~

8. ~lly(oa)Aca € H, iff for each new constant c, we have ~Ac € H.

Proof: We prove the first assertion by induction over the number of occurrences of the
connectives =, V and Il in A. For A, € H we will inductively contradict the assumption
[#A] € H in case analysis, where the cases correspond to the cases in the definition of the
abstract consistency class. We will only show the first three cases, since the analysis of the
rest is analogous.

19

A is atomic by 5.1.5(1),

A = 2B then [~A] = [--B] € H and therefore B € H by 5.1.5(3), contradicting the induc-
tion hypothesis,

A=BVC , then B € Hor C€ H by 5.1.5(4). On the other hand -A = =[B Vv C] and
by 5.1.5(5) we have {-B,-~C} C H, contradicting the inductive hypothesis.

The remaining assertions are all of the form: ® € H, iff ® U ¥ € H. Thus we can prove all
of them by the following schema: If € H, then H « ¥ € T (T is abstract consistency class).
The maximality of H now gives the assertions. O

Theorem 5.2.3 IfT is an eztensional abstract consistency class, and M is a higher-order
Hintikka set for T', then the following statements hold in addition to those stated in Theorem
5.2.2.

9. @+ -[Ayp = Bag] €T, iff there is a C € wffy(X), such that [-AC = BC] € &.
10. 2x[A,=B,] €T, if {A,B} C &.
11. ®+[A, = B,] € T, iff {[~A],[~B]} C &.

Proof: The proofs are analogous to those of 5.2.2.]

Lemma 5.2.4 If ' is an eztensional abstract consistency class, and H is a higher-order
Hintikka set for T and H C cuwff, then VX3[ApX = BogX] € H, iff[A=B] € H.

Proof: If [A = B] ¢ H, then by 5.2.2(1) (and possibly 5.2.2(2)) we have -[A = B] € H. So
by 5.2.3(9) there is a Cp € wff3(X), such that -[AC = BC] € H. On the other hand from
VXs[AX = BX] € H we obtain [AC = BC] € H by 5.2.2(7). a

Lemma 5.2.5 Let ' be an eztensional abstract consistency class and H € T. If H is a
higher-order Hintikka set for T and H, then [A, & B,) € H, iff [A = B] € H.

Proof: Let [A, & B,] € H, then by 5.2.2(6) we also have ~A V B € H and furthermore
A V-B € H. Because of 5.2.2(5) we have to consider two cases: If B € H, then -B ¢ H and
therefore A € H. If ~A € H, then A ¢ H and therefore -B € H. In both cases we get the
assertion [A = B] € H by 5.2.3(10) or 5.2.3(11). D

Lemma 5.2.6 If H is a higher-order Hintikka set and A,B are propositions, then either
A=BeHorA=-BecH.

Proof: A tedious, but straightforward computation using the results from Lemma 5.2.2
shows that ~[A & B] € H, iff A & -B € H. Now we conclude with 5.2.2(1), that either
A& BecHor A& -BeH, from which we get the assertion by 5.2.5.]

Theorem 5.2.7 (Abstract Extention Lemma) Let ' be an abstract consistency class of
finite character and let H € T be a sufficiently pure set of sentences. Then there ezists a

higher-order Hintikka set H for T and H.

20

Proof: We can arrange all sentences of Q(X) as an infinite sequence $?,52,.... For each
n € IN we inductively define a set H™ of sentences by

1. H:= H.

2. If H" + S™ ¢ T, then H™*! := H™.

3. H A"+ 5™ € T and S™ is not of the form [~I,(0a)Aca), then H"t! := H™ + S™.
4

. H H*+S™ € T and S™ is of the form [~II5(5q)Aoa), but not of the form [~A,p = Bag,
then H™*! ;= H™ x -~IIA * ~[Ac"], where c" is a new constant.

5. If H* + S € T and S™ is of the form [~A,s = B,g, then H™*! := H" x -[A =
B] * =~[Ac} = Bc"], where c is a new constant.

