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1. INTRODUCTION

Mappings between linear cones have been studied in [NS77a], [NS77b], [Sch78],
[Sch79b], [Sch81], and {Sch79a]. The purpose of the present paper is twofold. First,
we give proofs of two theorems that were announced without proof in [NS77b]
(where they were designated as Theorems 1 and 3). These theorems deal with
linear cones consisting of quadratic forms over finite-dimensional real-linear spaces.
The first of these, called Theorem 1 here, states that there is an inclusion-reversing
one-to-one correspondence beween the lattice of subspaces of a given space and the
lattice of faces of the cone of quadratic forms on that space. The second, called
Theorem 2 here, states that cone-isomorphisms between cones of quadratic forms
are induced by linear isomorphisms between the underlying spaces (s.e., the linear
spaces which are the domains of the forms).

The second purpose of the paper is to show (Theorem 3 here) that a cone-linear
mapping F' from one cone of quadratic forms to another is induced by a linear
mapping between the underlying spaces if and only if both F' and its cone-transpose
are face-preserving mappings.’

One of the reasons for studying the mappings described above is the possibility of
generalizations to include the case when the cones of quadratic forms are replaced by

1The proof of Thm. 2 presented here was found by R.A; it is different and more direct that
the one W.N. had in mind when [NS77a] was published. Thm. 3 was discovered recently by R.A.
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2 RAY E. ARTZ AND WALTER NOLL

Hermitian forms over complex-linear spaces, which arise in the study of quantum
mechanics (see [Art78]). These genereralizations, as well generalizations which
apply to forms over quaternionic-linear spaces, will be deferred to future papers.

The notation and terminology of [Nol87] is used in this paper. In particular, IN
denotes the set of all natural numbers and IP the set of all positive real numbers
(both including zero). A superscript * indicates the removal of zero; in particular
IP* denotes the set of all strictly positive real numbers. Given n € IN*, we denote
by n! the set consisting of the first n non-zero natural numbers. The collection of
all subsets of a given set § is denoted by SubS. Given a mapping ¢ and subsets
A of its domain Dom ¢ and B of its codomain Cod ¢, we denote the image of A
under ¢ by ¢5(A) := {¢(z)|z € A} and the pre-image of B under ¢ by ¢<(B) :=
{z € Dom ¢ | ¢(z) € B}. If $5(A) C B, we define the adjustment $|5: A — B of ¢
by

¢|5(z) := ¢(z) forallz € A.
If ¢ is bijective, we denote its inverse by ¢ : Cod ¢ — Dom ¢.

Let a set A and S € Sub A be given. We denote by 1sc4 € Map(S,.A) the
inclusion mapping, i.e., the mapping which satisfies 1sc4(z) = z forallz € S. We
abbreviate 14 := 1 4c4, so 14 is the identity mapping on A.

When we say “let a linear space be given” (or equivalent language), we mean “let
a finite-dimensional real linear space be given”. When dealing with linear spaces,
we extensively use the notation, terminology, and results of Chapters 1 and 2 of
[Nol87]. In particular, when a linear space V is given, we identify V** = V.

Let a linear space V and a subset S of V be given. We note that the closure?
of S remains unchanged if V is replaced by a subspace of V that includes S. The
interior of S, however, depends not only on S but also on the imbedding space V;
we write Inty S for the interior of S to make this dependence on V explicit (See
[Nol87], Sect. 53).

The collection of all subspaces of V is denoted by Subsp V. For each i € Subsp V,
we denote by Qv € Lin(V, V/U) the quotient mapping; , i.e., the mapping which
satisfies Qy v :=v+U forallv € V.

Let a second linear space W and a (not necessarily linear) mapping ¢: V — W be
given. We call Null ¢ := ¢<({0}) the nullset of ¢.> We record several elementary
facts for later reference:

Proposition 1.1. Let sets A, B, C and a surjective mapping a: C — A be given.
Then the mapping

(1.1) (¢ — ¢ oa): Map(A, B) — Map(C, B)
s tnjective.

Proposition 1.2. Let U € SubspV be given. Then pQyy € UL for all p €
(V/U)" and

(1.2) (B pQvu): (VU — Ut

2All topological terms are to be understood in the context of the usual topologies for finite-
dimensional spaces; see Chapter 5 of [Nol87].

3In [Nol87], this notation was used only for the case in which ¢ is a linear mapping; in that
case Null ¢ is a subspace and is called the nullspace of ¢.




LINEARLY INDUCED MAPPINGS 3

ts a linear isomorphism.

Proposition 1.3. Let L be a linear mapping. Then there is ezactly one linear
tsomorphism L: Dom L/ Null L — Rng L such that

(1.3) L = Qpom L/Nutit. L 1rng LcCod L -

Corollary 1. Let L and L' be surjective linear mappings such that Dom L = Dom L'
and Null L = Null L’. Then there is ezactly one linear isomorphism
A: Cod L — Cod L' such that L' = AL.

Corollary 2. Let L and L' be injective linear mappings such that Rng L = Rng L'.
Then there is ezactly one linear isomorphism A: Dom L — Dom L' such that
L=LA.

2. LINEAR CONES

Throughout this section, we assume that a linear space W is given. A subset P
of W is called a linear cone in W if it is stable under addition and under scalar
multiplication by strictly positive real numbers, t.e., if P+ P C P and IP* P C P.
Linear cones are convex sets. The interior and the closure of a given linear cone are
again linear cones. The intersection of a collection of linear cones is again a linear
cone. Hence, for every subset § of W, there is exactly one smallest linear cone that
includes S; we call this linear cone the cone-span of S and denote it by Csp S (see
[Nol87], Sect. 03)

For the remainder of this section, we assume that a linear cone P € W is given.

If P is not empty, then its linear span is given by LspP = P —P. Thus P spans
W if and only if P — P = W. The dimension of a linear cone P, denoted by
dim P, is defined to be the dimension dim Lsp P of its linear span.

A linear cone that is included in P is called a subcone of P. We say that a
subcone F of P is a face of P if it includes P N {0}* and

(2.1) u+v€eEF = wu,veEF forallu,veP.

