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1 Introduction

This paper is concerned with the efficient sampling of random points from

Rn where the underlying density F is log-concave. This is a natural restric-

tion which is satisfied by many common distributions e.g. the multi-variate

normal. The algorithm we use generates a sample path from a Markov chain

whose stationary distribution is (close to) F. The algorithm is based on the

Metropolis class of algorithms and has applications in the problem of comput-

ing the volume of convex bodies and in statistics. Recent statistical literature

has focused on the many applications of Markov chain Monte Carlo algo-

rithms (see Tierney [8]) whereas theoretical bounds on the convergence rate

of such algorithms has been limited. This paper provides an explicit bound
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for the convergence rate of the Metropolis algorithm that is polynomial in n

and other parameters of the problem.

Instead of sampling from the continuum of points in Rn, we discretize the

problem by assuming that Rn is divided into a set of hypercubes Cjtj of side

6 (6 is a given small positive real number) and the problem is to choose one

of these cubes each with probability proportional to the integral of F over

the cube. [If necessary, a sample from the continuum can then be picked

by standard rejection sampling techniques from the cube chosen; we omit

details of this.] Secondly, we assume that we have a compact convex set K

and we wish to choose points only from K (not all of Rn). This is justified

because clearly for any positive real number €, we can find a compact convex

set (for example a ball) such that the integral of F over the set is at least

(1 — e) times the integral over Rn. While it would suffice to consider the case

when K is a ball, the generality of convex sets is useful in many contexts.

In what follows C denotes a subset of the cubes CJJ whose union contains

K. For example C could be the set of cubes Ci(K) which have nonempty

intersection with K. Let C denote the set of centres of these cubes. For

x € -Rn we denote the cube of side 6 and centre x by C(x). (Thus C(x) € C

if and only if x € C.) We choose our sample point X by performing a random

walk over C. The walk is biassed so that its steady state is (close to) what

we want and we run the walk until it is close enough to the steady state.

The main results of this paper concern the rate of convergence of the walk

to its steady state.

We may not be able to compute F exactly and so we assume we have good

approximations F(x), x € C. Further we assume that F(x) is strictly positive



for all x e C.

We can only take advantage of the log-concavity of F if our grid is sufficiently

fine and our approximations F(x) are sufficiently good. In this context we

will assume that for some small a > 0

(1 + ay'Fix) < F(y) < (1 + a)F(x) (1)

and

(1 + o)-1*"-1^*) < fC{aync(9) ntW < (1 + aW*-1 fix) (2)
whenever C(x), C{y) are cubes of C sharing a face C(x) D C(y) of dimension

n — 1. Furthermore, we assume

(1 + a)-l6"F(x) < f F(Odf < (1 + a)6nF(x) Vx € C. (3)
JC(x)

When we have F = F, it is easy to check that all three conditions are

satisfied if we choose a to be eM6 — 1 where M is the Lipschtiz constant of

In F with respect to the infinity norm, (i.e., M satisfies | In F(x) — In F(y)\ <

M\x — j/|oo ,Vx, y € K). However, an a smaller than eMS — 1 may satisfy

(l)-(3); this is in fact the case for important functions like F(x) = e~c'xl and

F(x) = e~cl*'2 as tedious, but simple calculations show. This is the reason

for our stating the cumbersome conditions (l)-(3). As we will see (Theorems

1 and 2), the rate of convergence to the steady state depnds upon (1 + a).

In typical applications, one would make 1 + a a constant. (For example this

can be ensured by choosing 6 = O(l/M).)

The walk we consider fits into the scheme of Metropolis algorithms introduced

in Metropolis, Rosenberg, Rosenbluth, Teller and Teller [6]. It was used by

Applegate and Kannan [1] in their paper on volume computation.



In the following, for any natural number m, we let [m] = {1 ,2 , . . . ,m} and

ei, e2 , . . . , em are the standard basis vectors of JRm.

The Random Walk

This generates a random sequence Ao,Xi,X2,... ,-X*,... € C where XQ is

picked according to some initial distribution po(x) and Xt+\ is obtained from

Xt as follows:

Step 1 Choose j randomly from [n]. Choose a randomly from {±1}.

Step 2 Let y = Xt + tfej.

Step 3 If y & C then Xt+i = Xt, otherwise, put Xt+\ = t/ with probability

6 = Min (l,F(j/)/F(X t)} and X|+i = Xt with probability 1 -0 .

