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ON THE COMPLEXITY OF COMPUTING
THE DIAMETER OF A POLYTOPE
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Abstract. In this paper, some results on the complexity of computing
the combinatorial diameter of a polytope are presented. We show that
it is D^-hard to determine the diameter of a polytope specified by linear
inequalities with integer data. Our result partially resolves a long-term
open question.
Key words. Computational complexity; diameter of a polytope; Dp-
hardness; linear programming.
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1. Introduction

The basic idea of the simplex method for linear programming is to find a path
from a vertex of the underlying polyhedron to an optimal one along edges. In
graph-theoretic terms, the simplex method computes a path in graph F(P),
the 1-complex formed by the vertices and edges of the input polytope P, from
an initial vertex to an optimal one. The efficiency of the simplex method is
determined by the length of the path it computes. Therefore, the diameter of
the graph T(P) provides a natural lower bound for the simplex method.

Although, the diameter of polyhedral graphs has been studied intensively
(see Klee 1974 and Larman 1970), tight bounds on the diameter in terms of
the number of facets are still not known. Kalai (1991) gave the first a subexpo-
nential upper bound on the maximum diameter of d-polytopes with n facets.
Recently, Kalai and Kleitman (1992) further improved the upper bound to
nlogd+2

In this paper, we study the complexity of computing the diameter of a
polytope. On one hand, it is easy to see that the diameter of a polytope can
be computed in A3, under the assumption that the diameter is bounded by
a polynomial in the number of facets. On the other hand, we show that it is
Dp-hard to determine the diameter of a polytope given by its facets, where Dp

is the following class of languages defined by Papadimitriou and Yannakakis
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(1984).
Dp = {Lv CiL2:LleNP & L2 6 co-NP}.

Our result partially resolves a long-term open question.

2. Definitions and problems

Let V(P) denote the set of all vertices of a polytope P, E(P) the set of all
edges of P, and F(P) be the set of all facets of P.

Define T(P) to be the 1-complex formed by the vertices and edges of a
polytope P, i.e., T(P) = (V(P),E(P)).

The distance^of two vertices u and v in a graph G, denoted by distancec(u7 v),
is the length of the shortest path between u and v in G. The radius of a vertex
v in <7 is

radiusa{v) = max{cfo's£anceG(v, tt):neG}

and the diameter of a graph G is

diameter(G) = max{radii«S(7(t;) : v € (?}.

The diameter of a polytope P is defined to be the diameter of F(P).
We study the following computational problem:

COMPUTING DIAMETER: given P = {x : Ax < 6}, a set of n
half-spaces in m dimensions, compute the diameter of F(P).

The following are two related decision problems,

o DIAMETER: given a polytope P = {x : Ax < b} and an integer
k, is k the diameter of T(P)?

o RADIUS: given a polytope P = {a; : Ax < 6}, a vertex v of P,
and an integer ky is radius^p^(v) = k?

3. The TVP-hardness of computing DIAMETER

When a graph has N vertices, using Dijkstra's shortest path algorithm, the
diameter can be computed in O(N3) time. However, in general, the number
of vertices of a polytope may be fi(nm/2). Only when the dimension is fixed,
can breadth-first search be used to compute the diameter of a polytope in
polynomial time.
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In this section, we give a proof that DIAMETER is iVP-hard. The idea of
the proof will be used in the next section to show that DIAMETER is in fact
Dp-hard. The reduction is from the following iVP-complete problem (see Karp
1972 and Garey & Johnson 1979).

EXACT PARTITION: given a finite set A = {su..., s2m} of integers,
is there a subset A! C A with |J4'| = m and

£*= E «

3.1. The basic reduction. The basic idea is to show that for each instance
A of EXACT PARTITION, we can, in polynomial time, construct a polytope
PA with a polynomial number of faces and an integer k such that

,. . m \ f ^ *f -A has an exact partition, / o 1Ndiameter(PA) = < , , . r A , , ^ .... (3.1)v / Ĵ fc — 1 if A has no exact partition. v

Note first that EXACT PARTITION with A = {su...,s2m} is equivalent
to an integer linear program of the following simple form ILPl (see Korte &
Schrader 1981).

maximize ICHS x%
subject to

2m .,

2m i 2m

t=l

1 zm
ix < - V d

x, € {0,1}

where 5 = YA™\ si> %ax = maxt s,-, and dt- = smax — s,\

LEMMA 3.1. (KORTE AND SCHRADER) A has an exact partition iff ILPl has
an optimal solution of value m. E

Note also that all coefficients in ILPl are non-negative. Let M = ( S ^ i si)+
1. We modify ILPl to the following integer linear program: ILP2
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maximize Zw=i xi
subject to

2 m . . , 1

2m H 2m

xi e {0,1}

Clearly, ILPl has an optimal solution of value m iff ILP2 has an optimal
solution of value m. Further we chose e = j ^ in ILP2 so that the linear
programming relaxation of ILP2 is non-degenerate.