Note that there always exists a new constant ¢”, since H was assumed to be sufficiently pure.
We also have to separate the cases 4. and 5., since without 5. we would only obtain the
witness ¢c"A # ¢"B for A # B instead of Ac" # Bc".

Next we show by induction that H™ € T for all n € IN. The base case holds by definition.
The only interesting case for the induction step are the last two, which are analogously done.
So let H™ * S™ € T, where S™ is of the form -IIA. By construction c* does not occur
anywhere in H™, 5o by 5.1.5(7) we have H™*! € T. Now we define H := |,y H". Since T
is of finite character, we also have H €T.

In order to prove the maximality of H let D € cwff,(X) be an arbitrary sentence, such
that 1 + D € T'. By definition we know that D is the n-th term in the above enumeration
of sentences for some n € IN. Thus H» * D CH*D € I" and H" *D € I, since T is closed
under subsets. Hence by definition we know that D € H™t! C H and therefore D e H. O

5.3 Unifying Principle for General Models

Definition 5.3.1 Let T be an extensional abstract consistency class and H be maximal in
I'. Then formulae A and B are called H-congruent (A ~3 B), iff the universal closure of
A = B is a member of H.

Lemma 5.3.2 (Congruence Lemma) Let ' be an abstract consistency class, and let H #
@ be mazimal in T, then ~3 is a X-congruence on cwff(X).

Proof: To obtain the assertion we first have to make sure that ~3, is an equivalence relation.
We will only give the tedious details of the proof of symmetry as an example for proofs in
abstract consistency classes, since the syntactic manipulations for transitivity and reflexivity
are analogous.

Let [A, = B,] = [VPy.PA = PB] € H and Q. be an arbitrary formula, then
by 5.2.2(7) we have [-QA = -QB] = [[--QA] V.-QB] € H. Now by 5.2.2(5) we have to
consider two cases. If ~—QA € H, then QA € H and therefore QA V.-QB € H by 5.2.2(2)
and 5.2.2(5). If on the other hand -QB € H, then -QB V QA € H. In both cases we have
[-QB = QA] € H for all Q € cuff,,(X) and therefore VP,,.PB = PA € H by 5.2.2(7).

Now we will verify the congruence property. By Lemma 3.2.2 we only have to prove that
CAp ~n CBg for all C € cuff,5(X), whenever A ~y B. So let Qo € cuff,,(X) be an
arbitrary formula, then QCA = QCB € H and therefore CA = CB € H, which gives the
assertion. (]

21

Remark 5.3.3 Note that in the proof of the congruence lemma we have implicitly used
lemma 5.2.5, since we have only considered the congruence properties of ~3 as given by
the presence of some equalities in . Since we treat equality as an abbreviation of Leibniz’
Indecernability formula, the congruence properties follow almost immediately from the use
of logical constants and the definition of the abstract consistency class. Thus, with the
help of 5.2.5, we do not have to consider the congruence properties of equivalence and the
interaction of equivalence and equality.

Definition 5.3.4 (Ground Term Model) If T is an extensional abstract consistency class
and H is maximal in T, then the quotient algebra M™ := (A¥,TM) with respect to H-
congruen;:{e is called the ground term model for H. Note that A := cuwff(T)/.,, and
" .= 1d".

Theorem 5.3.5 Let T’ be an abstract consistency class and let H be a higher-order Hintikka
set for T and some sufficiently pure H C cuwff,(X), then the ground term model MM for H
is a general model for Q(X) with M™ |= H.

Proof: By Lemma 3.2.3 M™ is a L-algebra, and from Lemma 5.2.6 we know that ~ has
exactly two equivalence classes. Thus we have D, = {T,F}, if we define T := mx([A = A])
and F := mx([A # A]).

Obviously 7 maps each constant ¢, € X, into D,. We must show, that Z(Q,u) is the
identity relation on D,. Let Z(A) = [A] and Z(B) = [B] be two arbitrary members of D,.
By construction Z(A) = Z(B), iff [A = B] € H, iff T = Z([QoaaAB]) = Z(Qoua) Z(A)Z(B),
i.e. Z(Qoaa) is indeed the identity relation on D,.