Formally, the transition probabilities P(x, y) = Pr(Xt+i = y \ Xt = x) are

given by

1 f - - 1
^(Siif) = T" M i n \l'F(v)/F(x)\ for x ^ J/; x,V adjacent

and

We refer to this as "the random walk" in the paper. It will be useful also to

consider a modified random walk. "The modified random walk" has

(*» V) = 7" M i n {^(vVPC*)} for x # y; X'J/ adjacent

and



where v = 1 - (i+Q)W(d+2v£*)- *n m o s t applications, v will be very close to

1. So the modification can be thought of as : with a small probability, the

walk stays put, otherwise does what "the (unmodified) random walk" did.

When C = Ci(K) we will refer to the walk as the "body intersecting" walk. In

this case testing whether y € C can be a significant computational problem,

but nevertheless polynomially solvable, in general. In specific cases e.g. when

K = B(0, i2), the ball of radius R centred at the origin the problem is rather

trivial.

We will also consider the computationally simpler random walk over those

cubes Cc{K) in CJJJ whose centres are in K. We call this the "centre point"

random walk.

It is easy to see that the chain is ergodic and thus, there are steady state

probabilities K(X) with lim*—<» Pr(JV* = x) = TT(X) for all x independent of

the distribution of XQ. It is easy to verify that

*(*) = F(z)/A,

where A = ^2x£c^(x)- We assume that the F(x) are sufficiently good

approximations so that sampling according to TT can be considered to be our

objective.

Note that this chain is time reversible i.e.

K(X)P(X, y) = 7r(y)P(j/, x) for all x, y G C.

The main theorem describing the rate of convergence is stated below as

Theorem 1 .We use the so-called "chi-squared" distance of the distribution

after t steps to the steady state as a measure of closeness (see Mihail [7] and



Fill [3]). Let pt(x) = Pr(X* = x) be the distribution after t steps. Then this

distance is given by

There are other measures one could use, including the more traditional "vari-

ational distance" given by

S \Pt(x) - 7T(*)|.
xec

The chi-squared measure turns out to yield stronger theorems and in fact (as

Fill points out), one can derive a bound on the variational distance using the

bound on the chi-squared distance. (See Corollary 1).

In the following Theorems, 1 and 2, we have a random walk over a set of

cubes C

T={JD
Dec

and

d = diam(T),

(maximum distance between two points).

Then let

Theorem 1 Let K be a convex set in R n . LetC be a subset ofCji (with 6 <

d/10) such that K C T. Let C be the set of centres of these cubes. Let S be



the set of centres of those cubes in C which are not wholly contained in K and

let S = C\S. Let F be a log-concave positive real valued function on K with

a satisfying (1), (2) and (3). Consider the random walk Xo,Xi , . . . Xt,...

described above. Then with pt{x) = Vr{Xt = x), (and ft(x), the steady state

probability of being at x), we have

where

(4)

« max I — , - J I - I ,

and the final approximate equation holds under the assumptions : a « 0 and

Further, the modified random walk satisfies the inequality with X\ replaced by

Ai where

where v = 1 — 2(1^2
)3/COTO. fu « 1 under the same assumptions as above.]

Remark 1: When n is large the term r2 = d?/(662) in (4) is dominated

by the other term. But when n is small, this may not be the case and the

modified random walk will be preferable.



Corollary 1 Under the same conditions as in Theorem 1, we have the fol-

lowing bound on the variational distance:

Proof We have using the Cauchy-Schwartz inequality:

e

The latter quantity equals the left hand side of the inequality in the Theorem

and so we have the corollary.

We first consider the body intersecting walk. Here we can apply the Theorem

and its Corollary directly. The first term of the bound falls off exponentially

to zero with t. The Theorem is only of use if TT(5) is small. For any log-

concave function F, w can chose a sufficiently large compact set such that

the integral of F over the set is close to the integral of F over Rn. If now

we choose K to be somewhat larger than this set, then clearly, n(S) will

be small. We do not quantify these observations here, because that would

depend upon the properties of the specific F 's.

Let us now consider the centre point walk. We define the convex set K' =

{x e K : C(x) C K}, run the walk with C = Cc(K) and apply the Theorem

to C and Kf. This is valid as K1 C \JDec D and when 6 is small K and Kf

8



will be "close" to each other. The comments in the previous paragraph are

valid in this case too.

