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Introduction

Categories in this paper will always be concrete over a fixed base category S, with
faithful and amnestic forgetful functors to S. A completion of a concrete category A is a
full and dense concrete embedding G : A — B, with B complete in an appropriate sense.
Completions of A with specified properties usually are the objects of a (quasi-)category,
with full concrete embeddings as morphisms. An initial object of such a category is called
a hull of A.

Topological completions and hulls with various properties have been studied intensively;
we refer to the papers in the Bibliography for important contributions to this theory, and
for further references. As H. HERRLICH [19] has pointed out, “smaller is better” for comple-
tions: a small completion of a category A is likely to retain more of the desirable properties
of A than alarge one. This makes hulls particularly desirable, and it suggests that the word
“dense” should be used in a suitably restricted sense. Beginning with P. ANTOINE [13],
“dense” has often been used in the least restrictive meaning of finally dense. J. PENON in
[25] introduced epidense extensions, and the author in [32] discussed colimit-dense exten-
sions over a monosieve-complete quasitopos S as base category. Colimit-dense extensions
seem too restrictive for a more general base category; we replace them by quotient-dense
extensions [33] which have almost all basic properties established in the literature for other
types of dense extensions.

The existence of at least three different meanings for “dense extension” calls for a general
theory of dense extensions, completions and hulls. This paper develop such a theory for
an arbitrary concrete category A, based on a factorization structure for sinks in the base
category S. Sections 1 through 3 present the general theory, with factorization structures
reviewed in Section 1, E-dense extensions and completions studied in Section 2, and hulls
discussed in Section 3. Section 4 deals with cartesian closed completions and hulls, and
Section 5 with completions and hulls with partial morphisms represented. Section 6 deals
with quasitopos completions and hulls, and with initial lifts for finite sources. We show
that most results obtained in the literature for dense completions of some kind remain
valid in our theory, but some results in Sections 4-6 have to be restricted to quotient-dense
completions.

For every reasonable meaning of the word “dense”, there is a largest dense completion
of a concrete category A, a terminal object in the category of dense extensions of A,
and completions of A can only be as complete as this largest completion. Thus dense
completions are in general not topological; we can only expect them to be E- cotopological
for a collection E of sinks in S, i.e. to admit final lifts for E-dense sinks (defined in




2.1). This raises the problem of existence of initial lifts for sources in dense completions.
We discuss this for finite sources in 6.6; very little is known about the general situation.
Unlike some authors, we do not require that concrete categories have small fibres over
the base category. Small fibres can be important; thus we obtain in Section 3 a criterion for
hulls to be small-fibred. This result includes and generalizes all criteria for fibre-smallness
of hulls which the author has seen in the literature.
Our terminology follows mostly [7] and [32].

1. Factorizations of sinks

1.1. Sinks. We define a sink for a functor G : X — Y, with codomain an object E
of Y, or simply a G-sink at E, as a class of pairs (X,u) with X an object of X and
u:GX — FE in Y. A sink for a functor IdS will be called a sink in S. Except for an
empty sink with no pairs (X, u), the pairs (X, u) in a sink determine its codomain.

Sinks thus defined are structured sinks as defined dually to [7] 17.1. For sinks in a
category S, classes of pairs (X,u) with v : X — F in S may be replaced by classes of
morphisms of S with codomain E.

We denote by f® the composition of a sink ® at an object £ of Y and a morphism
f:E — E' of Y; this is the sink at E’ consisting of all pairs (X, fu) with (X,u) in ®.

1.2. Sink factorization structures. Throughout this paper, categories will be
concrete categories (A, P) over a fixed base category S, with a faithful and amnestic
forgetful functor P. For a collection E of sinks in S and a class M of morphisms of S, both
closed under composition with isomorphisms in S, we say that S has (E, M)-factorizations,
or that S is an (E,M)- category, if the following conditions are satisfied.

(1) Every sink @ in S factors & = m®’ with ® in E and m € M.

(2) f g® = mV¥ for sinks ® and ¥ in S and morphisms m and g of S, with @ in E
and m € M, then ¢ = mt and ¥ = t® for a unique morphism ¢ of S.

(3) M consists of monomorphisms of S.

1.3. Discussion. With our definition of sinks as classes, and not as families indexed
by classes as in [7], the proof of the dual of [7] 15.4 is not valid. We do not know whether
M must consist of monomorphisms of S if E and M satisfy 1.2.(1) and 1.2.(2), but we
note the following result. '

Proposition. If E and M satisfy 1.2.(1) and 1.2.(2), then the following are equivalent.
(i) M consists of monomorphisms of S.

(ii) Every morphism f of S factors f = me in S, with {e} in E and m € M.

(iii) {idg} is in E for every object E of S.

ProoF. If {f} = m® with m monomorphic, then @ is a singleton; thus (i)==(ii)-
If we factor idg = me by (ii), then it follows easily from 1.2.(2) that e and m are inverse
isomorphisms; thus (ii)==(iii). If ma = mb in S with m in M, then we can factor



m{a,b} = ma{idg} for the common domain E of a and b. If {idg} is in E, then
{a,b} = {t} for a morphism ¢t with mt = ma. Thus a = b, and (iii) =>(i)-

1.4. Examples and remarks. Every category S is an (E,M)-category for E con-
sisting of all sinks in S and M the class of all isomorphisms of S.

Topological categories over sets are (E.M)-categories for E the collection of all final
sinks and M the class of all bijective morphisms, for E the collection of all episinks and
M the class of all embeddings, and also for E the collection of all quotient sinks and M
the class of all monomorphisms.

For an (E,M)-category structure of S, the collection E is determined by M; it con-
sists of all sinks ® which satisfy 1.2.(2) for all factorizations g® = m¥ with m € M.
A composition g&® factors g& = m¥ with m in M iff ¥ consists of morphisms h, of B,
one for every u in ®, such that gu = mh, in S. If mi¢ = g in this situation, then h, = tu
for every u in ®, and ¥ = t®. It follows easily that {r sinks ® and &’ at an object of
S, with @ in E and & C &', the sink &' always is in E. We also note that E is the
class of all sinks ® S such that m is an isomorphism for every factorization ® = m®’
with m in M, and M consists of all monomorphisms m of S such that every commutative
square mf = ge with {e} in E has a diagonal. All isomorphisms of S are in M, and M
is pullback-stable. If mm’ is defined in S with m € M, then mm/ € M iff m’' € M.

1.5. Before discussing standard choices for E and M, we extend the dual of [7] 15.7.

Proposition. If S is an (E,M-category, then the following are logically equivalent.
(i) E consists of episinks.

(ii) S has equalizers, and all strong monomorphisms of S are in M.

(iii) S has equalizers, and all equalizers in S are in M.

Proor. For parallel morphisms a and b in S, consider the sink ® of all f in S with
af = bf, and factor it & = m®’, with m in M and @' in E. If & is an episink, then
am = bm, and m is an equalizer of ¢ and b. Now factor a strong monomorphism m as
m = m'e, with m' in M and {e} in E. If e is epimorphic, then e is isomorphic, and
m € M follows. Thus (i) = (ii).

(ii)==(iii) trivially, and (iii)==>(i) dually to the proof of [7] 15.7.

1.6. Quotient sinks. We recall from [32] 63.1 that a sink ® in a category S is called
a quotient sink if for a factorization ¢® = mV¥ with m a monomorphism and ¥ a sink,
the morphism g always factors ¢ = mt for a (unique) morphism ¢t of S. It follows that
also ¥ = t®. The induced sink of a colimit cone in S is always a quotient sink, and it is
easily seen that every quotient sink in S is an episink if S has equalizers. We also note the
following result.