From Z,(H) = {T} for each assignment ¢ into D and H C H we get Z,(H) = {T}, and
therefore M = H. O

Theorem 5.3.6 (Unifying Principle for General Models) If T is an eztensional ab-
stract consistency class and H € T is sufficiently pure, then H has a countable general
model.

Proof: We can assume without loss of generality (5.1.9) that I is of finite character, so
the preconditions of 5.2.7 are met and therefore there exists a higher-order Hintikka set H
for T and H. Now we can use the previous theorem to construct a ground term model M*
for H. If we pay attention to the constructions in the proof of 5.2.7 it is easy to see that
M™ is indeed countable, since the sets of constants and variables both were assumed to be
countable. O

Theorem 5.3.7 (Unifying Principle for Intensional Type Theory) IfT is an abstract
consistency class and ® € T is a finite set of sentences, then ® is T-consistent.

Proof sketch: (following [And86]) The proof of this theorem is similar to the one presented
in this section. We can define higher-order Hintikka sets for abstract consistency classes
without extensionality. If we just drop the clause 5. in 5.2.7. we get a proof that higher-order
Hintikka sets always exist. From a higher-order Hintikka set H we can derive a semi-valuation
v that gives rise to a v-complex, which serves as a kind of non-extensional model for H. Now
we convince ourselves that the calculus ¥ is sound with respect to the class K of v-complexes
and obtain the assertion by 4.1.13(2). O

22

Definition 5.8.8 Let c,, € I, and b, € £, be constants and A, := [¢b] and B, := [e.~-bd).
Since we will use it as a principle example let us fix the notation &, := A = B.

Lemma 5.3.9 ¥ is not complete with respect to general models.

Proof: We show that the formula &, is not derivable in ¥, by convincing ourselves that
-&, is T-consistent. Let ¢,, € To0 and b, € I, be constants and A, := [¢d] and B, := [c.~—b]
as in Definition 5.3.8. Furthermore let ' be the powerset of ® := {A A =B, A,-B,[--b,],b}.
It is easily checked that I' is an abstract consistency class by the above definition. However
the formula ~&, = A A =B is obviously unsatisfiable in the class of general models for Q(X).
The assertion now follows from the soundness of ¥. O

5.4 Completeness

In this section we will use the unifying principles above to give a short and elegant proof for
the completeness theorem for ¥E€. Note that this is not precisely the result in [Hen50], since
it holds for the system without description functions.

Definition 5.4.1 We will call a proposition A, a tautology, iff it is a substitution instance
of a proposition P, that only contains logical connectives and variables of type o and is
valid in all general models. Note that the validity of P only depends on the assignment for
propositional variables in P.

Lemma 5.4.2 (Rule P) If A, is a tautology, then b A and bq¢ A.

Proof sketch: Let P, be the proposition, such that A = o(A) and P only contains
propositional variables and connectives. It is well known that the propositional part of ¥ and
€ is complete (see for instance [And86)), so there is a T-proof D: ¢ P. One application of
the substitution rule now gives the assertion. 0

Theorem 5.4.3 The class A := {® C cwff,(X) | S is TE-consistent} is an eztensional ab-
stract consistency class.

Proof: Obviously A is closed under subsets, since if a set ® is FE-consistent, then every
subset of ® is 3E-consistent. Also by definition no well-formed formula A, can be in a 3¢-
consistent set along with its negation ~A, this establishes 5.1.5(1). To verify 5.1.5(3), 5.1.5(5)
and 5.1.5(6) we note that if Fq= C = DA...AD", C € ® and furthermore & is T¢-consistent,
then ® U {D!,...,D"} must be ¥¢-consistent. For if ®U {D?,...,D"} were T¢-inconsistent,
then & U {-D?,...,~-D"} must be TE-inconsistent by 4.1.13(3), so & g C, which would
entail that ® were 3€-inconsistent. The observation that A A B & .A & B is tautologous
can extend this argument to a proof of 5.1.8(9) and 5.1.8(10).