When K = B = JB(O,i?) we can remove the second term entirely at the

expense of an extra assumption about where the distribution is concentrated.

Consider the half-line Lu = {ru : r € J£+} where u € Hn, starting at the

origin. Let h(r) = rn~lF(ru) be defined on Lu and note that it is a log-

concave function of r. We assume that for all u and rf >r > R

/i(0) > h(R) > h(r) > h(r'). (5)

This expresses the fact that the boundary of B is located in the tails of the

distribution from which we are sampling. Let d = 2(R + 6).

Theorem 2 Let F be a log-concave positive real valued function on Rn satis-

fying (5) with a satisfying (l)-(3). Consider the random walk JVo, X\,... Xt,..

described above, with C = Ci(B) and 56 < R. Then we have

where

A2* = max< (1+ a)3(Ko(/ci + 1 )+ K2)n/tf, —2 >

( d\2

V '
and the final approximate equation holds under the assumptions : a as 0 and

186y/n/d « 0.



Corollary 2 Under the same conditions as in Theorem 2, we have the fol-

lowing bound on the variational distance:

\Pt(x) - (£ ( ^ V \- lV «(x)\ .x) I J

In the next section we prove a general result about the rate of convergence

to the steady state for arbitrary time reversible chains. It is then a matter

of estimating quantities associated with this result.

2 Convergence rates of time reversible chains:
dealing with small sets

In the analysis of geometric random walks, it turns out that certain sets of

states with relatively small steady state probabilities are not easy to analyse.

In the case of random walks on convex sets, where the problem is usually

discretized by using a set of cubes as the states, this problem arises for

the set of S of boundary cubes which are those cubes in C which are not

wholly contained in the convex set. This irksome problem has cost volume

computation algorithms significant added complexity [2],[4] and has also led

to new ideas like the use of log-concave damping functions as in [1]. In

this section, we propose a general way of tackling the problem of small sets.

In some sense, this serves a purpose analogous to that of //—conductance

proposed by Lovasz and Simonovits [4],

Suppose P is the N x N transition probability matrix of an ergodic Markov

Chain with N states and steady state probabilities 7r(*). We assume through-

out that the chain is time-reversible, i.e., that 7r(x)P(x,y) = Tr(y)P(yyx) for

10



all x,y. Suppose we start the chain with initial distribution po(-) [ i.e.,

Pr(Xo = x) = po(x) for all x] Let pt(-) be the probability distribution of

Xt. We define the following quantity

This leads to what Fill [3] calls the chi-squared distance between distribu-

tions.

To define this distance, we first define an inner product on RN by

x€[N]

and denote its associated norm by

We also retain the more familiar notation that | | denotes Euclidean length

and that 10^ = max{\<j>(x)\ : x G [N]}.

Suppose

Go = sup (\<4>,P4»\\
I <<t>,<t>> J '

[From Linear Algebra and time-reversibility, it can be seen that P's largest

eigenvalue is 1 and that ao is the largest absolute value of an eigenvalue of

P other than 1. We will only use the first of these facts.]

Using arguments similar to the ones used by Fill [3] to get his inequality

(2.11), we can get the following inequality :

\4>t\* < 'oltolir.

11



So it would suffice then to prove an upper bound on ao. This, we are not

always able to do for the random walk described in Section 1. But we are

able to prove a bound on a quantity similar to <7o , but which ignores a

small set 5 and our aim in this section is to prove an inequality for general

time-reversible chains, similar to the one above, but with the new quantity

a replacing <7o-

Let 5 be an arbitrary set of states which will remain fixed for the rest of this

section. Let

Sl = {<f>eRN : itT<t> = 0 and <f>(x) = 0,x € 5 }

and

- Sup ('<*?*'}.

The main Theorem of this section is the following :

Theorem 3

We need some preliminary Linear Algebra. Let D denote the NxN diagonal

matrix whose (x, a:)'th entry is Jx(x). Then time reversibility is equivalent

to

D2P = PTD2. (7)

Let

Q = DPD-1.

Q has the same eigenvalues as P and equation (7) implies that it is symmetric.

12



D "converts" | I, to | | in a natural way. This follows from

for <t>, i/> G R N . Thus

\(b\ ~ IZyol and ^ c

So using ^ = D<j> we obtain

(8)a =

where

fi = {rj) : (^xj; = 0 and tp(x) = 0, a: € 5}

and C(^) = \J^{X) f°r ^ ^ [N]. Let >1 denote the orthogonal projection of

RN to 17. It is easy to see that A is defined by

o xes.