The intersection of a collection of faces of P is again a face of P. Hence, for a
given subset S of P, there is exactly one smallest face of P that includes S; we
call this face the facial span of S, and denote it by FespS. Of course, P is a
face of itself. A face of P which is a proper subset of P is called a proper face of
P. A one-dimensional face of P is called an extreme ray of P. The concepts of
face, facial span, and extreme ray do not depend on the linear space in which P is
considered to be a linear cone.

Proposition 2.1. Assume that P is not empty. Then P spans W if and only if
Intyy P 1s non-empty.
Proof. Since P is convex, this result is an immediate consequence of Prop. 6 of

Sect. 54 of [Nol87]. O
Proposition 2.2. For every u € Intyy P, we have Fesp {u} = P.

4This definition is revised relative to the one presented in [NS77b]; the first condition has been
added to insure that a face of a cone with zero contains the zero and is thus non-empty. This
revision is necessary for Thm. 1 of [NS77b] (as well as Thm. 1 of this paper) to be correct as
stated.
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Proof. Let u € Intyy P be given and put F := Fesp {u}. Let v € P be given. Since
u € Intyy P, we may and do choose € € IP* such that w := —ev € P and hence
w + ev = u. Since u € F and since F is a face, it follows from (2.1) that ev € F.
Hence, since F is a linear cone, we have v = %(cv) € F. Since v € P was arbitrary,
it follows that F =P. O

Proposition 2.3. Every non-empty face of P is the facial span of a singleton.

Proof. Let a non-empty face F of P be given and put & := LspF. Then F is a
linear cone that spans I. Hence, by Prop. 2.1, the interior Intyy F of F relative to
U is not empty. Choose u € Inty F. By Prop. 2.2 we have Fesp {u} = F. O

We say that a family (F; | ¢ € I) of faces of P is facially independent if the facial
span of its union properly includes the facial span of the union of each of its proper
subfamilies, 1.e., if

(2.2) Fesp (Uje.l}-i) =Fesp (Ui Fi) = J=1 forallJeSubl.

A facially-independent family of faces of P is called a facial decomposition of P
if the facial span of its union is P. We note that a family (F;|i € I) of faces of P
is a facial decomposition of P if and only if

(2.3) Fesp (Ujes%i) =P = J=1 forall J€Subl.
The dual of the linear cone P is defined by
(2.4) P* = {Ae W*|X5(P) C IP}.

It is easily seen that P* is a closed linear cone in W*.

Now let, in addition to W and P, a linear space W' and a linear cone P’ be
given. Also, let a linear mapping @: W — W' be given. We say that Q is
cone-compatible (relative to P and P’) if @5 (P) C P’ and cone-preserving
if @Q>(P) = P'. Now let a mapping P: P — P’ be given. We say that P is
cone-linear if it preserves addition and scalar multiplication by strictly positive
numbers. If P is also invertible, then its inverse is also cone-linear and P is called a
cone-isomorphism. When dealing with cone-linear mappings, we adopt the same
“multiplicative” notation used in [Nol87] for linear mappings. In particular, if P is
cone linear, then, given z € P, we abbreviate Pz := P(z); if P is also invertible we
denote its inverse by P~! := P". We denote by Lin(P, P’) the set of all cone-linear
mappings from P to P’.5 If Q: W — W' is a cone-compatible linear mapping, then
Q[P': P — P’ is cone-linear. Conversely, if P: P — P’ is cone-linear, then there
is a cone-compatible linear mapping @Q: W — W’ such that P = Q|£'; moreover,
if P spans W then @ is uniquely determined by P; also, if P and P’ span W and
W' respectively, and P is a cone-isomorphism, then () is a cone-preserving linear
isomorphism.

Suppose that P spans W and that P is cone-linear, and denote the (cone-
compatible) linear extension of P by Q: W — W'. It is easy to see that QT: W'* —
W* is cone-compatible relative to the dual cones P'* and P* (defined by (2.4)).

5We note that if P and P’ equal their linear spans, then the set of cone-linear mappings from
P to P’ and the set of linear mappings from P to P’ are one and the same. Thus Lin(P,P’) is
not ambiguous.
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Thus we may and do define the cone-transpose of P by PT := QT 17;7*. Clearly,
PT:P'* _ P* is cone-linear.

Again, suppose that P is cone-linear. It is not hard to show that the pre-image
under P of each face of P’ is a face of P. We say that P is face-preserving if the
tmage under P of each face of P is a face of P’. Of course, every cone-isomorphism
is face-preserving and the range of every face-preserving cone-linear mapping is a
face. An injective cone-linear mapping is face-preserving if and only if its range is
a face. We note that the transpose of a face-preserving cone-linear mapping need
not be face-preserving. (See Sect. 6.)

3. SPACES AND CONES OF QUADRATIC FORMS

Throughout this section, we assume that a linear space V is given.

Our treatment of quadratic forms is based on Sect. 27 of [Nol87]. In particular,
we define the space QuV of quadratic forms on V as the range of the injective
linear mapping

(3.1) S+ So(ly,1y): Symy(V? IR) — Map(V, R),
and we shall make use of the natural isomorphism®

(3.2) ¢+ ¢": QuV — Sym,(V?, IR) = Sym(V, V*)
characterized by

(3.3) ¢"(v,v) = p(v) forallve.

Let A\, u € V* be given. The tensor product A ® p € Lin(V, V*) is defined in
Sect. 25 of [Nol87] by (A ® p)v := (Av)p for all v € V; it follows from Prop. 1 of
the same section that the symmetric tensor product %(A ® p+p®A) is a member

of Sym(V, V*). In this paper, we find it convenient to use the value-wise product
Ap: YV — R defined by

(Ap)(w) = (Av)(pv) forallv e V.

This function is the quadratic form on V which corresponds under the isomorphism
(3.2) to the symmetric tensor product of A and pu, i.e.,

(3.4) Ap€QuY  and  (Ap)=1A@p+peA).