PROPOSITION 3.2. When e = ^7, the polytope defined by the linear program-
ming relaxation ofILP2 is non-degenerate.

PROOF. Suppose the polytope defined by the linear programming relaxation
of ILP2 is degenerate, then there are 2m +1 inequalities that are satisfied with
equality by a common point x. This implies that

Case 1: X{ 6 {0,1}, i = 1,2,..., 2m. In this case, one of the first two inequalities
is tight which implies that 2e is an integer, a contradiction.

Case 2: \{i : Xi € {0,1}}| = 2m — 1. Without loss of generality, assume
0 < xi < 1. Then,

2m 1
I + Si)xi = - 5 + mM + c

t=i 2

2m -, 2m

t=l " i=l

After eliminating xi, we see that there is an integer c, such that

_ c
e~2dl

which contradicts with our assumption that e = —7, and therefore the propo-
sition follows. •
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PROPOSITION 3.3. The value of the optimal solution ofILP2 is either m or
m - 1 .

PROOF. This is because all x = (xi, . . . ,x2m) with E^ i^ t = m - 1 are
feasible solutions to ILP2 and no x with Y%™\ #t > m + 1 is a feasible solution
to ILP2. •

Consequently,

LEMMA 3.4. ILP2 has an optimal solution of value m if A has an exact parti-
tiony otherwise the optimal value is m — 1. •

By relaxing the integrality constraints in ILP2, we obtain a polytope PA

defined to be the set of x satisfying

2m -.
t + Si)xi < -S + mM

2m -. 2m

]P(M + di)x( < ~Yldi~
t = l Z i=l

0 < Xj < 1

Geometrically, PA is a polytope obtained from the unit 2m-cube by cutting
it with two half-spaces with non-negative coefficients. We denote the associated
boundary hyperplanes by HS\ and HS2 in the following discussion. Now 0,
the origin of 2m-space, is a vertex of PA, and the diameter of PA is bounded
by 2m + 4. This latter fact follows immediately from

LEMMA 3.5.

2 if A has an exact partition,
1 if A has no exact partition.

PROOF. We first prove that radiusr(P*A)(0) < m+2, if A has an exact partition,
and radiusr(P'A)(0) < m + 1 otherwise.

The set of vertices in P'A can be partitioned into three subsets;

o Vo: the set of all vertices lying neither on HS\ nor HS2')

o V\: the set of all vertices lying on one of HS\ or HS2j but not both, and
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o V2: the set of all vertices lying on both HS\ and HS2.

Note that all components of a vertex in Vb are either 0 or 1. Since the linear
system (3.2) is non-degenerate, all vertices in V\ have exactly one non-integer
co-ordinate and all vertices in V2 have exactly two non-integer co-ordinates,
and all other co-ordinates are either 0 or 1.

It follows from Proposition 3.3, that the number of components of value 1
of a vertex of P'A is bounded from above by m if A has an exact partition, and
by m — 1 otherwise.

Note first that the distance from 0 to each vertex v in Vo is equal to the
number of components of value 1 in v, which is bounded from above by m if A
has an exact partition, and by m — 1 otherwise.

Consider a vertex v in VJ for i e {1,2}. Without loss of generality assume
v is on HSi and v = (vi, . . . , v2m) with Vj = 1 for 1 < j < /, v/+i and v/+t-
non-integral, i e {1,2}, and Vj = 0 for / + i < j < 2m. Note that I < m if A
has an exact partition, and / < m — 1 otherwise.

Let if = K , . . . , t 4 n ) with v'j = 1 for 1 < j < I + i - 1 and vj. = 0
for / + 1 < j < 2m. Using non-degeneracy, we see that if € V(P'A) O K-i-
Note that (iT, if) € E{P'A) because we can obtain the basic feasible solution
associated with v from the one associated with if by replacing 27+, = 0 by
HS{. Consequently, the distance from 0 to a vertex v in V{ is bounded by / + i
(a two step induction.)

We now prove that radiusr(p'A)(O) > m + 2, if A has an exact partition, and
radiusr(p^)(6) > m + 1 otherwise.

By adding slack variables, the linear system (3.2) takes the form

2m 1
J2(M + 8i)xi + zx = - 5 + mM + e
1=1 2

2m j 2m
e (3.3)

Xi,Vi,zk > 0

Note that, the set of ftasic variables associated with the vertex 0 is BV\ =

First of all assume that A has an exact partition and without loss of gen-
erality, assume {si,...,sm} and {sTO+i,...,«2m} is one. Since the linear system
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(3.2), and hence (3.3) is non-degenerate, there is a basic feasible solution of the
following form:

(xi = 1) k (yi = 0) 1 < i < m

(*m+l = Cl) & (ym+l = 1 - C l ) & (*m+l = 0) (3.4)

(*m+2 = C2) & (?/m+2 = 1 ~ C2) & (*m+2 = 0)
(XJ =0) k (y5 = 1) m + 3 < j < 2m

where 0 < Ci,C2 < 1-
The vertex associated with the above basic feasible solution is

and the associated basic variables are

BV2 =

^From \BVX - BV2\ > m + 2 it follows that distance^, v) > m + 2 and
hence radius^p' )(0) > rn + 2.