Lemma 1 Let Q, Q,A,a be as above. Then

\AQA<f>\ < a\4>\, for all <f> € RN.

Proof For 4> € fi, we have <f>TQ(j) = <j>TAQA<f>. So,

where ai is the largest eigenvalue of the symmetric matrix B = AQA (From

standard Linear Algebra, if Cl = {x : x = Cy}, where C is a matrix with

independent columns, then A = C(CTC)~lCT and is therefore symmetric.)

But if 0 is a corresponding eigenvector of B then B<f> = O\<\> implies that

<t> € ft. Hence a = <7i and the lemma follows. •

13



Lemma 2 CTV> = 0 implies

Proof Assume C^ = 0. Let V̂  = if-A^f; <£ = D~xip ; and M =

Then

(
\ 2

*€5 *{*) xeS \

D

We now go back to the proof of the main theorem of the section, Theorem 3.

Proof(of Theorem 3) Let ipt = Dfa. Observe that |<̂ |* = \ip\. We will

prove that

(9)

from which we get by induction on t,

< *UI + 3 ^ .

14



as desired. Now

Also, using time-reversibility, we get,

* W v€[Ar] *

Thus P0j = <j)t+i and pre-multiplying by D, we get

4>t+i = QV'* for t > 0.

To prove (9), we proceed as follows :

Using the fact that Q's eigenvalues have absolute value at most 1, and Lemma

2, along with the fact that |0t+i|oo < |̂ «|<» (since P has row sums equal to

1), we have,

Now we need to bound |Q^4Vt|- But,

\QAipt\ = \AQAi>t\ + \QArpt - AQAi>t\.

We have by Lemma 1 that I^Q-A^I < a\ipt\. So it now suffices to prove that

\QA1>t-AQA4>t\<2\<t>0\e

15



Now,

= \{I-A)QAih\

since Q has all eigenvalues of absolute value at most 1 and also for all vectors

v, |(7 — A)v\ < |v|, because A is a projection. Each of the last two quantities

is at most \(f>o\ooJf|§j, by Lemma 2 . This finishes the proof of the Theorem.

D

Our aim is to prove an upper bound on

a = sup <f>,P<j>>\]
<<M> J

for the case of the walk of Section 1. We will split the task into two parts. In

the next section, we prove that for any 4> in fi \ {0} with TTT(/> = 0, we have

Clearly for this it suffices to consider the </> satisfying < <t>^P<f> > < 0. Then

in the ensuing section, we prove the more difficult bounds :

where A = Ai (Theorem 1) or A = A2 (Theorem 2).

3 P r o o f o f ( 1 0 ) -<</>, P<t> > < 0

We now return to the specific chain corresponding to our random walk. The

following lemma considers the case where < <£, P<j> > is negative.

16



Lemma 3 <f> € fl implies

<<t>,P<}>>> - ( 1 -

where r = 62/6d2.

Proof Consider

E ( E **(*. V)tf»)] *(*M*) + EC1 -
*€C \y€C

E E P(x,y)0(y)̂ (a:)7r(x) + £ ( 1 - P(x,
x€C y^x xeC xeC

E Y,(P(x,y)<f>(y)<t>(xMx) + P(x,y)4>(x)2n(x))
xeC y^x xeC

where E = {{^,J/} • P(x,y) > 0} and the last equation follows by time-

reversibility.

Suppose next that the walk is at a: € C. Let Pi(x,x) denote the probability

that the t'th direction is chosen and that no movement is made at the current

iteration. Thus

piix* a:) = — 1 - mm < 1, y

2n V 1 7r(or) J
and of course

We will show for each t,f = 1,2.. .n, that with E{ = {(a:,y) € E : x — y =

17



*(x)P(x,y)(<f>(x)+<!>(y))2+Y, (2Pfax) - - ) <f>(x)2*(x) > 0. (12)

Fix i and consider the lines in Rn parallel to et which go through the centres

C of the cubes C. These lines induce a natural partition of C into £, where

each L € £, is the set of cube centres lying on some line. Now fix L G £,

and suppose that

L = {x,x + eijx + 2ei,...,x + sei}

We break L into maximal contiguous segments Li, L2,. . . of the form

such that

f o r r = k,k + l,...,£-l.

(A segment ends when ic(x^t+1^) < ir(x^) ( l — 3), which includes £ = s as

then the "next" cube centre has TT(-) = 0.)