Proposition. If S is an (E,M)-category, then every quotient sink in S is in E, and
E is the class of all quotient sinks in S if and only if M is the class of all monomorphisms
of S.



ProoOF. Quotient sinks have the factorization property 1.2.(2) for all monomorphisms.
Thus they are in E, and every sink in E is a quotient sink if M consists of all monomor-
phisms of S. Conversely, factor a monomorphism m as m = m’e with {e} in E and m’
in M. If E is the class of all quotient sinks, then m' = mt and te = id for a morphism ¢,
with ¢ monomorphic since m’ is monomorphic. But then e is an isomorphism, and m € M.

1.7. Episinks. We note the following result.

Proposition. If S is an (E,M)-category, then E is the collection of all episinks of S
if and only if S has equalizers and M is the class of all strong monomorphisms of S.

If S is balanced, with every monomorphism strong, it follows that every episink in S
is a quotient sink.

Proor. If E consists of all episinks, then S has equalizers, and all strong monomor-
phisms of S are in M, by 1.5. If m € M and ge = mh in S with e epimorphic, then
g = mt and f = te for a morphism ¢; thus m is a strong monomorphism. Conversely, if M
is the class of strong monomorphisms and S has equalizers, then E consists of episinks.
If an episink ® factors & = m®’, then m is an epimorphism. If m is also a strong
monomorphism, then m is an isomorphism; thus every episink is in E.

1.8. Properties of (E,M)-categories. The duals of all results of [7] Section 15, are
valid for an (E,M)-category S. In particular, S has all possible pullbacks of morphisms
in M and intersections for all sinks of morphisms in M, and these pullbacks and intersec-
tions are again in M. Also, if D and D; are diagrams in S with limit cones A : L — D
and A\ : Ly — Dy, and if u : D — D; is a morphism of diagrams with all components
in M, then the unique morphism m with Aym = uA is also in M. In particular, products
my X mq of morphisms in M are always in M.

If S is an (E,M)-category and A an object of S, then we have a slice category S/A
with a domain functor D4 : S/A — S. If E/A consists of all sinks ® in S/A with Dg4®
in E, and M, of all morphisms m of S/A with Dgm in M, then S/A clearly is an
(E4,M4)-category. We note that a pullback functor f*:S/B — S/A,for f: A—- B
in S, always maps Mp into My4.

1.9. The following result applies in particular to classes M and M, consisting of
all isomorphisms, or all strong monomorphisms, or all monomorphisms. These classes are
preserved by every right adjoint functor.

Proposition. Let S be an (E,M)-category and T an (E;,M,)-category. If F—| G :
S — T, then G maps M into M, if and only if F maps E; into E.

ProoF. For m € M and & in E;, we have a commutative square g - F® = mV¥ in
S iff we have an adjoint commutative square §& = Gm - ¥ in T. One of the squares has
a diagonal iff the other square has one, and these diagonals are adjoint morphisms. The
Proposition follows immediately.



2. Dense extensions and completions

2.1. Dense sinks and sieves. We consider from now on a fixed concrete category
(A, P) over the base category S, and concrete full embeddings G : (A, P) — (B, Q) over S.
We assume that the base category S has (E,M)-factorizations, for a collection E of sinks
in S and a class M of morphisms of S, satisfying the conditions of 1.2. Concrete categories
over S will have faithful and amnestic forgetful functors, but we do not assume that fibres
for forgetful functors are small.

For a concrete functor H : (B,Q) — (C, R), every H-sink & at an object C of C has
an underlying sink in S, at RC. We say that ® is E-dense if this underlying sink is in E.

P-sieves ([31], [32] 59.2) are special P-sinks ®, with (B’,vf) always in & for a pair
(B,v) in ® and f : B” — B in B. Pairs X = (|X|,®x) with |X| an object of S
and ®x a P-sieve at |X| are the objects of a category A of P-sieves. Morphisms
f:(E,®) - (F,%) in A“ are morphisms f: E — F of S with f® C ¥. With these
morphisms, AT is a topological category over S, a largest finally dense full extension of A.
We denote by A°d the full subcategory of A" with E-dense P-sieves as its objects.

2.2. E-dense extensions and E-cotopological categories. If a concrete full
embedding G : (A,P) — (B, Q) is given, then we say that an object B of B is E-dense
over A if B has the final structure in B for an E-dense G-sink at B. In particular, every
object GA of B is E-dense. We say that G, or by abus de langage (B,Q), is an E-dense
extension of (A, P) if every object of B is E-dense over A. We say that G or (B,Q) is
an E-cotopological completion of (A, P) if G is E-dense and (B, Q) is E- cotopological,
i.e. if every E-dense @-sink has a final lift in B.

E-dense extensions G : (A, P) — (B,Q) of (A,S) are the objects of a category, with
full concrete embeddings I satisfying /G = H as morphisms I : G — H. We note that
Id A is an initial object of this category.

For E the collection of all sinks, we get finally dense extensions, and E-cotopological
categories are topological categories. For E the collection of all episinks or all quotient sinks,
we get epidense and quotient-dense extensions, and E-cotopological categories are dual to
M-topological categories for M the collections of all monosinks and all strong monosinks
respectively. For E all quotient sinks and M all monomorphisms, E-cotopological cate-
gories and completions will be called quotient-topological.

We note the following useful result without proof.

Proposition. Every E-cotopological category (B,Q) has (Ep,Mg)-factorizations,
where Eg consists of all E-dense final sinks in B, and Mg of all morphisms m : B — B’
in B with m in M.

2.3. Proposition ([7] 10.71). For E-dense extensions G : (A,P) — (B,Q) and
H:(A,P)— (C,R), every morphism I : G — H preserves initial lifts of sources.

ProoF. If objects B; of B and morphisms f; : E — @QB; define a source for Q with
initial lift B in B, then ¢g: C — IB in C,for g: RC —- E in S, iff gu: HA — IB for



every u: HA — C in C. This is the case iff gu : GA — B in B for every such u, hence
iff figu:GA — B; in B for every u and every f;, hence iff figu: HA — IB; in C for
every u and every f;, hence iff f;g : C — IB; in C for every f;. Thus IB is an initial lift
in C for the source of morphisms f; : E — RIB; .

2.4. Theorem. For a morphism I : G — H of E-dense extensions of (A,P),
with H : (A,P) — (C,R) an E-cotopological completion and G : (A,P) — (B,Q), the
following are equivalent.

(i) G is an E-cotopological completion of (A, P).

(ii) The functor I has a left-inverse concrete left adjoint J .

(iii) The functor I creates initial lifts, i.e. a source of objects B; of B and morphisms
fi: E— @QB; of S has an initial lift in B, preserved by I, if the source of objects IB; of
C and morphisms f; : E — RIB; has an initial lift in C.

ProoF. For an object C of C, the @-sink ¥ of pairs (GA,u) with u: HA — C in
C is a final E-dense sink. If (i) holds, let JC be the final lift of this sink in B. Then
f:JC - Bin B,for f: RC — QB in S, iff fu: GA — B in B for every pair (A4, u)
in ¥, hence iff fu: HA — IB for every (A,u) in ¥, and thus iff f:C — IB in C. Thus
objects JC define a concrete left adjoint J of I, with J left inverse to I because I is a
full embedding and ¢ amnestic.