Similarly, if A does not have an exact partition then we can show radiusr(p'A)(0)
> m + 1, by considering the basic feasible solution (1, . . . , 1, £i, £2? 0, ...0) where
there are m — 1 l's. •

Consequently,

THEOREM 3.6. RADIUS is NP-hard. •

We now show how to construct the polytope PA from P'A, which satisfies
(3.1).

^From the definition of P'Ay we have for all i: 1 < i < 2m, t/?t- = ( / i i , . . . , //2m),
with /xt- = 1 and fij = 0, for all j ^ i: 1 < j < 2m, are vertices of P'A. Moreover,
they are exactly the set of all neighbors of 0 in T(P'A).

By adding the constraint Ho = {x : Y%=i Xi > 1} to PA, we obtain a new
polytope PA in which Fo = Ho O PA is a face. Fo is a (2m - l)-simplex with
the set of vertices {t#i , . . . , W2m}-

Now the idea is to construct a polytope P2m(^b> m + 6), a stack of simplices
with base Fo, which has the following properties

1. there is a vertex o in P2m(-fo,m + 6) such that the distance between o
and any vertex in FQ is m + 6.
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2. PA = P'X U P2m(Po, m + 6) forms a polytope.

First, we give the construction of P2m(Po> TO + 6). Then, we shall show that

= radiusr(pA)(o) = racftusr(P^)(O) + m + 5.

In the following procedure, let A = Jl/2m, the distance from 0 to the
hyperplane J2% :rt = 1 and the symbol « denotes the rational approximation
with a predefined precision.

Procedure to Define P2m(Fo,k):

1. P2m(^o5 0) is defined to be the simplex with the set of vertices {wi,..., t/?
, where 3Q = 0;

2. for all k > 0, P2m(Po> A;) can be constructed from P2m(-fb» A;— 1) as follows:

(a) dk = | A

(b) cjb «

(c) 4 = ±A
(d) L e t J ^ =

(e) Let ok = (a*,...,<**), where a*

(f) Let polytope Qk = P2m(F0, * - 1) n i/^.

(g) Let polytope P2m(Po, A:) be the convex hull of {ok}U V(Qk).

Note that ok in the above procedure is the point on the ray {x{ = Xj : 1 <
hj < 2m}, whose distance from 0 is dk, and ^ is the hyperplane parallel to
Ho, whose distance from 0 is dk.

The Schledgel diagram of P<*(Fo, A:) where d = 3 and A: = 2 is given in Figure
3.1.

LEMMA 3.7. for all k > 0,

1. The polytope P2m{Fo,k) has 2(k + l)ra + 1 vertices and 2(k + l)ra + 1
faces;

2. P'X U P2m(Po> k) forms a polytope;

3. All coefficients in the new faces have size bounded polynomially in m and
A:.
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Figure 3.1: An Example in 3-Space

PROOF. We prove the theorem by induction on fc.
Clearly, the lemma and the following statements are true when k = 0.

1. ok is a vertex of P2m(Foy k) and is the intersection of exactly 2m faces;

2. All neighbors of ok in P2m(Foi k) are on the hyperplane defined by Hk.

Assume the Lemma and the above statements are true for k — 1. We now
prove that they are true for fc.

Note that the hyperplane defined by Hk is parallel to the hyperplane defined
by iJfc-i and Hk separates ojb-i and ok from Qk. Moreover, V(P2m(Fo, k -1)) -
{4- i} C V(Qk).

Applying the induction hypotheses, we see that ok-\ is a vertex of P2m(Fo, fc—
1) and is the intersection of exactly 2m faces and all neighbors of ok in P2m(̂ b> k—
1) are on the hyperplane defined by fl*-i- Therefore, HkClQk contains exactly
2m vertices of Q*, and those 2m vertices are all the new vertices introduced in
Qk, which do not belong to V(P2m{F0j k - 1)), and hence,

\F(Qk)\ = \F(P2m(FQ,k-l))\ + l.