Thus

P ( a r M , x ( - + 1 ) ) > ^ ( l - ^ , r = fc,fc + l , . . . , £ - l , (13)

and,

k < r' < r < £, (14)

where 6 = ( l - J ) ^ 1 .

18



Finally,

^ (15)

We prove (12) by showing that

( 1 > 2 ^ ( « ( ) ) (x«)27r(x<r>) > 0.

Applying the Cauchy-Schwartz inequality twice, we get

\r»=r

) 7 r ( x ) < 2 d ( l \ n ( S \

r=Jb r=Jk

(16)

Now for A; < r < £,

Summing over r = fc, Ar + 1, . . . , £ — 1 and adding <^(X^) 2 TT(X^), we obtain

(6\ (S\

Comparing this with what we want i.e.(16) we see that the following suffices:

19



and

n\+ 1) ~

Under the assumption that 106 < d, we get that r = 62/6d* satisfies the

inequalities since we have (15).

D

Remark 2: The modified walk has P(xyx) > 1 — v and the argument can

be stopped at (11) provided r < 2(1 — v). We thus need v > 1 — Ai/2 in

the modified walk. Note that we have Ai rather than Ai as the modification

introduces a factor of v into our eigenvalue estimate - see Remark 3.

4 Reduction to a continuous problem

We first introduce the quantity

for all 0 G Rc. The time reversibility of P allows us to conclude

(17)

where T(x) = {y € C : P(x,y) > 0}.

To prove (17) write

y€C yec

20
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In this notation we must now prove that

Let \c denote the C-vector of l's, 4> = Y> ^{x)(j>{x) and let ft = {<f>: <f>{x) =

4> for x € 5 } . If <f> € Q then <j> - <j>lc € ft. Also for all <f> € RN and for all

z € R, we have

^ - zlN, <f> - zlN) = E(<f>, 4>).

< 4>- 4>\c,4>- 4>ic > = < 4>,<i> > - 4>2

and so we can re-define our objective as proving

inf f&>+) > A.
^ non-constant

For the rest of this section, we fix a particular non-constant <f> in Cl. Let

T = \Jxec C{x) which is "slightly" bigger than K. Define F : T -+ R as

follows: suppose f € C(x) for some x G C. F(£) = F(x) if £ £ dC(x) and

= 0 otherwise.

Given <£ G -R^ and a small e > 0 we define $€ : T —f / i as follows: suppose

z G C(x) for some x £ C. Let C(x, e) denote the cube centred at x with

side 6 - 2e. If z G C(a:,e) we let $€(^) = <f>(x). If z ^ C(x,e) let D be a

face of C(x) which is closest to z. (If there is a tie for JO, the value of $€

does not matter, as we will see.) Suppose first that D = C(ar) PI C(y) for

some y € C and that dist(z,D) = T/6 where 0 < 77 < 1. In this case we let

$c(z) = ((1 + T])<f>(x) + (1 - rj)<f>(y))/2. In this way, if we start at a point on

a face of C(x, e) parallel to D and move towards D then $€ changes linearly

from <f>{x) to (f>{y) over a distance 2e. Finally, if the hypercube on the other

side of D to C(x) is not in C then we keep $€(z) = <f>{x).

21



Let

It = jT \V*({z)\2F(z)dz.

$€ is not differentiable on a set Z of measure zero (consisting of points for

which there is a tie for D). We can however easily "smooth out" $c close to

Z so that (17) and (1) imply

E (**) " #3/))2 min{F(x), F(y)} + O(e)
x€Cy€r(x)

= (1 + a)An6n'lE(<f>, </>) + 0(6),

where the hidden constant in 0(e) may depend on n, F, <f>.

Remark 3: for the modified walk we need a factor of v~x in order to get

the final equation.

On the other hand, the concavity of In F implies that it is continuous; so for

small enough 6, we have /5 F(()d( < (1 + /(e)) JC(x)nc(y) F(OdC where S is

obtained by translating C(x) 0 C(y) towards x by some c7 € [0, e] and / is

some function with lim supc^o/(€) = 0- This along with (2) implies that

/ \V*({z)\2F(z)dz - O(€).

This deals with the numerator in (18). For the denominator

<<t>,<t>>-p = A- 1 E #*)2^(*) - <P

22



) - ()2F(x) -($- C)2 for any ( € R.