In particular, we have (Az)U = A ® X when A? denotes the value-wise square of .
It is not hard to show that

(3.5) QuV = Lsp{Ap| A p eV} =Lsp{A’| A eV},

where the symbol Lsp denotes linear span in the space Map(V, R) (see Problem 8,
Chapter 2 of [Nol87]).
We denote by’

(3.6) PquV := {¢ € QuV|Rng¢ C IP}

6Clearly, (3.2) is the inverse of the linear isomorphism obtained by adjusting the codomain of
(3.1).
"In [NS77b)], the symbol Qut (V) was used for our PquV.
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the set of all positive quadratic forms on V. It is clear that PquV is a closed linear
cone in Qu V. Since A? € PquV for every A € V*, it is clear from (3.5) that PquV
spans Qu V. Also, we have

(3.7) PquV = Csp{A?| X € V*}.

(This fact can easily be inferred from [Nol87], Prop. 2 of Sect. 85 by introducing a
genuine inner product in V, using the resulting natural isomorphism from PquV to
PosV, and then using the Spectral Theorem.) The interior of PquV is the (open)
linear cone®

PqutV:={¢ € QuV|¢,(V*) C IP*}
= {¢ € PquV |Null¢ = {0}}

of all strictly positive quadratic forms on V. (This fact can easily be inferred
from the first statement in the Theorem on the Smoothness of the Strict Lineonic
Square Root in Sect. 85 of [Nol87].) In view of Prop. 2.3, we have

Fesp {¢} = PquV for all ¢ € Pqut V.
In view of [Nol87], Prop. 1 of Sect. 27, we have
(3.8) dim QuV = dim PquV = dimPquty = dmYidmy)
Proposition 3.1. For all ¢ € PquV, we have®
(3.9) ¢°(u,v)|" < d(u)b(v)  for alluweV.
Proof. Let ¢ € QuV and u, v € V be given. Since Rng ¢ C IP, we have
(3.10) 0 < $(ou — Bv) = a®(u) + Fb(v) — 208 ¢° (u, v)

for all a, g € R.

Suppose that ¢(u) = ¢(v) = 0. Then using (3.10) with o := %, B := —1 yields
0 < ¢"(u,v). Using (3.10) with o := 1, B :=1yields 0 < —¢"(u,v), and we
conclude that ¢"(u,v) = 0, so that (3.9) holds because both sides are zero.

Suppose that one of ¢(u) and ¢(v), say ¢(u), is not zero. Using (3.10) with
a = ¢(v)? and B := ¢" (u,v) yields

0 < ¢(v) (¢(u)p(v) — ¢"(u,v)?) .
Since ¢(v) > 0, it follows that (3.9) holds. O
For each u € V, we define u+:V — V by

(ut)(v)i=u+wv for all v € V.

8In [NS77b], the symbol Qu* (V) was used for our Pqut V.
°In the special case when ¢ is strictly positive, it can be used to make V an inner-product
space and (3.9) reduces to the Inner-Product Inequality (see Sect. 42 of [Nol87]).
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Proposition 3.2. For all ¢ € PquV, we havel®
(3.11) Null¢ = Null¢" = {u € V| o (u+) = ¢}
when ¢ is regarded as an element of Sym(V, V*).

Proof. Let ¢ € PquV and u € V be given.

On the one hand, suppose that u € Null ¢, so that that ¢(u) = 0. By Prop. 3.1
we then have (¢"u)v = ¢"(u,v) = 0 for all v € V and hence ¢" = 0, showing
that u € Null¢". Since u € Null ¢ was arbitrary, it follows that Null ¢ C Null @".
On the other hand, suppose that u € Null ¢"; then 0 = (¢"u)u = ¢(u) and hence
u € Null ¢. It follows that Null ¢ C Null ¢. It also follows that

d(w+u) = ¢d(w) + o(u) + 26" (uw)w = ¢(w) for allw € V,
so that
Null¢ C {u € V|do (u+) = ¢}.

Finally, suppose, instead, that ¢ o (u+) = ¢. Then ¢(u) = d(u +u) = 4¢(u)
and hence ¢(u) = 0, so u € Null ¢. It follows that

Null¢ D{u€eV|do(ut+)=¢}. O

As an immediate consequence of Prop. 3.2, the nullset Null ¢ is a subspace for all
¢ € Pqup.1!
For every U € Subsp V, the set

(3.12) Oy (U) :={pEPquV|dlu =0} ={¢ €PquV|U C Null ¢}
is clearly a subcone of Pqu V.

Proposition 3.3. For every U € SubspV, the subcone ®y (U) of PquV defined by
(3.12) is actually a face of PquV.

Proof. Let U € Subsp V and ¢,, ¢, € PquV be given such that
¢ =+ by € By (U).

By (3.12) this means that ¢,(u)+ ¢4(u) = 0 for all w € U. Since Rng¢, C IP and
Rng ¢, C IP by (3.6), we conclude that ¢;(u) =0 = ¢,(u) forallu in U, i.e., that
b€y (U). O

In view of Prop. 3.3, we may consider (3.12) to be the definition of a mapping
(3.13) &y, : Subsp V — Face(PquV)
from Subsp V to the lattice Face (Pqu V) of all faces of Pqu (V).

Proposition 3.4. Let U € Subsp V be given. Then po Qy y € @y (U) for all p in
Pqu (V/U) and the mapping

(3.14) prpoQyuy: Pqu(V/U) — @y (U)
is a cone-isomorphism.
10The second equality in (3.11) holds for all ¢ in QuV; the first fails when ¢ € QuV is

double-signed, i.e., when neither ¢ nor —¢ is positive.
111f ¢ € QuV is double-signed, then Null ¢ is not a subspace.
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Proof. Let p € Pqu(V/U) be given. Since the composite of a linear mapping
with a positive quadratic form is again a positive quadratic form, it is clear that
poQyy € Pqul. Also, since U is the zero-element of V/U and since Qy yu = U
for all w in U, it is clear that (po Qyu) lu = 0, so that po Qyy € By(U) in view
of (3.12).