If ® is 3¢-consistent and & * A, and ® * B, are both ¥¢-inconsistent, then & 4= —~A and
® gz =B, 50 ® g ~[A VB] by rule P, therefore [A VB] ¢ ® which is just the contrapositive
of 5.1.5(4).

To establish 5.1.5(7) we assume that & is TE-consistent but & *x ~[Ac] is T&-inconsistent,
where ¢, is a constant or variable that does not occur in ® or A. So there is a T¢-derivation
D:® = Ac by 4.1.13 and rule P. Let D’ be the proof tree that is obtained by exchanging

23

all occurrences of ¢ in D with a new variable X,. Since ¢ does not occur in ® and A it
is immediate that D’ is a T¢-derivation of AX from &. By adding an application of the
existential generalization rule to the root of D’ we obtain a F€-derivation of IIA from ®, so
-[Ac] ¢ ®.

To establish 5.1.8(8) we suppose that ® is TE-consistent but & * ~[Aygcs = Byge] is
F¢-inconsistent, where c is a constant or variable that does not occur in &, A or B. By an
analogous argument as in the case above we obtain a ¥E-derivation D’ of A = B from ®, and
conclude that ~[Ac = Bc] ¢ . 0O

Theorem 5.4.4 (Henkin’s Theorem for T€) Every T€-consistent set of sentences has a
countable general model.

Proof: Let & be a set of ¥E-consistent sentences. First we pass from the signature ¥
to a signature Lt := ¥ U A, where each A, is a countably infinite set of new constant
symbols. Obviously ® does not contain constants from A and therefore is sufficiently pure
in wff(X*). Since (wff(E+),TE) is a conservative extension of (wf{T),TE) we have that H
is also (wff(Et),¥€)-consistent (cf. 4.1.10). By 5.4.3 we know that the class of sets of TE-
consistent propositions constitute an extensional abstract consistency class ® with & € T 5.3.6
guarantees a countable general model for ®. o

Corollary 5.4.5 (Completeness Theorem for 3¢) A, 4 B, iff A | B.

Remark 5.4.6 In the light of the previous theorem it is not surprising that we can prove
the formula &, of 5.3.8 in 3. Here we sketch the direct proof. We have ¢ b, & .~~b and
by extensionality Fqe b = .~=b, which expands to Fqe VPp,.Pb = P.~—b and by substitution

Fqe Cood = cmmb = &,.

24

6 Conclusion and Further Work

We have presented a unifying principle for Q, that can serve as a tool for investigating the
completeness of machine-oriented calculi for higher-order logic.

In appendix A we give some ideas for a machine-oriented calculus for Q. Even though we
do not have a completeness proof, we are confident that the proposed calculus will at least
solve the problem of the two-valuedness.

In [And71] P. Andrews has given a simple cut-elimination proof for a system G* of higher-
order logic without extensionality, by showing that both the system Gt with cut and the
cut-free system G are complete relative to T. We conjecture that along these lines it should
be easy to construct a cut elimination proof for simple type theory with extensionality. In
particular the method above would lead to a proof of cut-elimination in a formulation of
type theory with function symbols. The author only knows of proofs in formulations of
classical higher-order logic without function symbols (cf. [Tak87, Tak68, Tak70]). There is
a cut-elimination for intuitionistic type theory with extensionlity and function symbols in
[asabPGar]. Note that the results in [And71] are abstractions of the cut-elimination proof
for simple type theory in [Tak67], which was extended to the extensional case in [Tak68).
Therefore we believe that the unifying principle for general models can be correspondingly
used.

References

[ALCMP84] Peter B. Andrews, Eve Longini-Cohen, Dale Miller, and Frank Pfenning. Au-
tomating higher order logics. Contemp. Math, 29:169-192, 1984.

[And71) Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic, 3(36),
1971.