(20)

We will use the above with £ = /i where

*• - ̂ y -*then iet **>=*<w - "•
We will show in Section 5 that

/ il>{z?F{z)dz < €Ko I \Vxj)\2F(z)dz (21)
J K J K

and in Section 7 (for use in Theorem 2)

/ tl>(z)2F(z)dz < KI I ip(z)2F(z)dz + €K2 I |Vtl>\2F(z)dz. (22)
JT\B JB JT

Consider first Theorem 1. It follows from (20) that

<<t>,<t>>-4? = A" 1

xeC\S x€S

< ^£fj(z)2F(z)dz + O(e) (23)

since <f> = 4> for x € 5 .

Thus, by (21),

* W C / C o ( e " 1 ( 1 + a)2(1 + f{€))n6n'1 A W ' ̂  + ° ( € )

(24)

The second inequality comes from (19) and K C T. Now, (24) is true for all

6 > 0 and so (18) follows in the case of Theorem 1.

23



Now consider Theorem 2. It follows from (20) that

JB ̂ F{z)dZ + €K2 IT l™«(*)lai!l(*)<k) + O(e)JB

/ 2)dz + 0(6)

FK f(e))n6n-1A)E(<t>,<f>)

This true for all € > 0 and so (18) follows for the case of Theorem 2.

5 Proof of (21)

We will reduce the geometry to one dimension by applying the following

localisation lemma of Lovasz and Simonovits [5]:

Lemma 4 Let / i , fa be upper semi-continuous functions defined on Rn such

that

JRnfi(z)dz>0 1 = 1,2.

Then there exist a, 6 G Jtn and a linear function £ : [0,1] —• U + such that

(l-t)b)£(t)n-ldt>Oy i = l,2.

To apply this we replace (21) by the equivalent

< c-c, / K |V*,(z)|2f ( , ) i . (25)

24



Adding a constant to $€ does not change either side of this inequality and so

we can assume that $€(z) is positive on K. We then use the fact that under

this assumption (25) fails to hold if and only if there exists a > 0 such that

&f(z)F(z)dz - a t $t(z)F{z)dz > €«o / \V$((z)\2F(z)dz

and

- / 9t(z)F(z)dz + a / F(z)dz > 0.

We apply Lemma 4 with

fx = ($€
2F - a*tF -

and

(XK is the indicator function of the body K.)

Let a,b,£ be as in the lemma. We observe that we can take a,b € K because

of the factor \K- Let g(t) = $£((1 - t)a + tb), h(t) = F((l - *)a + tb)e(t)n-\

*(t) = h(t)/Jl=oh(Z)d$ and $(t) = |V$£((1 -*)a + *6)|. Note that w(t) is

log-concave.

We then see that if (25) fails to hold then

f1 g(t)2n(t)dt - (f1 g(t)*(t)) < eno f g(t)2*(t)dt (26)

fails to hold.

We can thus prove (21) by proving (26). We replace the LHS of (26) using

the identity

g(t)2*(t)dt - (f'gitHt)) = \l\f (9(t) - g(s))Ms
(27)
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Let d = \b - a\ and u = (b - a)/d. Then for 0 < s < t < 1,

(g(t) - g(s))> =

where Xj(-) is defined by

= / 1 i f^((l-O« +
\ 0 otherwise .

By the Cauchy-Schwartz inequality, we have

/w> /» \1/2

E lMiXi(O^((l " 0« + Wl < E ^ ( 0 5(0-

So we get with another application of Cauchy-Schwartz,

(g(t)-g(s))2 < ^U(t^

Now each time the line from 5 to t crosses a hyperplane of the form Xj = m6,

m an integer, we get a contribution of 2e/duj to / Xj(f )^f • Furthermore, the

number of such crossings is at most

4l!tZil + 1. (28)
0

So we get (using the facts that £j=i u* = 1 and

(9(t) - 9(s)? < 1$i ( ^ i
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Thus if RHS(27) denotes the RHS of (27) then

RHS(27) < dPe / ' t (^ + ^] f* p ( 0 2 ^ ( 0 *(s)dtds
Js=o Jt=o \ o a J Jt—*

(29)

where the last equation is obtained by interchanging the order of integration,

the factor of 2 coming from the fact that sy t are interchangable in the previous

expression. Now let

II = {IT € [0,1] —> J£+ : 7T is log-concave and / ir(t)dt = 1}.