If morphisms f; : £ — RIB; have an initial lift C in C, and if (ii) is valid, then
fi : JC — B;; we claim that JC is an initial lift for this source. If g : QX — E in S with
fig : X — B; in B for every f;, then also f;g : IX — IB; in C for every f;, and thus
g:IX —-C in C. But then g: X — JC in B since JIX = X.

For an E-dense sink ¥ of objects B; of B and morphisms f; : @ B; — E in S, consider
the source X’ of all pairs (u,B) with u: £ — @B in S and uf; : B; — B in B for each
(Bi, fi) in I, and the sink X" of pairs (B’,v) with v: QB’ — E and wv: B’ — B for
every pair (u,B) in ¥’. Then X" is an E-dense sink containing X; let C' be its final lift
in C. f g: RX - F in S with ug : X — IB in C for every pair (u,B) in ¥’, then
(GA,gz) isin X", and gz : HA — C in C, for every z : HA — X in C, with A an
object of A. But then g : X — C in C; thus C is an initial lift for the source of morphism
u: E — RIB with (u,B) in ¥'. An initial lift of £’ in B is clearly a final lift for ¥; thus
(iii) = (i).

2.5. The Antoine functor. For an object A of A, we denote by YA = (PA,TA)
the Antoine sieve with (X,u) € TA iff u: X — A in A. The sieve TA is E-dense since
(A,idp4) € TA. Antoine sieves clearly define a concrete functor Y : A — A, an E-dense
embedding since (A4,u) € ® for a P-sieve (F,®) iff u: YA — (E,®) in A, and (E,d)
has the final structure in A" for these morphisms.

Theorem. The Antoine functor Y : A — A°d js an E-cotopological completion, and
a terminal object in the category of E-dense extensions of (A, P).

ProoF. For an E-dense sink of morphisms f; : E; - E of S and E-dense P-sieves
(Ei, ®;), it is easily seen that the final lift (E,®) in A, consisting of all pairs of the
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form (A, fiu) for sonie fi, with (A,u) € ®;, is E-dense. Thus Y is an E-cotopological
completion. For an E:dense extension G : (A, P) — (B,Q) and a full concrete embeddmg
I:B — A with IG*=Y, and for u: PA — QB in S, we have

(1) (Au)éIB < u:YA—-IB <= u:GA- B.

This determines I umquely, ‘with each IB E-dense since G is E dense, and (1) clearly
defines a morphism I G — Y for every E-dense extension G of (A P)

‘.

2.6. If G: (A, P) — (B,Q) is an E-dense extension, with IG = Y for a , concrete
full embedding I : B — A<l then every source of objects B; of B’ and morphisms

fi:E—->QB; of S mﬁuces a source of objects IB; of A"d ‘and morplusms f, E — IIB | C

of S. We note the following result.

3
v
]

Proposition. IffG : (A,P) — (B,Q) is an E- cotopoIogicaI completion, then the
following are equzvaleflt for a source of objects B; of B and morphisms f; : E'— QB;

in S. ‘ix‘
(i) The source haq.ia lift in B. v RO
(ii) The source h% an initial lift in B. SR

(iii) The induced ; jource of morphisms f; : E — IIB | has a lift in Ad.,
(iv) The induced ;ource has an initial; lift in A°d.. ot

o

Proor. If morph‘?sms fi + B — B; form a lift of the given source, then consuier the
P-sieve of all morph1 su:PA— E of S with fiu:GA— B; in B for every- f This
sieve includes all morphisms u : GA — B of B; thus it is E-dense. If By is aﬁng.l tin B
for this sieve and g : @ B’ — E satisfies fig:B' — B; for every f;, then f.gu GA — B;
for every f; and everylu : GA — B’. But then gu: GA — By for every u: GA —-> ﬁ’ and
g : B’ = By follows. %ms By is the'desired initial lift, and (i)==(ii). . . N ;' :5'

(ii) = (iv) because the functor I preserves initial lifts, and (iv)==> (iii) tnv1a.lly

If X is a lift of the induced source, with f; : X — IB; in A% for each f,, then
fi: JX — B; for each’ fi, for the concrete left adjoint J of I'; thus (iii) == (i).

2.7. Concrete monomorphisms, epimorphisms and colimits. A]l limits in A<
are concrete, i.e. preseétved by the forgetful functor to S. Limits in A4 a.re coreﬂectlons

of limits in A", hengé not necessarily concrete. Concrete limits in an E cotopologlcal' ‘

completion B of A are initial lifts of sources, and thus preserved and created by ‘the full
concrete embedding B A,

Monomorphisms 11% an E-cotopological category B are reflected, but not necessarllyv"
preserved, by the fmtﬁful forgetful functor of ‘B. The dual of the category of Héusdorff

spaces is an example fo this; see 5.2. ' We say tha.t a monomorphlsm preserved by the forget-
ful functor is concrete; 3 see 3.6 and 6.6 for related discussion. If B is an E- dense completion
of A, then the concrete full embedding B — A°d preserves and reﬂects monomorphisms
and concrete monomorphxsms

For epimorphisms 'and colimits, we have the following result. .
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Proposition. If (B,Q) is an E-cotopological category, then the forgetful functor Q
of B preserves and reflects epimorphisms, and @) preserves and lifts colimits.

ProoF. The faithful functor @ reflects monomorphisms and epimorphisms. If e :
B — C is an epimorphism of B and ae = be in S, then we can factor a = ma, b = mg,
with o and @ forming a @-sink. This sink has a final lift C; in B, and ae = fe in B for
the lifted morphisms e,8 : C — C;. But then ¢ = 3, and e is epimorphic in S.

If D is a diagram+in B with a colimit cone 7 : D — B, factor r = mo in S, with m
in M and o a sink in E. Then o has a final lift X to a cone 0 : D — X in B, with
m: X — B in B, and with o0 = s7 for a morphism s: B — X. But then ms =idp in B,
and m is an isomorphism of S. Thus the underlying sink of 7 isin E. f A: QD — F is
a cone in S, factor A= mp with m monomorphic and p a quotient cone. Then p can be
lifted to B, and thus p = r7 for a morphism 7, with A = mr-Qr. falso A = g-Qr, then
g = ms for a unique morphism s of S, with s- Q7 = p since m is monomorphic. But then
s=r,and g = mr. Thus Q7 is a colimit cone in S.

Conversely, if the diagram QD in S has a colimit cone 0 : QD — F in S and we
factor the underlying sink of o as mo’ with ¢’ in E, then o’ is a cone with domain QD.
Thus o’ = to for a morphism ¢ of S, with mt = idg. Now m is an isomorphism, and the
underlying sink of o is in E. But then o has a final lift to a cone 0 : D — B in B, and
this final lift is clearly a colimit cone of D in B.

2.8. E-dense full sieves. We denote by Qg the full P-sieve at an object F of S,
consisting of all pairs (A,u) with A an object of A and u: PA — F in S. Full P-sieves
need not be E-dense; we note however that if there is an E-dense P-sieve ¢ at an object £
of E, then every P-sieve at E coarser than &, and in particular Qg, is E-dense. This is
the case for every object PA of S.

The following resilt shows that there is no essential loss of generality if we assume that
all P-sieves g are E-dense.

Proposition. Objects E of S with an E-dense P-sieve at E define an M- coreflective
full subcategory S? of S, with objects including all objects PA for objects A of A.

