
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



 



A N A L Y S I S OF TWO SIMPLE H E U R I S T I C S

ON A RANDOM I N S T A N C E OF k - S A T

by

Alan Frieze
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

and

Stephen Suen
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

510.6
C28R
92-152

Research Report No. 92-152
December, 1992



Libraries
Carnegie Melien Umversitv
Pittsburgh PA 15213~389d



ANALYSIS OF TWO SIMPLE HEURISTICS ON A
RANDOM INSTANCE OF A>SAT

Alan Frieze*and Stephen Suen
Department of Mathematics,
Carnegie Mellon University,
Pittsburgh PA15213, U.S.A.

December 5, 1992

Abstract

We consider the performance of two algorithms, GUC and SC studied by Chao
and Franco [2], [3], and Chvatal and Reed [4], when applied to a random instance u
of a boolean formula in conjunctive normal form with n variables and [cn\ clauses
of size k each. For the case where k = 3, we obtain the exact limiting probability
that GUC succeeds. We also consider the situation when GUC is allowed to have
limited backtracking, and we improve an existing threshold for c below which almost
all a; is satisfiable. For k > 4, we obtain a similar result regarding SC with limited
backtracking.

1 Introduction

Given a boolean formula u in conjunctive normal form, the satisfiability problem (SAT) is to
determine whether there is a truth assignment that satisfies a;. Since SAT is NP-complete, one
is interested in efficient heuristics that perform well "on average," or with high probability.
The choice of the probabilistic space is crucial for the significance of such a study. In
particular, it is easy to decide SAT in probabilistic spaces that generate formulas with large
clauses [7]. To circumvent this problem, recent studies have focused on formulas with exactly
k literals per clause (the k-SAT problem). Of particular interest is the case k = 3, since this
is the minimal k for which the problem is NP-complete.

Let Vn be a set of n variables. Consider the space ftj£;n of all m = [cnj clause formulae
over the variables in Vn with exactly k literals per clause. We assume that each clause uses
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k distinct variables to avoid trivial complications. Experimental evidence [8, 9] strongly
suggests that there exists a threshold 7, such that formulas are almost surely satisfiable for
c < 7 and almost surely unsatisfiable for c > 7, where 7 is about 4.2. This has not been
proven rigorously, but such a threshold (namely c=l) is known to exist for 2-CNF formulas
[6, 4].

Most practical algorithms for the satisfiability problem (such as the well-known Davis-
Putnam algorithm [5]) work iteratively. At each iteration, the algorithm selects a literal
and assigns it the value 1. All clauses containing this literal are erased from the formula,
and the complement of the chosen literal is erased from the remaining clauses. Algorithms
differ in the way they select the literal for each iteration. The following three rules are the
most common ones:

1. The unit clause rule: If a clause contains only one literal, that literal must have the
value 1;

2. The pure literal rule: If a formula contains a literal but does not contain its complement,
this literal is assigned the value 1;

3. The smallest clause rule: Give value 1 to a (random) literal in a (random) smallest
clause.

Broder, Frieze and Upfal [1] analysed an algorithm based entirely on the pure literal rule.
They showed that in the Cl^]n probabilistic space, the pure literal rule alone is sufficient
to find, with high probability, a satisfying assignment for a random formula u € n£^n, for
c = m/n < 1.63. On the other hand, if c > 1.7, then the pure literal rule by itself does not
suffice.

Chao and Franco [2],[3] and Chvatal and Reed [4] analysed two heuristics GUC and SC
based on the small clause rule:
begin

repeat
choose a literal x;
remove all clauses from u; that contain x and remove x from any remaining clause;
if a clause becomes empty - HALT, FAILURE;

until no clauses left;
HALT, SUCCESS

end

The algorithms GUC and SC differ in how the literal x is chosen. In GUC, x is chosen at
random from a randomly selected clause of smallest size. SC (see Chvatal and Reed [4] for
a complete description of SC) differs from GUC in that if there are no clauses of size one or
two, then x is chosen at random (or arbitrarily) from the set of all free literals. Since at least
one clause is satisfied each time when GUC assigns a value to a variable, it is intuitively clear
that GUC is likely (probabilistically) to perform better than SC. Algorithm SC however has



the advantage of being simpler to analyse. The reason for this is that since SC only takes
care of clauses of size one and two, there are fewer cases to consider when analysing SC.