[And72] Peter B. Andrews. General models and extensionality. Journal of Symbolic
Logic, 37(2):395-397, 1972.

[And86) Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

[And89] Peter B. Andrews. On connections and higher order logic. Journal of Automated
Reasoning, 5:257-291, 1989.

[asabPGar] Unknown Author (a student advised by Professor Gandy). Unknown Title
(manuscript without title page in my possession). PhD thesis, Worcester College,
Unknown Year.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[dB72] Nicolas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with an application to the church-rosser
theorem. Indagationes Mathematicae, 34, 1972.

25

[Fit90]

[Hen50]
[Hin55]
[HS86]

[Hue72]
[Hue73]
[Koh93)]
[Mil83]

[Rus08)
[Smu63]

[Smu68]
[Sny91]

[Tak67]
[Tak68)

[Tak70]

[Taks7)

Melvin Fitting. First-Order Logic and Automated Threorem Proving. Springer
Verlag, 1990.

Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81-91, 1950.

K. J. J. Hintikka. Form and content in quantification theory. Acta Philosophica
Fennica, 8:7-55, 1955.

J. Hindeley and J. Seldin. Introduction to Combinators and Lambda Calculus.
Cambridge University Press, 1986.

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order
Logic. PhD thesis, Case Western Reserve University, 1972.

Gérard P. Huet. A mechanization of type theory. In Proceedings of the Third
International Joint Conference on Artificial Intelligence, pages 139-146, 1973.

Michael Kohlhase. Resolution in order-sorted type theory. submitted to
LICS’93, 1993.

Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Uni-
versity, 1983.

Bertrand Russell. Mathematical logic as based on the theory of types. American
Jounal of Mathematics, XXX:222-262, 1908.

Raymond M. Smullyan. A unifying principle for quantification theory. Proc.
Nat. Acad Sciences, 49:828-832, 1963.

Raymond M. Smullyan. First-Order Logic. Springer Verlag, 1968.

Wayne Snyder. A Proof Theory for General Unification. Progress in Computer
Science and Applied Logic. Birkhauser, 1991.

Moto-o Takahashi. A proof of cut-elimination in simple type theory. Journal of
the Mathematical Society of Japan, 19:399-410, 1967.

Moto-o Takahashi. Cut-elimination in simple type theory with extensionality.
Journal of the Mathematical Society of Japan, 19, 1968.

Moto-o Takahashi. A system of simple type theory of Gentzen style with infer-
ence on extensionality and the cut-elimination in it. Commentarii Mathematici
Universitatis Sancti Pauli, XVIII(II):129-147, 1970.

Gaisi Takeuti. Proof Theory. North Holland, 1987.

26

Index

Y-algebra, 9
X-congruence, 10
¥-endomorphism, 9
¥-epimorphism, 9
Y¥-monomorphism, 9
¥-quasi-algebra, 9
a-conversion, 7
B-equality, 7
pB-reduction, 7
C-derivation of A from C1,...,C", 13
‘H-congruent, 21

abstract consistency class, 17, 18
admissible rule of inference, 14
alphabetical variant, 7

Andrews Calculus, 15
antecedent, 13

assertion of a proof node, 13
assignment, 9

atomic formula, 30

axioms, 13

base type symbols, 4
beta-conversion, 15
bound in, 5

calculus for Q(X), 13

canonical projection, 10

carrier set, 9

clause, 30

closed formula, 5

closed under subsets, 17

co-extensive, 15

comprehension closed, 9

connective, 6

conservative extension, 13

consistent w.r.t. a higher-order theory, 14

consistent with, 14

constrained clause, 30

constraint, 30

contradiction w.r.t. a higher-order theory,
14

currying, 8

deduction theorem, 14

27

denotation, 9
derivable rule of inference, 14
domain of a partial function, 8

entails, 12

equational system, 30
expansion, 13

expansion of a theory, 13
extension, 13

extensional X-congruence, 10
extensionality axioms, 15
extensionality of equality, 8