ProoF. If m : (E',®') — (E,QE) is a coreflection for A4, then clearly &' = Qp,
and we claim that m: E' — E is a coreflection for S4. Iffg: F — E in S, then we have
a factorization gv = mv' for every pair (4,v) in Qp. If QF is E-dense, it follows that
g = mg' for a (unique) morphism ¢’ : F — E'.

2.9. We consider an E-cotopological extension G : A — B over S, and we denote
by B9 the full subcategory of B with objects C which have the final structure in B for
an E-dense sink of morphisms % : GA — C in B. Thus we have a commutative diagram

| A Gl Bd I Acd
o =
’ B —_— AT



of concrete categories and concrete full embeddings over S with HG; = G and IG; =Y,
and with IC = (|C|,TC) for an object C of B4, for the P-sieve I'C of all pairs (4,u)
with A an object of Avand v: GA — C in B.

Theorem. If G : A — B is a E-cotopological extension, then the category B4 in (1)
is an E- cotopological completion of A, and an M- coreflective subcategory of B.

ProOF. The subcategory B3 of B is clearly closed under final lifts of E-dense sinks
in B. For an object 88 of B, factor the sieve of all morphisms v : GA — B in B as
up - ®p, with &g an E dense sieve and up in M. Let KB be the final lift for ®p in B,
hence in BY; then pg i KB — B in B. An object C of B9 has the final structure for the
E-dense sieve I'C of morphxsms v:GA— Cof B.If f:C — B in B, then we have a
commutative square f I'C = ug - ¥ of sieves and morphisms, with ¥ contained in ®p.
Now ¥ = ¢g-TC and“f = pp-g in S for a unique morphism g. Since C has the final
structure for I'C, we lave g : C — KB in BY. Thus pp is the desired coreflection.

2.10. Special case: constructs with constant maps. Concrete categories over
sets have also been called constructs. We say that a construct (A, P) has constant maps
([31)) if for objects A5B of A, every mapping f : PA — PB with its range 7 (PA)
empty or a singleton lifts to a map f : A = A’ in A. This means that A has exactly
one empty object, ands for every singleton S exactly one object A with PA = S, and that
these objects are both:discrete and coarse.

For sets with the (€pisink, injective mapping) factorization of sinks, and for a construct
A with constant maps," A4 is topological over sets, with exactly one object over a singleton,
but with two empty oB_]ects {0,®), one with an empty sieve & and one with a full sieve ®.
If we remove the ob Ject (0,®) with an empty sieve & from A°d, we obtain a full bireflective
topological subcategoxgy of A°d. This subcategory, the category A° of [31], has constant
maps, and the reflector AT — A€ preserves finite limits. :

3. E-cotopological hulls

3.1. Definition." By 2.5, every E-dense extension of (A, P) over S is concretely
isomorphic to a full subcategory B of A, containing all objects YA for objects A of A.
If we restrict ourselveé%ito full subcategories of A°d, then morphisms I : G — H of E-dense
extensions become full subcategory embeddings. If € is a class of E-dense P-sieves, then
a smallest E-cotopological completion of (A, P) with € contained in its class of obJects is
called an E- cotopologmal hull of @ in A4,

We show easily that E-cotopological hulls in this sense always exist, and we discuss
fibre-smallness for thee completions.

3.2. Theorem. For a concrete category A over an (E,M)-category S, every collection
C of E-dense P -sieves has an E-cotopological hull. If every object YA of Ad is an initial



lift of a source of morphisms f; : YA — X; in A with every X; in @, then the objects of
this hull are all initial lifts of sources f; : E — | X;| in A with each X; in C.

Proor. By 2.4 and 2.6, E-cotopological completions of A are E-dense extensions
which, regarded as full subcategories of A°d, are closed under initial lifts of sources. Inter-
sections preserve this property; thus every class C of E-dense P-sieves has an E-cotopo-
logical hull. The collection of all objects X of A°d with the initial structure for a source
of morphisms f; : X — X; of A°d, with each X; in C, conmsists of objects of the
E-cotopological hull and is closed under initial lifts of sources. Thus it is the class of
all objects of the E-cotopological hull of C if it contains all objects YA.

3.3. Corollary.i Every concrete category A over an (E,M)-category S has an
E- cotopological hull. ' ‘

Proor. This follows immediately from 3.2, with € the collection of all objects YA for
objects A of A.

3.4. Fibres. We recall that the fibre of an object E of S, in a concrete category
B over S, is the subcategory of all objects X of B with underlying object |X| = E, with
morphisms idg : X — X’. It is sometimes considered desirable that concrete categories
should have small fibres. We investigate this property for E-cotopological hulls.

We assume that every object YA of A°d admits an intial source of morphisms f; :
YA — X;, with each X; in €. This is obviously no essential loss of generality.

For pairs (A,u) and (B,v), with A and B objects of A and with v : PA — FE and
v:PB — E in S for an object E of S, we put (B,v) <e (4,u) if for every pair (f,X)
with X in C and f:: E — |X|in S, and with fu : YA — X in A, we also have
fv:YB — X in A%, This clearly defines a preorder <e.

For a fixed pair (4,u) with u: PA — E in S, the pairs (B,v) with (B,v) <¢ (A4,u)
clearly form a P-sieve (E,®). This sieve has the initial structure in A" for the morphisms
f:E—|X|in S with X in € and fu:YA — X in A, but it need not be E-dense.

We put (4,u) ~ge (A’ v') if (A,u) <e (A,v') and (A',v') <e (A4,u), with u :
PA— E and v’ : PA' — E. This obviously defines an equivalence relation, with (A, u)
~ge (A',u') iff the P-sieve (E,®) constructed in the preceding paragraph is the same for
(A,u) and for (A',v).

3.5. Proposition. If the collection of equivalence classes for the relation ~ge is
small for every object E of S, then the E-cotopological hull of @ in A°d has small fibres.
Conversely, if S is well-powered for monomorphisms in M and the E-cotopological hull of
@ in A°? has small fibres, then the collection of equivalence classes for ~g ¢ is small for
every object E of S.

PRrOOF. For every object (E,®) of the E-cotopological hull, the P-sieve @ is a union
of equivalence classes for ~g e. If the collection of equivalence classes is small, it follows
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that the collection of their unions, and hence the fibre of E in the E-cotopological hull,
is small.

Conversely, the equivalence classes for ~ge correspond bijectively to the P-sieves
(E,®) constructed in 3.4. If S is well-powered for monomorphism in M, then there is a
set-indexed family of morphism m; : E; — E in M such that for every P-sieve (E,®)
of this kind there is a coarse morphism m; : (E;,®;) — (E,®), with (E;,®;) E-dense
and hence in the E-cotopological hull of €. If this E-cotopological hull has small fibres,
it follows that the collection of sieves (E,®) is small.

3.6. Remarks. Tthe results of Sections 2 and 3 are valid in particular for finally dense
extensions, with E the‘- collection of all sinks in S. For this case, Theorem 2.4 shows that
E- cotopological completions are topological categories, with initial lifts for all sources, and
with forgetful functors preserving and lifting monomorphisms and strong monomorphisms,
as well as all limits an(i colimits. Thus the forgetful functor of a completion C preserves
all limits and colimits. If D is a diagram in C for which the underlying diagram has a
limit in S, then the initial lift of the source induced by the limit cone is a limit of D in C,
and colimits in C are obtained dually.