Since, ok G int P2m(Fo,k - 1) and the hyperplane defined by Hk, which
contains 2m vertices of Qk, separates ok from Qjb, P"A U P2m(Fo>k) forms a
polytope, and ok is a vertex of P2m(Fo,k) and is the intersection of 2m faces
of P2m(Fo,k) and all neighbors of ok in P2m(Fo,k) are on the hyperplane Hk.
Moreover,

2m =

Therefore,

IV(P2m(F0, k))\ = \V(P2ro(F0, fc -
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Similarly,

{F{h k))\ = \F(P2m(F0, k - 1))| + 2m =

Note also, all coefficients in the new face have size bounded polynomially in m
and k. •

LEMMA 3.8.

diameter {PA) = radiusr(pA)(6) + m + 5.

PROOF. ^From the construction of PAj we have for all vertices v € V'(PA) —
V(P'A), distance(o, v) < m + 5, and distance(o,Wi) = m + 6 (1 < i < 2m).
Thus, for all u € V(PA), distancepA{o, u) = distancep^(0, r?)+m+5. Therefore,

radiusT(pA){o) = radiusr(PA)(Q) + m + 5 > 2m + 6.

We now prove that diameter[P/^) = radiusr(pA)(o)-
This is true because for all pairs of vertices in P^, their distance in PA is

no more than their distance in P4, which is bounded by 2m + 4; and for all
vertices in V(PA) — V(P'A), 6 is the vertex with the largest radius. •

THEOREM 3.9. DIAMETER is NP-hasd.

PROOF. The theorem is a simple consequence of Lemmas 3.5 and 3.8. •

4. Polytope products and D^-hardness
Let P\ and P2 be two polytopes in, respectively, m\ and 7712 space. Pi © P2j

the product of polytopes Pi and P2, is a polytope in mi + m2 space, such that

PiQP2 = {(xu. ..,xmi9yu... ,yma)|(a:i,... ,xmi) G Pi k (yu... ,2/m2) € P2}.

Note that 0 is associative.
Algebraicly, if Pi = {x : Aix < 61} and P2 = {r/: A2J/ < 62} then

P\ 0 A = {(*,y) : ̂ 1 ^ < 61,^2^ < 62}.

Therefore, we have f(PiQP2) = f(Pi)+f(P2), where / (P) denotes the number
of faces of polytope P.

We now show how T(Pi 0 P2) is defined in term of T(Pi) and T(P2).
The product of two graphs G(Vi, E2) and G(V2, E2), denoted by Gi 0 G2j is

a new graph G(V, E) with V = V\ x V2 and

Ei kvx=v2 or ux = u2 & (vi,v2) € E2}.
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PROPOSITION 4.1.

PROPOSITION 4.2.

Diameter{G\ 0 G2) = Diameter(Gi) + Diameter(G2).

•

Let PARTITON-UNPARTITON be the problem of "given (AuA2)t where
A\ = {si, • • •, S2ni} and A2 = {s'u..., s2fl2}, does A\ have an exact partition,
while Ai does not?".

LEMMA 4.3. PARTITION-UNPARTITION is complete for Dp.

PROOF. Clearly, PARTITION-UNPARTITION is in Dp. To prove it is
complete, we see that from any instance a; of a problem in Dp, we can construct
two sets A\ and A2, one for the ATP-predicate of A and one for the co-NP one.
•

THEOREM 4.4. DIAMETER is hard for Dp.

PROOF. We reduce PARTITION-UNPARTITION to DIAMETER. Given
(Ai,A2), we construct two polytopes Pi and P2, respectively, for A\ and A2,
such that Ai has an exact partition iff DIAMETER(T(Pi)) = kh and has
no exact partition iff DIAMETER(T(Pi)) = fc< - 1, where fci # fc2. Let P =
Pi©Pi0P2 . It is easy to see that (AuA2) € PARTITION-UNPARTITION
iff DIAMETER(P) = 2kx + k2 - 1. a

Similarly we can prove,

THEOREM 4.5. RADIUS is hard for Dp.

5. Upper bound for DIAMETER

Consider the following decision problem:

DIAMETER-DECISION: given P = {Ax < b) and k £ M, is diam-
eter G(P) < fc?
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LEMMA 5.1. The problem DIAMETER-DECISION is in U2 under the as-
sumption that the diameters of polytopes are polynomially bounded by the
number of faces.

PROOF. The lemma follows from the facts that in polynomial time, we can
decide whether a point is a vertex of a polytope and whether a pair of vertices
is an edge of a polytope. •

Using binary search and the U2 oracle for DIAMETER-DECISION, we can
show that both DIAMETER and RADIUS are in A3 (under the polynomial
assumption).

6. Open questions

1. Is DIAMETER in the polynomial time hierarchy (see Stockmeyer 1977)
(without any assumption)?

2. Is DIAMETER complete for A3 and the DIAMETER-DECISION com-
plete for II2?

3. Can we approximate the diameters of polytopes in random polynomial
time?

4. Can we improve the straightforward method for COMPUTING DIAME-
TER (especially for fixed dimension)?
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