finite character, 17
frame, 9

free in, 5

full X-algebra, 9
fully invariant, 10
function, 8

general model for Q(X), 11
ground term model, 22

higher-order Hintikka set, 19
higher-order theory, 13
homomorphic Extension, 9
homomorphism of ¥-algebras, 9

idempotent substitution, 7

identity substitution, 7

image of a function, 8

implication elimination, 14

implication introduction, 14

inconsistent w.r.t. a higher-order theory,
14

indiscernability, 5

inference rule, 13

interpretation of constants, 9

justification of a proof node, 13

language of a higher-order theory, 13
Leibniz’ formulation of equality, 6
literals, 30

logical constants, 6

maximal in T, 19
Modus Ponens, 14, 15

parameter, 4

partial function, 8
primitive symbols, 4
proof tree, 13
proposition, 5

quantor, 6
quotient algebra, 11

renaming substitution, 7

satisfiable, 12

satisfies, 12

sentence, 5

signature, 4

solved form, 30

sound w.r.t. a class of models, 14
standard model, 11
substitutable for, 6
substitution, 7

substitution rule, 15
succedent, 13

sufficiently pure, 17
support of a proof node, 13
support of a substitution, 7

tautology, 23

term algebras, 9

theorem of 7, 13

total function, 8

type symbol, 4

typed binary relation, 8
typed collection of sets, 8
typed map, 8

unifier, 30
universal generalization, 15

valid, 12
value, 9
variable capture, 6
variables, set of, 4

well-formed formulae, 4

28

7 The Index of defined symbols

To base type sYMbOIs cvveiuiniiniiiieietie et rreetieenttieeaeaeneenatiettaiseaeens 4
T set of type symMbOIS . .vuvuiiniiiiii ittt ittt i it 4
T, 8, Signature (Of type @) ..oovuiiiiiiiiiiii i e 4
V,V, set of variables (Of tyPe @) co.vvuiuiiiiiiiiiiiiiiiiiiiiiiii ittt 4
Qoo €QUAlity CONBLANtventiuiiiniiieiiitiiineeenaeanereeraeneneneaeosorenasasasanans 4
wff(X), wff,(X) set of well-formed formulae (of type @)........ooovvniiiiiiiiiiiiiiilL, 4
Var(A) set of variables of Aocouiiiiiii it i i 5
Free(A) set of free variables of Aoviuiiiiiiiiiiiiiii ittt 5
Bound(A) set of bound variables of A.........ccoiiiiiiiiiiiiiii 5
cuff, (T),cwff(X) set of closed well-formed formulae...............ooiiiiiiiiiiiii.., 5
= syntacticequality.......cooviuiiiiiiiiiiiiiiii i i i i i i e 5
supp(o) support of the substitution ocooviiiiiiiiiiiiiiiiiiiiiii 7
SUB(X) set of substitutionsccovvuiiiiiniiiiiiiiiiiii ittt 7
A=,B A and B are alphabetical variantscovtiiiiiiiiiiiiiiiiiiiiiiiiieiienn. 7
=g Q-CONVETSION .ttt uunueenosasssosesacososossssosssssssssassssosssssssssssnssssaseans 7
=g B-equalityoooniiiii i i 7
Dom(f) domain of the function f..........cooiiiiiiiiiiiiiiiiiiiiiiiiiiiii 8
Im(f) image of the function f..........cooiiiiiiiiiiiiiiiiiii i 8
F(Ai1,...,An;B) family of n-ary total functions............oociviiiiiiiiiiiiiiiiiiiit 8
Z, homomorphic extension of an assignment ¢ to wWf(X).........cooviiiiiiiiiiiiiL. 9
A/, quotient algebra for the X-congruence ~ciiiiiiiiiiiiiiiiiiiiiiiiiieaaa 11
ME, A psatisfies Ainamodel M ...oooiiiiiiiiiiiiiiiiiiiiiiii i i 12
MEA Aisvalidinamodel M.....o.iiuiiiiiiiiiiiii it iiiiiiiiiieiaraeennnn. 12
FEx A Aisvalidinaclass Kofmodels........coouiiiiuiiiiiiiiiiiiiiiiiiiiininnnnnns 12
AFExB Aentails Binaclassofmodels K......c..covvvviiiiiiiniiiiiiiiiiiinnnn... 12
L(T) language of a theory 7 N 13
® 1 A derivation of A from @ in a higher-order theory 7ccciivvivnnnn.... 13