It is evident that the mapping (3.14) is cone-linear. Since £y is surjective,
the mapping

¢+ ¢ oy Map(V/U,IR) — Map(V, R)

is injective by Prop. 1.1; it follows that (3.14) is injective.

Now let ¢ in ®y (U) be given, so that U C Nullg by (3.12). It follows by
Prop. 3.2 that

> (v +U) = ¢, ({v}) = {$(v)} forallveV.

Thus we can determine p: V/U — IR by the condition p(G) € ¢ (G) for all G in
V/U; it is clear that ¢ = p o Qy/y. Choosing a right inverse L € Lin(V/U,V) for
Qy/u, we note that go L = poQy 0 L = p. It follows that p € Pqu (V/U). Since
¢ € ®y(U) was arbitrary, if follows that (3.14) is surjective. O

Proposition 3.5. For all ¢ € PquV, the facial span of the singleton {$} is given
by
(3.15) Fesp {¢} = @y (Null @) .

Proof. We noted after proving Prop. 3.2 that Null¢ € Subsp V for all ¢ € PquV.
Let ¢ € PquV be given and put & := Null ¢. It is clear from (3.12) and Prop. 3.3
that ®y(U) is a face of PquV that contains ¢ and hence that Fesp {¢} C Py (U).
In view of Prop. 3.4, we may determine p in Pqu (V/U) such that po Qy;y = ¢,
so p(v +U) = ¢(v) for all v € V. Since Y = Null @, it follows that

Nullp = {v+U|v € Null¢} = {U}.

Thus, since U is the zero-element of V/U, and since clearly p € PquV, we have p €
Pqut (V/U). Since Pqut (V/U) is the interior of Pqu (V/U), it follows by Prop. 2.2
that Pqu (V/U) = Fesp {p}. Hence, by Prop. 3.4, we have ®y(U) = Fesp {¢}. O

It follows from Proposition 3.4 and (3.8) that
(3.16) dim®y(U) = dim Pqu (V/U) = (EmY=dimi)(+dimV —dim )
for all 4 € Subsp V.

Theorem 1. The mapping ®y of (3.13), defined by (3.12), is an inclusion-reversing
bijection.

Proof. It is easily seen from (3.12) and (3.8) that ®y is strictly inclusion-reversing
in the sense that

(3.17) u g u' == Py (u) 2 oy (ul)

for all U, U’ € Subsp V. Hence Py is injective. To show that ®y, is surjective, let
a face F of the cone PquV be given. By Prop. 2.3, we may choose ¢ € PquV
such that 7 = Fcsp {¢}. By Prop. 3.5 above, we have F = &y, (Null ¢) and hence
F € Rng ®y. Since the face F was arbitrary, it follows that ®y is surjective. [J
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It follows from Theorem 1 that for every family (i; |i € I) of subspaces of V, we
have

(3.18) By (Miest) = Fesp (Ui ®v () ,
(3.19) Py (LSP (Uielui)) = ﬂ;EIQv(Ue);
these formulas relate greatest lower bounds in the lattice Subsp V to least upper

bounds in the lattice Face (PquV) and vice versa.

4. DUALITY

Throughout this section, we assume that linear spaces V and V' are given. We
note the identification V** = V which states that every vector v € V may be
regarded as linear form on V*. Hence we consider the value-wise square v2 of a
given v € V as a quadratic form on V*, so that v2 € Qu V*.

Proposition 4.1. There is ezactly one bilinear mapping

(4.1) ' QuVxQuv* - R
such that
(4.2) r(A%,v%) = (W) forall X in V*, veV.

This mapping satisfies

(4.3) I'(¢,v%) = ¢(v) forallp € QuV, v in ),
(4.4) TAL f)=F(A)  forallXeV*, f in QuV*,
and the mappings

(4.5) ¢+ T(¢,-): Qu¥ — (QuV*),

(4.6) F=TG F): Quv* = (Quy)*

are cone-preserving linear isomorphisms relative to the cones PquV, (Pqu V*)*

and Pqu V*, (Pqu V)*, respectively.

Proof. Using [Nol87], Prop. 6 of Chap. 2, with the choices V; := V; :=V*, W = 1R,
and using the identifications V** = V and Lin(V, V*) = Liny(V%, IR), we see that
there is exactly one linear isomorphism

A: Ling(V*? R) — (Liny(V?, R))"

such that B(A],Az) = A(B)(Al ® Az) for all B € Ling(V*z, IR),and all Al, Az eV.
Define .
T: Symy(V*?,IR) — (Sym,(V?, R))
by
T(S) := A(S)|sym,v2,ry  for all S € Sym,(V**, IR).

Then T is easily seen to be the only linear isomorphism from Sym,(V*% R) to
(Symy(V?,1R))" which satisfies S(X,A) = T(S)(A ® A) for all S € Sym,(V*?,R)
and all A € V*. Replacing the spaces Sym,(V?,IR) and Sym,(V*?,IR) of bilinear
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mappings by the corresponding spaces QuV and QuV* of quadratic forms yields
the first statement of the proposition.

In view of (3.5) and the linearity of T in its first argument, (4.3) follows directly
from (4.2); statement (4.4) is established similarly.