These properties remain valid for colimits in an E-cotopological completion B of A
if full P-sieves are E--‘Hense, but limits of a diagram D in B are preserved and lifted by
the forgetful functor of B only if the source induced by a limit cone of D in S has a lift
in A<, By 2.6, E-cotépologica,l completions admit initial lifts only for those sources which
admit a lift in Acd,

We observe that c¢ollections € of E-dense P-sieves can be replaced by collections
of P-sieves, since evety coreflection for A°d in A is a coarse monomorphism in A°T.
Theorem 3.2 then chatacterizes the E-cotopological hull of the A¢d-coreflections of the
P-sievesin C. If E is Tthe collection of all sinks in S, then the hull of € in A, for a class
C of P-sieves, has small fibres iff the collection of equivalence classes is small for every
equivalence relation ~g ¢, by 3.5 with M the class of all isomorphisms of S. Every known
criterion for fibre smallness of topological or E-cotopological hulls follows directly from 3.5
and these observations.

4. Cartesian closed completions and hulls
4.1. Definitions. . We say that a concrete category (B, Q) has concrete finite products
if B has finite products, and the functor @ preserves them. A coarse object of (B, Q) is
an object C' of B for which every morphism f : QB — QC of S lifts to f : B — C
in B. Coarse objects define couniversal morphisms for the forgetful functor Q; we say that
(B,Q) has coarse objécts if Q has a right adjoint. The category A always has coarse
objects (5,fs) with Qg the full P-sieve of all pairs (4,u) with A an object of A and
u:PA— §in S, and; A has concrete finite products if S has finite products. Concrete
finite products, and more generally all concrete limits, are initial lifts of sources, and thus
preserved by E-dense extensions, by 2.3. We note the following result.
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Proposition. The base category S is cartesian closed if and only if there is a cartesian
closed concrete category (B,Q) over S with coarse objects and concrete finite products.

Proor. If S is cartesian closed, then A is cartesian closed by [32], 60.2. The
converse follows immediately from the main result of [15], since coarse objects provide a
full embedding of S into B, right adjoint to the product preserving forgetful functor Q.

4.2. Standard assumptions. In view of 4.1, we assume in this Section that S is
cartesian closed. We must also assume the following equivalent conditions.

(i) M is preserved by all functors [S,—].

(ii) All product functors — x S preserve E.

(iii) All pullback fynctors p* for projections of products S x S’ in S preserve E.
This is automatically satisfied by the three main examples for M: isomorphisms, strong
monomorphisms and all monomorphisms.

Theorem. Let S satisfy the assumptions stated above. If B is an E-cotopological
cartesian closed full extension of A with concrete finite products, and if finite products of
objects GA in B are E-dense, then the category B9 of 2.9 is closed under finite products
in B, and cartesian closed. In this situation, function space objects [Y,Z] in B9, for
objects Y and Z of B9, are given by coreflections py z : [Y,Z] — Z¥ of function space
objects ZY in B, with evy,z(py,z x idy) an evaluation in B4 for an evaluation evyz in
B and the coreflection py,z.

ProoF. For objects X and Y of B4, we have pullback squares

GaxGgp YXideB, . op _9, @B
’ lidGAxv idy x v l’u
GAxy 2Xdv, yoy 4 vy |

1? : p

GA u X

with projections p and ¢ of products and with morphisms u and v forming E-dense sinks,
with final lifts X and Y. If B is cartesian closed, then morphisms u X idgg form an
E-dense sink in B with final lift X x GB, by 1.9 for S = T = B. In the same way, the
sink of morphisms idx x v is E-dense, with final lift X X Y. Since objects GA x GB are
in B4, it follows that X xY isan object of Bd.

Now B4 is a full coreflective subcategory of a cartesian closed category B, closed under
products X XY in B. It is well known that B4 is cartesian closed in this situation, with
coreflections of function space objects in B¢ as function space objects. These coreflections
are concrete monomorphisms uy,z by 2.9, with py,z ¢ exponentially adjoint to ¢ : X XY —
Z in B if ¢ is exponentially adjoint to ¢ in BY. Using this for ¢ = id[y,z), we get the
last part of the Theorem.
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4.3. Proposition. Under the standard assumptions of 4.2 for S, the following state-
ments are logically equivalent.

(i) A°d has concrete finite products of objects YA.

(i) A°d has concrete finite products.

(ii) Every E-cotopological completion of A has concrete finite products.

(iv) For some E-dense extension G : A — B of A, finite products of objects GA in
B are concrete.

If these properties are satisfied, then A°d is cartesian closed.

ProOF. If (i) holds, then A°d is cartesian closed, and (ii) is valid, by 4.2. Also (ii)) =
(iii) by 2.6, and (iii) => (iv) trivially. Finally, (iv) = (i) by 2.3.

4.4. Theorem. :If S satisfies the standard assumptions of 4.2 and finite products
of P-sieves YA in A are E-dense, then the following conditions are equivalent for an
E- cotopological completion (B,Q) of (A, P).

(i) B is cartesian closed, with function space objects preserved up to isomorphism by
the full concrete embédding I:B— A%,

(ii) Every product functor — x C in B preserves final lifts of E-dense sinks.

(iii) The concrete left adjoint J : A4 — B of the full concrete embedding I : B — A4
preserves products X XY .

Proor. If B has:the final structure for an E-dense sink of morphisms u; : B; — B
in B and (i) holds, then @ preserves products, and the morphisms u; X id¢ form an
E-dense sink. Now consider ¢ : @B x QC — QX with ¢-(u; xid¢): BixC - X in B
for every u;. Let 1; : B; — [C, X] be exponentially adjoint to ¢ - (u; X id¢) in B, and let
¢* : QB — QXC bé exponentially adjoint to ¢ in S. We have commutative diagrams

Uq

QB; QB
v e
Qlc,x] X, gxec

in S, one for each u;. It follows that ¢# factors pe,x@, with gu; = 9; : B; — [C,X]
in B. But then ¢ : B — [C,X] in B, exponentially adjoint to ¢ : B x C — X, and (ii)
holds. f

Every object X Qf A°d has the final structure for an E-dense sink of morphisms
u; : IB; — X, and then JX has the final structure for the morphisms u; : B; - JX.
By (ii) for A°d, X x.IC has the final structure for the morphisms u; x idg which form
an E-dense sink, and so J(X X IC) has the final structure for the morphisms u; x idg
with domains B; x C: If (ii) is valid for B, then JX X C has the final structure in B
for this sink; thus J(X x IC) = JX x C. Now if an object Y of A has the final
structure for an E-dense sink of morphisms v; : IC; — Y, then J(X x Y) has the final
structure for morphisms idx x v; : J(X x IC;) —» J(X xY), and JX x JY for morphisms
idy xv; : JX xCj - JX x JY. But these morphisms have the same domains, hence the
same final structure, and (iii) follows.
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The step (iii) == (i) follows immediately from the main result of [15].
For our next theorem, we need the following two lemmas.

4.5. Lemma. If an E-cotopological completion (B,Q) of (A, P) satisfies the condi-
tions of Theorem 4.4, and an object X of A has the final structure for an E-dense sink
of morphisms u; : IB; — X, for objects B; of B, then [X,IC] has the initial structure for
the morphisms [u;,idc] : [X IC) - I[B;,C] of ACd for every object C of B.

ProoF. Consider.¢ : |Y| — |[X,IC]| in S, with [u;,idc]¢ : Y — I[B;,C] in A<d
for each u;. If ux 10¢ is exponentially adjoint to ¢ : |Y| x |X| — QC in S, then
p1B;,1c(ui,ide)p = (idge)“ px,1c$ is exponentially adjoint to ¢(idy X u;). Since ¥ x X
has the final structure for the morphisms idy X u;, it follows that ¢ : Y x X — IC. The
exponential adjoint of this morphism in Ad is ¢ : Y — [X,IC]. Thus [X,IC] has the
claimed initial structure.