29

Fr A Adsatheorem of T ...ciuiiuiiiiiiiiiiiii ittt ittt ieeeiteneraeeannannns 13

T Andrews Calculus.o.vuieiniiiiiii ittt ie ittt ettt e eaeaaas 15
A~y B Aids H-congruent t0 Boiiuiiiiiiiiii ittt ittt i, 21
&, principal countereXampleouiiiiiiiiiiiiiiie ittt 23

A A Resolution Calculus for Q

In this section we will present a variant of Huet’s Constrained Resolution calculus [Hue72]
has additional inference rules to deal with extensionality.

As we have seen in Example 5.3.8 in extensional calculi we have to deal with propositions
that in the arguments of function constants. The simplest approach to build a calculus that
can refute —&, is simply to add the equational theory b = —-b to higher-order unification,
This approach is intuitive, but it does not solve the general problem of incorporating exten-
sionality into resolution. In fact we can generalize &, = [cb] V =[c[-—b]] to &,'[cA,]V ~[cB,),
where A and B are arbitrary proposition. Now &, is valid, iff A < B is valid. So the
approach of enhancing the unification would require augmenting the unification procedure
with the theory of logical equivalence, which would enable the unification procedure to prove
any theorem by unifying it with T,.

To make these ideas more precise let us digress to to a more general look at automatic
theorem proving. Theorem proving is a syntactic process of making judgments about the
validity of formulae in all models.

In propositional logic formulae are built up from propositional variables and the logical
connectives = and V. While the variables can be arbitrarily interpreted (to be either T or
F), the connectives ~ and V are interpreted to denote the negation and disjunction functions
on the set of truth values. Thus the class of models consists only of the {—, V}-algebra with
carrier set D, = {T,F}, where Z(-) and Z(V) are the well-known functions.

In first order logic there is a clear conceptual distinction between terms (syntactic objects
that denote individuals) and formulae (syntactic objects that denote truth values). Formulae
are built up from atoms, the symbols = and V and quantification. Atoms take the place of
propositional variables whereas -, V and quantification have fixed interpretations. Atoms are
built up from predicate symbols and terms, which in turn are built up from function symbols,
individual constants and variables, all of which can be freely interpreted. Thus the class of
models for first-order logic consists of some universe D, of individuals and D, with a fixed
interpretation for -, V and quantification.

By the use of skolemization in refutation-based theorem proving, the quantification can be
eliminated into a preprocess. For instance resolution-based calculi consist of the propositional
rules (computation in the fixed part D,) and the unification procedure, which amounts to
solving term equations in all models. Since the term algebra is the free algebra, it is sufficient
to solve the term equations there.

Let us summarize. Due to the strong division of the model theory into a fixed part D, and
a free part D,, first-order theorem proving can be divided into a propositional part (acting
on formulae) and a term part (unification), which do not interfere.

30

In higher-order logic (here simple type theory) we do not have this clear division. In
particular there are formulae, where symbols with fixed interpretation are dominated (in the
scope or subterms of arguments) by symbols with flexible interpretation.

We propose a calculus where the unfication procedure calls the theorem proving procedure
recursively on demand that is whenever it encounters a propositional pair. This approach
makes it necessary to break down the distinction between unification and resolution and treat
both processes in one uniform calculus.

A.1 Resolution in Extensional Type Theory

First we will need some facts and notation for higher-order unification, for a discussion see
eg. [Sny91].