It follows from (4.3) that

¢$=0 < TI(¢,)=0 for all ¢ € QuV,

so that (4.5) is injective and hence a linear isomorphism. In view of (3.7) and the
linearity of T in its first argument, it also follows from (4.3) that

¢ EPquV < T(¢,)€(PquV*)*  forall ¢ € QuV;

thus (4.5) is cone-preserving. The assertions that (4.6) is a linear isomorphism and
cone-preserving are established similarly. [

The mappings (4.5) and (4.6) establish natural linear isormorphims between
QuV and (QuV*)" and between Qu V* and (Qu V)" which are compatible with the
identification (Qu V)™ = QuV. They also establish cone-isomorphisms between
PquV and (PquV*)* and between PquV* and (PquV)* . We do not treat these
natural isomorphisms as identifications per sel, but we re-interpret some notation
and terminology (insofar as it applies to cones and spaces of quadratic forms) in
order to let the four spaces and cones on the left-hand sides of these isomorphisms
conveniently “stand in” for those on the right. In particular,

(1) we consider annihilators of subsets of QuY and QuV* to be subsets of
Qu V* and QuV, respectively; thus

4.7 A*={fe€QuV*|I(,f) =0for all ¢ € A}
for all A € Sub(QuV),

(4.8) BY ={$p€QuV|I(¢,f)=0 for all f in B}
for all B in Sub(Qu V*);

(2) we consider the transposes of linear mappings QulY — Qu)’ to be lin-
ear mappings Qu)’* — QuV*, and transposes of cone-linear mappings
PquV — Pqu)’ to be cone-linear mappings PquV’* — Pqu V*; thus, for
all Q € Lin(QuV,Qu)’) and all P € Lin(PquV, Pqu)"), the transpose QT
and the cone-transpose P are determined by the properties!3

(4.9) T(Qe,f)=T(¢,QTF) for all ¢ € QuV, fin QuV'™,
(4.10) T(Po,f) =T(¢, PTf) for all ¢ € PquV, f in PquV'";

(3) given a linear space W, w € W, ¢ € QuV and f € QuV*, we interpret
the tensor products w ® ¢ and w ® f as members of Lin(Qu V*, W) and
Lin(QuV, W), respectively.

12To do so would lead to awkward ambiguities, e.g., identifying @ € QuV with I'(e,-) €
(QuV*)* would make “Rng @” ambiguous.

13We note that the symbol I' on the right side of the equalities denotes the bilinear map-
ping (4.1) with domain QuV X QuV*, while the same symbol I" on the left side denotes the
corresponding bilinear mapping with domain Qu V’ x Qu V'*.
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In addition, we feel free to speak of the spaces QuV and Qu V* (and of the cones
PquV and Pqu V*) as being dual to each other.

Proposition 4.2. Let a subspace U of V be given. Then we have

(4.11) ®y(U) = Csp{A?| X e U*}
and
(4.12) (®y U)* = {F € QuV* | flys =0},

where ®y(U) is defined by (3.12).
Proof. Since

(413) [1.2 o Qv,u = ([l.ﬂv/u)z for all [TRS] (V/U)*,
it follows from Prop. 1.2 that

Csp{p® o Qv |p € V/U)'} = Cop{(pQvu)* |n € (V/U)"} =
Csp{A*| X eut}.

Since
Csp{u® | € (V/U)"} = Pqu(V/U)
by (3.7), the assertion (4.11) follows by Prop. 3.4.

It follows from (4.4) that fl,. = 0 if and only if T(f,A*) = 0 for all A € UL,
By (4.11), this is the case if and only if I'(f)¢p = 0 for all ¢ € ®y (U), i.e, in
view of (4.7), if and only if f € (®y(U4))*. Since f in QuV* was arbitrary, (4.12)
follows. O

Proposition 4.3. For each ¢ € (PquV)*, ¢ belongs to an extreme ray of QuV if
and only if ¢ = A? for some X in (V*)X.

Proof. Saying that ¢ belongs to an extreme ray means that Fesp {¢} = IP ¢. By
Prop. 3.9, this is the case if and only if ®y (Null¢) = IP ¢. By Prop. 4.2, (4.11),
this is the case if and only if IR ¢ = IR u? for some p € V* and hence ¢ = A? for
some A € V*. O

Let n € IN be given. We denote the set of all isotone pairs in (nl)? by Ip(n), i.e.,
(4.14) Io(n) = {(i,¥) € ()? |i < k).
Given any list 8 := (B;|i € nl) in (V*)", we define the family OB € (Qu V)Ip(")
by
(4.15) (BOB)Gxy = BiBy  for all (i, k) € Ip(n).

Proposition 4.4. Let n € IN, a linear space W, and v € (W*)" be given. Then
the following are equivalent:
(1) ~ is a basis of W*;

(1) ~0O~ is @ basis of QuW;
(iii) (IP~,%|i € nl) is a facial decomposition of PquW.
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Proof. We first prove the equivalence of (i) and (ii). On the one hand assume (i).
Then

Qv ®v; +7; 7)1 (i,5) € Ip(n))

is a basis for Sym,(W?,IR) by an argument very similar to the one used to prove
Prop. 1 of Sect. 27 of [Nol87]. In view of (3.4) and the fact that (3.2) is a linear
isomorphism, we have (ii).

On the other hand, assume (ii). Let a list ¢ := (¢; | i € n}) be given such that

(4.16) >ty =0.

ienl
Then we have
0= Zti‘h = Z ti(Y17:)-
ienl ienl

Since (v;7v; ]t € n]) is a subfamily of the basis 4O~ of QuW, it is linearly inde-
pendent. It follows that ¢t = 0.

Since ¢t was arbitrary, subject to (4.16), ~ is linearly independent, and hence a
basis.

We next prove the equivalence of (i) and (iii). In view of (2.3), (3.18), and the
fact that Pqu W = & ({0}), (iii) holds if and only if

Py (Nics®w ™ (P,%) = ®w({0}) < J=nl forallJ€Subnl
Since, in view (3.15), we have
IPv,;? = ®w(Nullv,2) = &y (Nullv,) for all i € nl,
it follows that (iii) holds if and only if
Nics Nully; = {0} <= J=nl forall J €Subnl
Since
L
() Nully; = (Z IR»y,) = (Lsp{v; |i€ J})* for all J € Subnl
ieJ il
by [Nol87], Prop. 5 of Sect. 21, it follows that (iii) holds if and only if
Lsp{v;|i€J}=V <= J=nl forallJ e Subnl,

which is equivalent to (i) because bases can be characterised as minimal spanning
families. [

Corollary 1. Let n € IN, U € Subsp V, and B € (V*)" be given. Then the follow-
tng are equivalent:

(i) B is a basis of UL;

(i1) BOP is a basis of Lsp ®y(U);

(i) (IPB;%|i € nl) is a facial decomposition of By (U).
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Proof. If RngB ¢ U*, then none of (i), (ii), and (iii) are valid. Assume RngfB C
U*. In view of Prop. 1.2 we may determine v € ((V/U)*)" such that 8; = ¥y u
for all i € nl. We note that the conclusion of Prop. 4.4 holds for W := V/U and
< as just chosen. The equivalence of (i), (ii), and (iii) (of the present proposition)
follows by appeal to the isomorphisms (1.2) and (3.14). O

5. CONE-ISOMORPHISMS

Throughout this section, we assume that non-zero linear spaces V and V' are
given. It is clear that if L: V' — V is a linear isomorphism, then the mapping
P: PquV — Pqu)’ defined by

(5.1) P(¢):=¢olL for all ¢ in PquV

is a cone-isomorphism. (Indeed, its inverse is given by P~}(3) = v o L~! for all %
in PquV’.)