4.6. Lemma. For every object Y of Ad, the endofunctor [Y,—] of A4 preserves
initial structures for sources.

PROOF. Assume that B has the initial structure for morphisms %; : B — B; of A%,
and consider ¢ : |X| — |[Y, B]| in S with [idy,u]¢ : X — [V, B;] in Ad for every w;.
If py, @ is the exponential adjoint of ¢ : | X|x|Y| — |B|, then py p,[idy,u;]¢ = w;¥ uy @
is the exponential adjoint of u;p in S, and it follows that [idy,wu;]@ is the exponential
adjoint of u;p: X xY — B; in A, But then ¢: X xY — B in A%, with exponential
adjoint ¢ : X — [Y, B].

4.7. Theorem. If S satisfies the standard assumptions of 4.2, and finite products
of P-sieves YA in A are E-dense, then every P-sieve YA has the initial structure for
morphisms f : YA — [YB,YC] in A°d, and the E-cotopological hull of the class of objects
[YB,YC] of A4, for objects B and C of A, is cartesian closed.

We note that this E-cotopological hull is the smallest cartesian closed E-cotopological
completion G : (A,P) — (B,Q) of A for which the full embedding I : B — A with
IG =Y preserves function space objects [X,Y].

Proor. Let C be the E-cotopological hull of the Theorem. By assumption, the
terminal object (1,€;) of A" is E-dense, and thus a terminal object of A with the
final structure for an E-dense sink of morphisms u; : YA; — (1,€;). By 4.5, every object
[(1,9),YA] isin C, with the initial structure for the morphisms [u;,id4]. This proves the
first part of the Theorem since YA is isomorphic to [(1,9;),YA].

Again by 4.5, every function space object [X,YC] is in C. Since a product X xY in
A<d has the initial structure for its projections, C is closed under finite products in A°d,
Now if Y has the initial structure for morphisms u; : Y — [YB;,YC;], then [X,Y] has the
initial structure for the morphisms [idx,u;] with codomains [X,[YB;,YC;]], by 4.6. These
codomains are isomorphic to the objects [X x YB;,YC;] of C, and thus objects of C. But
then [X,Y] is an object of C whenever Y is an object of C, and C is cartesian closed.
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4.8. Quotient-dense completions and hulls. We note two special properties of
quotient-dense cartesian closed completions and hulls.

Theorem. For E the collection of quotient sinks, and if the forgetful functor of A
preserves monomorphisms, then the three conditions of 4.4 are also equivalent to:

(iv) B is cartesian closed,
and the hull described in 4.7 is the cartesian closed quotient-topological hull of A.

PROOF. 4.4.(i)== (iv) trivially. For the converse, let H(Y,Z) denote a function space
object in B. Commutative diagrams

B(XxY,2) L. A€UIX,I(Y xZ) ASYIX,IY x IZ)

B(X,H(Y,Z) — AYUIX,IH(Y,Z) 2% A<(Ux,[Iv,IZ)

id
—_—

with exponential adjunctions as vertical arrows, define natural maps py,z : ITH(Y,Z) —
[IY,IZ] in A%, by the general construction of adjoint natural transformations, with
py,z& : IX — [IY,IZ] exponentially adjoint in A°d to a : IX — IY x IZ if & :
X - HY,Z) is expo‘hentially adjoint to @ : X XY — Z in B. Now if pyzéa = py'zﬁ
with d,B : X — IH(Y,Z), then the equation remains valid for the morphisms & and ﬁ
from IJX — IH(Y,Z). But then & and 8 from JX to H(Y,Z) are adjoints of the same
morphism JX XY — Z, and & = ﬁ follows. Thus py,z is monomorphic in A, The
quotient-dense sieve of monomorphisms YA — [IY,IZ] clearly factors through py,z; thus
py,z is an isomorphism if py z is monomorphic in S.

The hull C of 4.7 clearly is the smallest cartesian closed quotient-topological completion
C of A for which the full embedding I : C — A°d preserves function space objects. By (iv),
this is also the cartesian closed quotient-topological hull of A if the forgetful functor of
Acd preserves monomorphisms.

4.9. Remarks. It is easily seen that the objects of the quotient-topological hull of the
class of function spaces [YB,YC] are the quotient-dense P-sieves which are power-closed
in the sense of [12]; thus 2.3 becomes Theorem 1.13 of [12] for this case.

If S is the category of sets and A has constant maps (see 2.10) then A°d for the
(epsisink, injective mapping) factorization structure of sets is topological, with a single
structure for every singleton, and the underlying set of a function space object [X,Y] in
Acd is the set A°d(X,Y). If we remove the initial object (0,®) with & empty from A,
we obtain a cartesian closed quotient-topological extension of A which is a topological
category over sets with constant maps. Thus the quotient-topological cartesian closed hull
of A is topological over sets with constant maps.

Similar remarks apply to 5.9 and to quotient-dense quasitopos hulls.
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5. Representing partial morphisms in completions

5.1. Basic definitions and results. We recall that a (strong) partial morphism in a
category C is a span Ae— - J.Bin C with m a strong monomorphism. We call partial
morphisms (m, f) and (m’, f') equivalent (symbol: ~) if m’ = mu and f' = fu for an
isomorphism u of C. For an object B of C, we say that a partial morphism (¢,u) : B— B
represents partial morphisms with codomain B if diagrams ‘

A 2. B

with f = ug’ and a pullback square at left, define a bijection between morphisms g : A — B
and equivalence classes of partial morphisms (m,f) : A — B of C, for every object A
of C. It follows easily ([32] 16.3) that u is an isomorphism, and we say that the strong
monomorphism Y95 = tu~! : B — B represents partial morphisms with codomain B.
We say that C has representable partial morphisms if partial morphisms with codomain
B are represented for every object B of C.

Categories with representable partial morphisms have been called hereditary [19] or
extensionable [29]; we note that “hereditary” often has another meaning. We also note
that C has all possible pullbacks of strong monomorphisms if C has representable partial
morphisms. In the context of the present paper, we have the following basic result.

Proposition (J. PENON). Partial morphisms in A" are represented if and only if
partial morphisms in S are represented, and then the forgetful functor A" — S preserves
representiations of partial morphisms.

Proof. If 75 : E — E# represents partial morphisms in S, then 7g : (E,®) —
(E#,®#) represents partial morphisms in A if ®# consists of all pairs (4,%) with
u: m*YA — (E,®) in AT, je if (X,uv) € ® for every v : PX — F in S with
mv:X — Ain A, for a pullback

F X, E

Im l‘rE

pa L, gp#
in S; see [32) 60.3. Conversely, if 75 : (E,Qg) — (E#,®) represents partial morphisms
in AT, then it is easily seen that ® = Qg , and that 75 : E — E# represents partial
morphisms in S.

5.2. Embeddings. We recall that an embedding in a concrete category C over S is
an initial lift m : X — Y of a strong monomorphism m : | X| — |Y| of S, and we say that
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C has embeddings if every strong monomorphism m : E — [Y| of S, with ¥ an object
of C, has an initial lift m: X —Y in C.

If the forgetful functor C — S preserves epimorphisms, then embeddings in C are
strong monomorphisms. Conversely, if S has (epi, strong mono) factorizations and C has
embeddings, then all strong monomorphisms in C are embeddings, and pullbacks

!