Let
_ 1 ^ 1 / v 7 r ( 5 ) 7 r ( r '
Mi = sup / / (t — s) '

^€[0,1] 5 " "

and

M2 = sup / / ^ ; i * 'iftik-
€€[0,1]

Then (29) implies

RHS(27) < 2<fe ( ̂ i + ^ ^ 1 / ^ g(0M0^ (30)

We will prove below that

Mi = - and M2 = -
8 4

and (21) follows immediately from (30).
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6 Computation of M\ and M2

We begin with M\. Rather than restrict IT 6 II we prove that if h : [0,1] —>

U+ is log-concave then

J* J1 (t - s)h(s)h(t)dtds <^p~f Ks)ds. (31)J J (
This will prove Mi < 1/8 which is what we want. We then note that h = 1

satisfies (31) with equality.

Since log h is concave there exists a € R such that

h(8)<h{t)J*-*\ se [0,1]. (32)

Our aim first is to show that the extremal h satisfies (32) with equality for

all s € [0,1], for some a. Let

/0 = / h(s)ds and I\ = / h(s)ds,
J0 J(

Jo = /* (£ - 5)/i(s)ds and Jx = / (t -

Then (31) is equivalent to

hJo h(t)
h 8Jo + /i - 8

or
(Ji, M i K m
V/i h) IoX+I{1 - 8 *

Suppose now that we fix a and also h(£) = ft > 0. Let /o(o;, /?) = //_0 f3ea(-s~®

and let Ii(<*,/?), Jo(a,/3), Ji(a,/3) be defined analogously. Clearly, under

these circumstances 7* < 7fc(a, (3) for k = 0,1 and so

1 1
7^"1+7f1 ~ 70(a,^)-x + 7 i ( a , ^ ) - r
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We now prove that

£<£i2l§ 4.0,1. (34)

We prove (34) for k = 1, the proof for k = 0 being essentially the same.

Let M be a positive integer and 0 = (1 — Q/M. Let flr = \ogh and let

0, = g(£ + i0), i = 0 , 1 , . . . , M. The concavity of g implies that

gi+2 - gi+l < gt - gi+i 0 < i < M - 2, (35)

and (32) implies

9i < 9o + <xW 0<i<M. (36)

Now choose TJ > 0 small. By choosing M sufficiently large we can ensure

that

Denote the RHS of (37) by p(go,gi,... ,5M)• Since TJ is arbitrary, we need

only show that subject to (35),(36), p is maximised when #, = go + aiO i.e.

This is easy to do by backwards induction on

k = k(g) = max{£ : 5f = g0

The base case k = M is trivial and so assume that (38) holds for k = K + 1

and assume that k = K. Let

- gK > 0.
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Define g by

a = / 9i 0<i<n
9i [9i + VK<i<M

Note that g satisfies (35) and (36) and that k(g) = K+ 1. Hence our inductive

assumption implies that g satisfies (38). On the other hand if ev$ = 1 + c

and hi = e9i then

n(n\ n(n\ EfeQ tft,- + 6 g ^ tft< Ego »fr
P(9)-P(9) = ^Af . , V M ft " V M ft

> 0,

since clearly

EM L - ^ * n«- l L *

We can therefore assume from now on that h($) = j3eQ(8~& for some a, /?.

We can in fact assume that /3 = 1 as /? contributes a factor of /?2 to both

sides of (31). So now let

, _ XLo

ett

~ c^e01 - 1)

We must show that 7(a,f) < 1/8 for a € R and f € [0,1]. Now,

and
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It follows that for fixed a, 7 is maximised when

Now let

f(a) = 7(«,r(«)
_Li ^ - ^ 1 •

~ a2 gV a ) a2
_Li ^ ^
a2 g V a ) a2 a ( e ° - l ) '

A simple computation yields

Ha*") = 1
and that / is even i.e. / ( - a ) = /(a) for all a € R.

Next let

ff(a) = a2/(a) - y .

Then

9 ( a ) = - I)2

By checking that the series expansion of the denominator above contains only

non-negative coefficients we see that cf{a) < 0 for a > 0. Thus g(a) < g(0) =

0 for a > 0 and since / is even this completes the proof that Mi = 1/8.

For the computation of M2 we need to show

h(s)h(t)dtds < ^ 2 . f h(s)ds.