Theorem 2. For every cone-isomorphism P: PquV — Pqu)’ there are ezactly
two linear isomorphisms L: V' — V such that (5.1) holds. If L is one of them, then
—L is the other.

Proof. Let a cone-isomorphism P: PquV — Pqu)” be given and let P: QuY —
Qu V'’ be the linear isomorphism that extends P.

Lemma 5.1. Suppose that X\, p € V* and X, p’ € V'* satisfy

(5.2) P(AY) =7 and P(p?) = '’
Then
(5.3) P(Ap) =Xy or P(Ap)=-Xp

Proof (Lemma 5.1). The assertion is easily seen to be valid if one of A and p is
a scalar multiple of the other. We may assume, therefore, that (A, p) is linearly

independent. Put U := {A,u}l, u = {/\',u'}'L. It is clear that (A, ) and
(»', X are bases of U and (U')J', respectively. It follows by Cor. 1 of Prop. 4.4
that Fcsp {)\2,;12} = ®y(U) and Fesp {‘1’2,;1.’2} = ®y(U'). Since P is a cone-
isomorphism, the images under P of facial spans in PquV are corresponding facial
spans in Pqu)’. In particular, we have P5 (Fesp {A%, pu?}) = Fesp {X'2, 2}, i.e.,

(5.4) Py (Qv(U)) = q)vl(ui).
Hence, since P is linear
(5.5) P (Lsp ®y(U)) = Lsp P> (By(U)) = Lsp v (U").

It follows from item (ii) of Cor. 1 of Prop. 4.4 that P(Ap) € Lsp ®y/(U’) and that
(A2, X", u'?) is a basis of Lsp ®y(U'). Hence we can determine a, b, ¢ € IR such
that

(5.6) PAp) = aX? + b\ p + cp'?
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Now let t € IR be given and put 4 := XA+ tp. On the one hand, since P is linear,

it follows from (5.2) and (5.6) that
5.7 P(?) = X2+ 2P(Ap) + °p"
(57) = (14 2ta)N'% 4+ 260X ' + (t2 + 2tc) .

On the other hand, since 42 belongs, by Prop. 4.3, to an extreme ray of PquV, its

image P(~?) must belong to an extreme ray of Pqu)’, and hence we may choose
/ 1%

~' € V'" such that

(5.8) P(y*) =~".

Since v2 € ®y(U), it follows from (5.4) that v'2 € ®y/(U’) and hence, by (4.11),

that ' € U'* = Lsp {X\,p'}. Thus we may determine s and r € IR such that
~" = sA' + rp'; it follows by by (5.8) that

(5.9) P(v?) = X2 4 2sr X\ p/ 4 12’2,
Since (A2, u'2, X' pt') is linearly independent, we conclude from (5.7) and (5.9) that
s2=(142ta), sr=tb, r?=(t*+2tc),
and hence that
202 = s2r? = (1 + 2ta)(t® + 2tc) = 2t%a+ (1 + dac)t® + 2tc.

Since this equality must be valid for all ¢ € IR, it follows that @ = ¢ = 0 and % = 1.
Hence we must have b = 1 or b = —1 and (5.6) reduces to (5.7). O

We now put n := dimV = dim V* and choose a list-basis 8 of V*. We note that
the conclusions of Prop. 4.4 apply. Hence (IP 8,2 |i € nl) is a facial decomposition
for PquV. Since P preserves extreme rays, it follows from Prop. 4.3 and Prop. 4.4
that we may choose a list-basis B’ of V'* such that

(5.10) P(B;>)=p> foralliinnl

Let i € nl be given. By Lemma 5.1 applied to X := 3, and u := B;, we see that
we may choose s; € {1, —1} such that

(5.11) P(B18;) = s:81B;.

Hence we obtain a list (s; |i € nl) € {1,-1}" with s; = 1.
Lemma 5.2. We have

(5.12) P(B:;8:) = sise BB, foralli, ke nl.

Proof (Lemma 5.2). Since s; = 1, it is clear from (5.10) and (5.11) that (5.12)
holds when ¢ = 1 or k = 1 or ¢ = k. Suppose, then, that ¢ and k € n! are given such
that ¢ # 1, k # 1, and 7 # k. Then the triple (8, 8;,8:) is linearly independent
and we may apply Cor. 1 of Prop. 4.4 to it. Using an argument similar to the one
used in the proof of Lemma 5.1, we determine a, b, and ¢ € IR such that

P ((B1 +Bi + Br)?) = (aBy + b8 +cB)°.
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Using the linearity of P and (5.10) and (5.11), we find that
17+ B+ B + 281 B + 25818y, + 2P (B:By)
= @817 + 628" + *BL” + 2abB) B; + 2ac1 B, + 2bcBip;.
Since P(B;8;) € R B;B} by Lemma 5.1 and since the sextuple
(B1%, Bi*, By, B1B:, BB, BiBY)
is linearly independent, we conclude that a? = b2 = ¢? = 1, ab = s;, ac = si,

and P(B;8;) = bcB.B). Hence s;sp = (ab)(ac) a’be = be and P(B;8;) =
siskBiBy. O

Since B3 is a basis of V* and (s;8|i € nl) is a basis of V'*, we can determine a
linear transformation L: V' — V whose transpose LT: V* — V'* satisfies

LB, =58,  foralliinnl.
By Lemma 5.2 we have
P(B:Bi) = (LTB,)(L"By) = (B:By) o L foralli, k € nl.