Definition A.1.1 (Equational System) An equational systemis a finite set of pairs of
well-formed formulae of the form I' = {(Af,B) | i =1,...,n}. A substitution o € SUB(X)
is called a unifier of a pair (A,B), if 0(A) = ¢(B) and a unifier of T, iff o is a unifier of
all pairs (A%, Bf). We denote the set of E-unifiers of I' by UT.

A pair (X4, B) is in solved form in an equational system T', iff X, is a variable, which
does not occur anywhere else in I'. Obviously a system I' = {(X?,A!),...,(X™,A")} is
in solved form corresponds to a substitution 8 := {X! — Al ... X" — A"™}. We write
(6) :=T and or := 0 and note that or is the most general unifier for I'.

Theorem A.1.2 (Completeness Theorem for Higher-Order Unification) For any uni-

fication problem T and any 0 € UT, there is a sequence == A of unification transformations,
such that A is in X-solved form and op is more general than 6.

Definition A.1.3 (Constrained Clause) Let A, be an application, constant or variable
of type o, such that head(A) is not one of the logical constants, then A is called atomic.
Atoms and their negations are together called literals, and finite sets of literals are called
clauses.

A pair C = C||T', where C is a clause and T’ is an equational system is called a constrained
clause, and C is called the clause of C and T the constraint of C.

Just as in first-order logic we have that each set ® of sentences can effectively be trans-
formed into a set of clauses ICCNF(®) that are satisfiable, iff ® is.

Definition A.1.4 (HR-Refutation) Let O stand for any constrained clause @||T', where I'
is an equational system in pre-solved form. A derivation of O from a set C of constrained
clauses with the inference rules below is called a refutation of C.

{N1,...,N"}|IT {[-M!],M2,...,M™}||A
{NZ, .. N" M?,... ,M™}|[T U A * (NI, MT)

HR(Res)

{N!,...,N*}||”
{NZ,... N"J|[T * (NT,N?)
{M!,... M™}|IT
™I, .., M} U {o)

HR(Fac)

HR(Prim)

31

T ——

82 01375 Lasq

where in HR(Prim) one M’ is a flexible literal of the form PU* and 0 = {P — P} and
P € {(\XF[H'X) Vv [H?*X]], [AX*.~[H'X]],[AX*VY HXY],[A\X*.X/X)}

{ML,...,M™}|T c|ir
[CNF(MN V... Vo (M T2e50) —gmr— PRI

if (0) CT and X is free in the M’ and I can be obtained from I' by a unification trans-
formation from [Sny91]. Note that in contrast to Huet’s calculus we use Andrews’ primitive
substitutions [And89] instead of splitting rules and that we are able to perform unification
everywhere in the deduction in contrast to only at the end. The rule HR(Solv) will prop-
agate partial solutions from the constraints to the clause part and thus help detect clashes
early. Since the substitution may well change the propositional structure of the clause by
instantiating a predicate variable we have to renormalize the clause on the fly.
To account for extensionality we propose the following two rules:

CIIT * (A,, B,)
ONF(A® B vOyT - ~(Eef)
C* "‘Po(aﬂ)Aaﬂ * PBap”r £'R(Ezt)

C * -QoaAcy * QBc||T

where @ is a new variable and c is a new constant. Obviously the first rule amounts to the
recursive call of the refutation procedure.

We will call a set ® of well-formed sentences HR-refutable, iff O is derivable from the
set of constrained clauses CNF(®)||@. Note that O denotes falsehood or contradiction, so by
A.1.5 a refutation of a set of sentences ® proves the unsatisfiability of &.

Theorem A.1.5 (Soundness) The HR calculus is sound.

Proof sketch: It is well known that naive skolemization in type theory is not sound. In fact
it is possible to prove an instance of the axiom of choice, which is known to be independent,
in a resolution system with naive skolemization. In his thesis [Mil83] Dale Miller gives a
sound version of skolemization in the context of expansion trees and higher-order matings.
The idea is to restrict the unification algorithm, such that only formulae can be produced by
substitution where the Skolem functions always have enough arguments. This method can
also be utilized in the resolution context and yields a soundness theorem. (m]

32