Fixing h(£) = /3 and assuming (32), this amounts to

J0/1 < / ?
/0 + /1 " 4 -

Thus we can once again assume that the extremal h satisfies (32) and that
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So now let

ea - e°* -
a(eQ - 1) '

We need to show that C K O < 1/4 for C € [0,1]. Now

^ - _ L _ ( e < * ( i - 0 _ ^ A
a^-(e--l)^ e >

and

Thus C(a>^) is maximised at f = 1/2, independent of a. Now let

Then

lim

and if g(a) = a / (a) — a/4 then

This shows that g(a) < g(0) = 0 for a > 0 and g(a) > #(0) for a < 0 and

completes our proof that M*i = 1/4.
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7 Proof of (22)

We first observe that if L is a half-ray in Rn with the origin as one endpoint

then L H T is a segment.

We introduce polar coordinates (r,0 = (<?i,02,... ,0n_i)) so that

i-i
Zj = r sin(^) IJ cos(0i), j € [n].

Then

T 2 ^ ( £ ^ r"-1^, e?F{r, 0)dSj J(0)d0 (39)

where R\(d) is the length of the interval L$ f)T and L$ is the half-ray in

direction 0. rn~lJ(0) is the Jacobian of the transformation. Similarly,

/ tP(z)2F(z)dz = [([ rn-liP(r,0)2F(r,0)dr) J{6)d9 (40)
B JO \Jr=0 )

and

/ \V1>\2F(z)dz = / ( I™ r^lVx/tfFir^dr) J(0)d0 (41)
JT JO \Jr=R )

Now consider a fixed 0. Let h(r) = rn-xF{r,0) and g{r) = xl>(r,0). Note

that h is log-concave. Let u denote the vector of Euclidean length one in the

direction 0. Then we can write

where Xj = Xi(r) ls the indicator for ̂  ^ 0.

We prove

/ * g(r)2h(r)dr < KX [* g(r)2h(r)dr + en2 f* \Vxl>\2h{r)dr, (42)
Jr=R </r=0 Jr=0

33



and then (22) follows from (39), (40) and (41). So suppose that 0 < a < C <

ft. Then

9(0 -9{a) = f <f{r)dr
Jr=za

= f £ujXi^h(r)/h{r)dr. (43)

Hence, applying the Cauchy-Schwartz inequality twice,

( 1/2

)

( v 1/2 / 2 \ ll2

E«?#(r)-') (t(g)*M) *

Now take a = i?. Then by assumption (5), C > r > -R implies /i(C) < h(r).

Hence

(p(C) - g(R)?h(Q < UU

where

and

We will estimate L, later but first note that we have now have

lRl (9(r) - g(R))2h(r)dr < (ft - R)LJ.
Jr=R

or equivalently

g(r)2h(r)dr < -g(R)2

(45)

34



So we now estimate the middle term of the RHS of (45). Prom (44) we see

that for r > R

(r \ 1 / 2

9(r)<g(R)+ / E^XJ/KC)-1* /.1 / 2 (46)
r » \ 1 / 2

and so

/ »()MO < 9(R) fRl Hr)dr + h(R)1^2(R1 - R){LM)l'\ (47)
r=R Jr=R

So from (45) and the above

g(r)2h(r)dr < g(R)2 / * /i(r)rfr + 2g(R)h(R)l'2(Rl -

< giRfhiRXR! -R) + 2g(R)h(R)l'2(R1 -

(48)

Assume now that there exists 77 € [0, R] such that g(rf) < g(R)/2 ( we will

remove this assumption later.) Then, from (44),

r=oi=1 y

and so

(g(R) - givMR)1'2 < {Uhf'\

or

g(R)h(R)V2 < 2(L./,)1/2. (49)

Substituting this into (48) gives

g(r)2h(r)dr < 9(i?i - R)LJm. (50)
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This was proved assuming the existence of rj such that g(rj) < g(R)/2. But

if g(r) > g(R)/2 for 0 < r < i? then

> r* g(Rfh{R)dr

= Rg(R)2h(R)/4.

Substituting this into (48) gives

g(r)2h(r)dr < 4J,(i?! - R)/R + 2(LJ*J*/R)l'2(Rl - R)f
r=R

If J+/R < L.h then the RHS of (51) can be bounded by the RHS of (50). If

J,/R > I , / , then the RHS of (51) can be bounded by 9(J?i - R)J*/R. Thus

in all cases

Now Rx-R< 6y/n and for j € [n], (see (28),

which implies

Inequality (42) now follows from (52).
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