Since OB := (B;8; | (¢, k) € Ip(n)) is a basis of Qu V), we conclude that (5.1) holds.
It is easy to see that (5.1) also holds when L is replaced by —L.
Now let a linear transformation M : V — V' be given such that

(5.13) boL=P(p)=¢oM forall ¢ € PquV.

Using (5.13) with ¢ := 8,2, we find that (M73,)? = (LTB,)?>. Hence we may
choose € € {1,—1} such that MTB, = ¢LTB,. Now let k € nl be given. Using
(5.13) with ¢ := B, 3, we find that

(LTBL(LBy) = (MTB)(MTB,) = (eMTB)(LBy).
Since LTB, # 0 and since k € n! was arbitrary, it follows that
LTB, =eMTB, forallkenl
Since 3 is a basis of V*, we conclude that LT = eMT and hence M = ¢L. [

6. LINEARLY INDUCED MAPPINGS
Throughout this section, V, V’, and V" are given linear spaces. For a given L €
Lin(V’,V), we define qu(L) in Lin(QuV,QuV’) and pqu(L) € Lin(PquV, Pqu}’)
by

(6.1) qu(L)p :=¢doL  forall g € QuV;

(6.2) pqu(L)¢p :=¢doL  for all ¢ in PquV.

It is clear that

(6.3) pau(L) = qu(L)[FY'  for all L € Lin(V/, V).

If a given Q € Lin(QuV,Qu)’) equals qu(L) for some L in Lin(V’, V), we say
that Q is linearly induced (by L); similarly, if a given P € Lin(PquV,Pqu’)
equals pqu(L) for some L € Lin(V’, V), we say that P is linearly induced (by L).
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The following two results are immediate.

Proposition 6.1. Let L € Lin(V',V) and Q € Lin(QuV,Qu)’) be given. Then
Q = qu(L) if and only if Q ts cone-compatible and nggﬁz = pqu(L).

Proposition 6.2. A composite of linearly induced mappings is itself linearly in-
duced. Indeed, let Ly € Lin(V",V’) and Ly in Lin(V', V) be given; then

(6.4) qu(Ly)qu(Lz) = qu(LaLy), pqu(Li) pqu(Lz) = pqu(LzL,).

Proposition 6.3. The transpose of a linearly induced linear mapping and the cone-
transpose of a linearly induced cone-linear mapping are both linearly induced. In-
deed, let L € Lin(V', V) be given; then

(6.5) (qu(L)™ = qu(L?),  (pqu(L))" = pau(LT)

Proof. It is clear that qu(LT)w? = (wLT)? = (Lw)? for all w € V'; it follows by
(4.2) that

P (%, qu(LTyw?) = T (u?, (Lw)?) = (ulw)’ =
I'((pl)?,w?) =T (qu(L)p®, w?)forall pe V*, we V.
In view of (3.5) and the bilinearity of T', it follows that
T (qu(L)$,9) =T(¢p,qu(LT)g)  forallp € QuV, gin QuV' .

In view of the determining conditions (4.9) and (4.10) for the transposes, we have
the first equality in (6.5). In view of (6.3), the second follows by adjustment. [

Proposition 6.4. Let L € Lin(V',V) be given. If L is surjective, then qu(L) and
pau(L) are injective. If L is injective, then qu(L) and pqu(L) are surjective.

Proof. First, suppose that L is surjective. Then qu(L) and pqu(L) are injective by
Prop. 1.1.

Next, suppose that L is injective, so LT is surjective. Then, we have
Rngpqu(L) D Csp{pqu(L)(A*) | A € V*} =
Csp{(L"™X)?| A € V*} = Csp{p? |p € V'"}.

It follows by (3.7) that Rngpqu(L) = Pqu)’, so that pqu(L) is surjective. Of
course Rng qu(L) = Lsp (Rngpqu(L)), so qu(L) is also surjective. [

Proposition 6.5. Let L in Lin(V',V) and U € Subsp V be given. Then
(6.6) pqu(L)> (Bv (U)) = qu(L)> (v U)) = v (L<U)) .

Proof. Let ¢ € ®y(U) be given. By (3.12), ¢l = 0. It follows immediately
that (¢ o L)|p<@) = 0. Of course ¢ o L is positive, so it follows by (3.12) that
qu(L)¢ = ¢po L € ®y:(L<(U)). Since ¢ in ®y(U) was arbitrary, it follows that

qu(L)> (®y (U)) C @y (L<U)) .
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We note that, by the Theorem on Annihilators and Transposes ([Nol87], Sect. 21)
and by (6.5) and (4.12), we have

(67) (qu(L)> (v @))* = qu(LT)< ((@v @))*) =
(qu(LT))* ({g € QuV* |glys = 0}) = {Ff € QuV | (f o LT) |ys = 0}.

Now let € (qu(L)s (®v (U4)))* be given. It follows by (6.7) that (f o LT) |y» = 0.
Using the Theorem on Annihilators and Transposes again, we obtain

{0} = (FoLT), U*) = £, (L7 @H) = £, ((L<@)*),

0 fliL<@wy+ = 0. In view of (4.12) again, it follows that f € (®y (L<(U)))‘L.
Since f € (qu(L)> (®v (U)))'L was arbitrary, it follows that

(au(L)s> @y @))* C (2w (L<@)))*
and hence
(qu(L)> (Bv U))) D (®vr (L<U))).
This establishes the second equality in (6.6); the first follows by Prop. 6.1. O

Theorem 3. Let P € Lin(PquV,Pqu)’) be given. Then P is linearly induced if
and only if both P and PT are face-preserving.