Yy — Y
[m |
x L. x

in C with m : Y — X an embedding are concrete, i.e. lifted from pullbacks in S, with
m':Y’ — X’ an embédding.

Hausdorff spaces are an example of a concrete category over sets with embeddings, but
with epimorphisms not preserved by the forgetful functor. In this example, only closed
embeddings are strong monomorphisms.

We note that A always has embeddings, and that A°d has embeddings iff X is
E-dense for every embedding m : X — Y in A< with Y E-dense. We say that A°d is
closed under embeddings in A if this is the case.

5.3. Standard assumptions. We assume in this Section that S has representable
partial morphisms, and that the domain X of every embedding m : X — YA in A< is
E-dense. The second assumption is satisfied in particular if A has embeddings. We must
also assume that pullBack functors m*, for strong monomorphisms m in S, preserve E,
or equivalently that the right adjoints of these functors preserve M. This last assumption
is always satisfied for the three main examples: all sinks, episinks and quotient sinks.

Theorem. If the assumptions stated above are satisfied, then partial morphisms in
A4 are represented, A°d is closed under embeddings in A, and if ry : Y — Y# and
Jdy :Y — Y represent partial morphisms in A and in A4, for an object Y of A4, then
v = vy ¥y with vy a coreflection for Y# in A4,

Proor. If m : (E',m*®) — (E, ®) is an embedding, then consider pullbacks

ul
X X (E,m*d)

R
YA X (E,®)

in A with (A,u) € ®. The morphisms u in these pullback squares form an E-dense
sink if (E,®) is E-dense, and so do their pullbacks v’ by the strong monomorphism m.
The morphisms m’ : X — YA in the pullback squares are embeddings, with each object
X E-dense by assumption. But then morphisms u'v : YA’ - m*B with v: YA’ > X in
A°d form an E-dense sink, and (E',m*®) is E-dense.

17



Now let 7v : Y — Y# represent partial morphisms in A, with coreflection vy :
Y — Y# for A°d, Every morphism X — Y# with X an object of A°d factors uniquely
through vy . In particular, ry factors 7y = vy dy, with ¥y an embedding since 7y is one.
If A°d is closed under embeddings in A", then partial morphisms X ¢ - Ly in Acd
are partial morphisms in A with domain and codomain in A°d. Now in a diagram

f idy

— — Y

[ e [
x Loy 2, oy
the righthand square is a pullback; thus the lefthand square is a pullback iff the outer

rectangle is one. The morphism X — Y# in the diagram determines f uniquely; it follows
that ¥y represents partial morphisms in Ad if 7y represents partial morphisms in A,

5.4. Corollary. If the standard assumptions of 5.3 are satisfied, then every E-co-
topological completion (B,Q) of (A, P) has embeddings.

PRrOOF. Since A°d has embeddings under the assumptions of 5.3, this follows imme-
diately from the fact, proved in 2.3 and 2.4, that the full concrete embedding I : B — A<d
preserves and creates initial lifts for sources.

5.5. Theorem. If the standard assumptions of 5.3 are satisfied, then the follow-
ing conditions are equivalent for an E-cotopological completion G : (A,P) — (B,Q)
of (A, P).

(i) Partial morphisms in B are represented, with representations preserved up to iso-
morphism by the full concrete embedding I : B — A°d with IG =Y.

(ii) Every pullback functor m* by an embedding m in B preserves final lifts of E-dense
sinks.

(iii) The concrete left adjoint J : A — B of the full concrete embedding functor
I:B — A preserves embeddings.

(iv) For the concrete left adjoint J : A°® — B of the full concrete embedding functor
I:B — A with IG =Y, and for every object B of B, the morphism 9;5 : B — JIB
of B is an embedding.

Proor. For (i)==(ii), consider pullback squares

;
C; —

lm; lm :

B, = B
for an E-dense sink of morphisms u; with final lift B and an embedding m : C — B
in A%, These pullbacks lift pullbacks in S, and the morphisms v; form an E-dense sink
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by assumption. For f :|C| — |D| in S with fv; : C; — D in B for every v;, pullback
squares

e 2 op cl -4 |
lmi lt?p and jm lTD
B M. b 1B —L» |D#|

determine morphisms h; : B; — D in B and g : |B| — |D#| in S uniquely, with vph;
= gu; for each u;. It follows that g factors ¢ = vpt in S, with h; = tu; for each u;. But
then t: B — D in ACd As tm = dpf and Yp is an embedding, we have f : C — D
in A, Thus C has the final structure for the E-dense sink of morphisms v;.

Now let m : Y — X be an embedding in A, with X the final lift in A°d for an
E-dense sink of morphisms u; : IGA; — X in A®d. Then JX is the final lift in B for
the E-dense sink of morphisms u; : GA; — JX in B. Pulling back the u; by m, we get
pullback squares

IB; -2,
lm; lm
Y4; 5, ox

in A, with an E-dense sink of morphisms v; : IB; —» Y in A, by (ii) for A°d and 5.4.
Now J preserves final lifts of E-dense sinks; thus JX and JY are the final lifts in B for
E-dense sinks u; : GA; — JX and v; : B; - JY. If Z is the initial lift in B for m
and JX, then Z is the final lift for the E-dense sink of morphisms v; : B; = Z in B if
(ii) is valid for B. But then Z = JY', and B satisfies (iii).

(iii) => (iv) trivially, since JIB = B. If (iv) is valid, then we have pullback squares

r id
/B 1B pp oB 29, 0B
11913 11913 and 11913 lTQB )
T -t B 7B XBh  (opy*

in A°d and in S. But then v;gh = vig, and h = id)x| follows for X = IB. Thus
idjx) : IJX — X for this X. As idjx| : X — IJX in any case, we get IJIB = IB.
Since I preserves embeddings and pullbacks by embeddmgs it follows that (i) is valld
with partial morphxsms in B represented by 95 : B — J IB.

5.8. For a source of morphisms u; : X — X; in A, we have pullback squares

; Ix, x X, x#
(1) : lu, lﬁ; lu?
X, XX T (x)
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in A if partial morphisms in A°d are represented.

Lemma. If X has the initial structure for the morphisms u; in pullback squares (1),
then X has the initial structure for the morphisms ;.

ProoF. Consider f:|Y| — |X|, with @;f:Y — X; for every u;. We have pullback

squares d
i

S, x 2L x

e
vi Lom 2 x
in S, and it follows with (1) that we have pullbacks

z 4 x,
o L
Y f‘ui 5*(-;

in A for every u;, with m : Z — Y an embedding. But then g: Z — X in A, and it
follows that f:Y — X in A°d, corresponding to the partial morphism Y <*=2Z-%X.

5.7. Lemma ([1]). If the standard assumptions of 5.3 are satisfied, then for every

object Y of A4, the object Y of A°d has the initial structure for a morphism 2y : Y —» Y
‘of A, with zydy =idy.

Proor. The morphism 2y is constructed by the pullback square at left in (1).

y ddv, y y v, y v,
(1) 10?0Y lﬁy lﬂy lﬂpﬂy loy.

- i R VR i

y 2, ¥ vy XL v &, ¥y

The pullbacks at right show that then Jp 2y =idy.

Now let Z be the initial lift of |1:’| for 2y with codomain ¥. Then Iy 'Y = Zis
a strong monomorphism in A since zydy = idy. The partial morphism (¥y,idy) is
represented in S by vy : |Z] — |Y|#, and thus (9p,idy): Z — Y is represented in A°d
byid:Z — }:’ It follows that Z = l:’, as claimed.