Before proving this theorem, we note that the cone-transpose of a face-preserving
cone-linear mapping need not be face-preserving. Indeed, suppose that dimV > 2
and that dim)’ > 1, and choose f € PqutV* and p € (V'*)*. Then the mapping
(r?® f)|gg“: z' is face-preserving because the image of every non-zero face of PquV
under this mapping is the extreme ray IP u? of Pqu)’. However, the range of the
cone-transpose (f ® pz)lggz 3,‘. of the mapping above is IP f, which is not a face.
Proof (Thm. 3). On the one hand, suppose that P is linearly induced and choose
L € Lin(V",V) such that P = qu(L). Let a F € Face (PquV) be given. In view
of Thm. 1, we may determine I/ € Subsp V such that F = ®y(U). Then P (F) =
&y (L<(U)) by Prop. 6.5, so Ps(F) was a face of Qul’ by Prop. 3.3. Since F €
Face (PquV) was arbitrary, it follows that the P is face-preserving. Indeed, since
P was an arbitrary linearly induced cone-linear mapping, every linearly induced
cone-linear mapping is face-preserving. In particular, in view of Prop. 6.3, PT is
face-preserving.

On the other hand, suppose that P and PT preserve faces. Then their ranges
are faces of PquV’ and Pqu V*, respectively. It follows by Thm. 1 that subspaces
U and U’ of V and V', respectively, can be determined such that

(6.8) Rng P = &y (U');

(6.9) Rog PT = &y. (U').

Denote by @ € Lin(QuV,Qu)’) the linear mapping determined by P, so that
QIg™Y = P. It follows from (6.8) that

(6.10) Rng @ = Lsp Rng P = Lsp &y (U'),
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and from the Theorem on Annihilators and Transposes ([Nol87], Sect. 21), (6.9),
and (4.12) that

(6:11) NullQ = (RngQT)" = (Rng PT)l =

L
(@v- UY)” = {b € QuV|lu = 0}.
We will now describe and establish the validity of the following commutative
diagram:

Qpom @/ Nul Q@
_DemQ/Twlle,

Dom Q Dom@Q/NullQ —%— RngQ —22£9CPm9, (4Q

|| ! ! ||

u 3 (1t
Quy  Rlucy), Qi —2 Quyury v oy

The upper line in the diagram represents @) as the composite of three linear map-
pings as described in Prop. 1.3. Two linear isomorphism-pairs, represented in the
diagram by two-headed vertical arrows, will be determined below. Then, in turn,

a linear isomorphism Q € Lin(QuV, Qu(V'/U') will be determined such that
(6.12) Q = qu(Qyrur) Q@ qu(lucy).

It will be shown that Q is linearly induced, and hence that the lower line in the
diagram represents @) as a composite of three linearly induced mappings.

The linear mappings Qpom @/ Nuit ¢ and qu(1ycy) on the left side of the diagram
are both surjective: the first because it is a quotient mapping and the second, since
1ycy is injective, by Prop. 6.4. Of course NullQpom g/ Nutg = Null@, and, in
view of (6.11),

Null qu(1ycy) = {¢ € QuV|oly = 0} = Null Q.

Thus 2pom @/ Nuit @ and qu(lycy) are linear surjections with common domain and
nullspace. It follows by Cor. 1 of Prop. 1.3 that the leftmost square in the com-
mutative diagram determines a linear isomorphism-pair Dom @/ Null@Q < QuV as
indicated.

Similarly, the linear mappings 1Rrng Qccoa@ and qu(£2y:/y/) on the right side of
the diagram are both injective: the first because it is an inclusion mapping and
the second, since 2y is surjective, by Prop. 6.4. Of course Rng 1rng Qccod@ =
Rng @ and, in view of Prop. 3.4 and (6.10),

Rng qu(Qyr /) = Lsp @y (U') = Rng Q.

Thus 1rng@ccod@ and qu(f2yr/y¢) are linear injections with common range. It
follows by Cor. 2 of Prop. 1.3 that the rightmost square in the commutative diagram
determines a linear isomorphism-pair Rng @ < Qu(V’/U') as indicated.

Since the double-headed vertical arrows in the diagram indeed represent linear
isomorphism-pairs, and since Q is a linear isomorphism by Prop. 1.3, the center

square in the diagram determines a linear isomorphism @ as indicated.

We shall next show that Q is cone-preserving relative to the cones PquV and
PquV'.
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In view of (6.12) and (6.8), we have
(6.13) (qu(ﬂw/u') Q qu(lucv)) N (PquV) = Q5 (PquV) = &y (U').
Since qu(y/y) is injective, it follows immediately that

(6.14) @ (@u(lucy))s (PquV) = qu(Qy: )< (Byr U')).

Since pqu(1ycy) is linearly induced, it preserves faces (as shown in the first part
of this proof). It follows that the image under qu(1ycy) of the cone PquV, which
is spanning in Qu V), is a face of Pqui{ which is spanning in Rng P = Qui{; hence

(6.15) qu(lycy), (PquV) = Pqul.
By Prop. 3.4 we have
(6.16) qu(Qv,/u:)< (®y: U')) =Pqu(V'/U').

Substitution of (6.15) and (6.16) into (6.14) yields

Q> (Pquif) = Pqu (V' /U');
PquVy

so the linear isomorphism Q is cone-preserving. It follows that QquuV is a cone-

isomorphism; hence,in view of Thm. 2, there is a linear isomorphism, say L: ViU —
U, which induces Q|l;335 and hence Q as well. Thus @ = qu(L). Putting

L = 1ycy LQv:/u: € Lin(V',V), it follows, in view of (6.12) and Prop. 6.2, that
@ = qu(L) and hence, in view of Prop. 6.1, that P = pqu(L). O

Proposition 6.6. Let L, M € Lin(V',V) be given. Then pqu(L) = pqu(M) (equiv-
alently, qu(L) = qu(M)) if and only if M = L or M = —L.

Proof. 1t is easy to see that pqu(L) = pqu(—L). It is also clear that the result holds
if L = 0. Assume that L # 0, put n := dimV), and choose a basis 8 = (8; i € nl)
of V' such that B, L # 0. By the same argument used in the last part of the proof
of Thm. 2, we may determine ¢ € {1,~1} such that LTB, = MTB, for all k € nl.
It follows that L = eM. (O
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