5.8. Theorem. Under the standard assumptions of 5.3, the E-cotopological hull of all
objects YA in A°d — which includes all objects YA — has partial morphisms represented.

We note that this E-cotopological hull is the smallest E-cotopological completion
G : (A,P) - (B,Q) of A with representations of partial morphisms for which the full
embedding I : B — A with IG =Y preserves these representations.
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Proor. Let C be this E-cotopological hull. If X has the initial structure in A for
morphisms u; : X — YA;, then by 5.6 and 5.7, the object X has the initial structure for
the morphisms zy,#%;, with ¥; = YA; and with %; constructed in 5.6. Thus C has partial
morphisms represented, with representations inherited from Acd,

5.9. The quotient-topological case. We note two additional results for this case.

Theorem. Let S be a (quotient sink, mono)-category with partial morphisms repre-
sented. If the forgetful functor from Al to S preserves monomorphisms, then the four
conditions of 4.2 are equivalent to:

(v) Partial morphisms in B are represented,
and the hull defined in 5.8 is the quotient-topological hull of A for completions with partial
morphisms represented.

PROOF. 4.4.(1)= (v) trivially. Conversely, if partial morphisms in B and in A are
represented by 7y : Y — Y* and by dy : Y — Y, then there are commutative squares

v Yy, oy

173’ lﬁnf
v 2, 1y

in A°d, These squares are pullback squares; thus if a partial morphism (mf): X ->Y
is represented by f : X — Y* in B, then (m,f) : IX — IY is represented by oy f
inA°d. Now if oya = oyf in A for morphisms X — IY, then this remains true
for a,8 : IJX — IY. It follows that a and S represent the same partial morphism
(m,f): JX — Y; thus oy is monomorphic in A°d. If oy is monomorphic in S, then it
follows as in the proof of 4.8 that oy is an isomorphism.

The second part follows immediately from the first part and the definitions.

6. Completions and hulls over a quasitopos

6.1. Results for quasitopos completions and quasitopos hulls are obtained by combin-
ing results of Sections 4 and 5. If S is a quasitopos satisfying the assumptions of 4.2 and
5.3, then every pullback functor f* in S preserves E, and its right adjoint preserves M,
because f factors f = pm with m a strong monomorphism and p a projection of a product.

We prove three results of this kind which also exhibit the “side effects” of combining
the assumptions of 4.2 and 5.3, and we append a useful result which does not quite fit into
the scheme of this paper.

6.2. Theorem. If S is a quasitopos satisfying the standard assumptions of 4.2
and 5.3, then A°d js a quasitopos, and the embedding A — AT js the inverse image part
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of a geometric morphism. In this situation, the forgetful functor P4 : A°d — S preserves
monomorphisms, strong monomorphisms, and finite limits.

PRrOOF. Under the assumptions of the Theorem, A°d is cartesian closed, and closed
under finite products in A", by 4.2, and A°d has partial morphisms represented and is
closed under embeddings in A" by 5.3. Since finite limits in A" are strong subobjects of
finite products, it follows that A°d is closed under finite limits in A", and the embedding
A — A preserves finite limits. It follows that the forgetful functor Ad — S also
preserves finite limits, and hence monomorphisms. Since A°? has embeddings, this forgetful
functor also preserves strong monomorphisms.

6.3. Theorem. Under the standard assumptions of 4.2 and 5.3, the following condi-
tions are equivalent for an E-cotopological completion G : (B,Q) — (A, P).

(i) B is a quasitopos, and the full embedding I : B — A with IG = Y preserves
function space objects and representations of partial morphisms.

(ii) Every pullback functor f* in B preserves final lifts of sinks in E.

(iii) The concrete left adjoint J : A9 — B of the full embedding I : B — A
preserves embeddings and finite products.

If these conditions are satisfied, then the adjunction J —| I is a geometric morphism,
and the functor I preserves function space objects and representations of partial morphisms,
up to isomorphisms.

ProoF. With the observation that the forgetful functor of A°d preserves monomor-
phisms, this follows immediately from 4.4 and 5.5, using for (ii) the fact that every morphism
of A°d is the composition of an embedding and a projection of a product.

6.4. Theorem. i]ndet the standard assumptions of 4.2 and 5.3, the E-cotopological
hull of the objects [YA,YB] in A4, for objects A and B of A, is the smallest E-cotopo-
logical completion of A which satisfies the conditions of 6.3.

ProoF. Let C be the E-cotopological hull described. Then C can be fully embedded
into every E-cotopological completion B of A satisfying the conditions of 6.3.

Since 9 : B — B is always an embedding, C contains all function space objects
[YA,YB], and hence all objects YA of Acd, As in the proof of 4.7, it follows from 4.5
and 4.6 that C contains all objects [X,YB] and [X, YAE], and is cartesian closed.

Now put T = [X,Y] for objects X,Y of A°d. By [10], we have a commutative diagram

TxX Yr xidx TxX kxidx Tx X

(1) lev l h 1ev ,

Y L4 Y 2y Y

with h representing the partial morphism (¥ xidy,ev), with zy given by 5.7, and with k
exponentially adjoint to zyh. It follows from this and zydy = idy that kdr = idr. Now
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T has the initial structure for k, as in the proof of 5.7, and it follows as in the proof of 5.8
that partial morphisms in C are represented. Thus C is a quasitopos, and we are done.

6.5. Remarks. It may be noted that diagram 6.4.(1) can be constructed for objects X
and Y of an arbitrary quasitopos, with the additional property that if h factors h = h'e,
with e monomorphic and epimorphic, then e is an isomorphism. This can be used for
proving that T has the initial structure in A°d for h, and similarly that Y in 5.7 has the
initial structure for zy.

We also note that in the quotient-topological case, condition 6.3.(i) can be replaced by:

(iv) B is a quasitopos,
and the completion of 6.4 becomes the quotient-topological quasitopos hull of A.

68.6. Lifting finite sources. It is well known, and easily seen, that the forgetful
functor A — S preserves and creates limits. Limits in A°? are coreflections of limits
in A°; it follows that a limit in A°? is preserved by the forgetful functor to S iff it is
preserved by the embedding A°d — A", and hence iff it is concrete.

Theorem. If S has finite limits, then the following statements are logically equivalent
for the forgetful functor P4 : A4 — S,

(i) Every finite P°d-source admits a lift in A4,

(ii) Every finite Pd-source admits an initial lift in A°d.

(iii) A°d has concrete finite products and embeddings, and full P-sieves are E-dense.

(iv) A has concrete finite limits, and full P-sieves are E-dense.

(v) A is closed under finite limits in A, and full P-sieves are E-dense.
If these conditions are ‘satisﬂed, then every E -cotopological completion B of A has concrete
finite limits, and all monomorphisms of B are concrete.

ProOF. (ii)= (i) trivially, and if (i) is valid, then for finite P°d-sources, initial lifts in
AT are quotient dense, and (i) holds. (ii)==>(iii) since concrete products, embeddings and
full sieves in A°d are initial lifts of finite sources. Clearly (iv) <= (v), and (jii) = (iv)
and (v) since concrete finite limits in A are objects embedded into finite products.

For a P°d.source of morphisms f; : § — |X;|, an initial lift in A is a limit of a
diagram of morphism f; : s — Qx,| and of morphisms idx; : X; — Qx,;. With this
observation, (ii) follows immediately from (iv) and (v).

With the results of Section 2, the last part of the Theorem follows easily.
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