The combined results (among other things) in Chao and Franco [2], [3] and Chvatal and Iteed
[4] can be summarized as follows. For 3-SAT, if c < 2/3 then SC succeeds with probability
tending to 1 [4] and if c < 2.99 then the probability that UC (a variant of GUC using only
the unit clause rule) succeeds does not tend to zero [2]. For fc-SAT where fc > 4, if

c<
I * " 8 * -

- 3 / A: — 2 k '

then SC succeeds with probability tending to 1 [4], and if k < 40 and

( k - 1 \ k~2 2*
—-) - — - , (1)

then the probability that GUC succeeds does not tend to zero [3].

Our first theorem gives the precise limiting probability that GUC succeeds when applied to
a random instance of 3-SAT. Let c3 « 3.003 be the solution to the equation

3c-21ogc = 6-21og(2/3),

and
f(x) = fe(x) = j ( l - x2) + log x, xe (0,1).

When c < c3 we have f(x) < 1 for all x G (0,1).

Theorem 1 Consider applying GUC to a random instance of 3-SAT with n variables and
\cn\ clauses.
(a) Suppose that c < 2/3. Then

lim Pr(GUC succeeds) = 1.

(b) Suppose that 2/3 < c< c$. Let a be the unique root of f(x) = 0 that is strictly less than
1. Then

lim Pr(GUC succeeds) = exp ( - /* dx\ .
4x(l - f(x)) )

(c)Ifc>c3then
Jim Pr(GUC succeeds) = 0.

Chao and Franco [2] report that using GUC in a backtracking algorithm can be quite suc-
cessful (and possibly be polynomial expected time for certain values of c). We describe (in
Section 5) a modification of GUC called GUCB that allows a limited amount of backtrack-
ing when an empty clause is produced. We obtain the following result by showing that for
sufficiently small c, the backtracking does not change the state of GUC by a great deal.



Theorem 2 Consider GUCB when applied to a random instance of S-S AT with n variables
and [cnj clauses. If c < c$ then

Jiin Pr(GUCB succeeds) = 1.

We next turn our attention to algorithm SC. It is possible to show that the assertions in
Theorems 1 and 2 hold for SC. In fact, our proof of Theorem 1 can be extended to obtain
the precise limiting probability that SC succeeds when applied to a random instance of k-
SAT. However, the more interesting question is: for what values of c will SC, with limited
backtracking as in GUCB, succeed with probability close to 1? We answer this question with
our next result.

Assume k > 4. Let

It is easy to see that pz(x) is unimodal, achieving a maximum of

2_kc_k-_2 (k-3\k~3

3 2*-3ib-l \k-l)

when x = 2/(Jfc - 1). For

Jfc-2'

let 0 < /?o = Po(c) < Pi = /Mc) < 1 be the two solutions of the equation p$(x) = 2/3. We
prove the following theorem.

Theorem 3 Suppose that k > 4. Lei c* 6e £/ie maximum value of c such that

1 fc-3 i fc_3\ _ _ ,
_̂  J. .

Then when SCB is applied to a random instance of k-SAT with n variables and [cn\ clauses
where c < Ck, we have

Jirn Pr(SCB succeeds) = 1.

Write Ck = fjk2k/k. It is possible to show that as k —» oo, r/k —• */* where ;/* can be defined
similarly as 77*. Numerical calculations show that 7/* « 1.817, 7/4 w 1.3836, 7/5 « 1.504,
7/10 « 1.686, and that rjk is increasing in fc. Theorem 3 gives a constant c* such that almost
every formula u with n variables and \cn\, with c < c*, clauses of size A: is satisfiable. This
improves, by only a constant factor, a similar result in [4]. Also, c* (for 4 < A; < 40) is
smaller than the right hand side of (1), and we believe that if the limiting probability that
GUC succeeds is positive, then GUC with limited backtracking (as described later) succeeds
with probability 1 — o(l). It is thus very likely that when applied to random instances of



fc-SAT for k > 4, GUCB has a higher threshold of success than SCB. At present, we can only
characterize the critical behaviour of GUC and GUCB, when applied to random instances
of fc-SAT with k > 4, using a system of k — 2 polynomial equations whose properties we have
difficulty in penetrating analytically. It seems unlikely that the exact thresholds for GUCB
can be rid of the factor 1/fc (see definition of c*).

The basis of our proof of Theorem 1 is that the intermediate states of GUC (or SC), when
applied to a random instance of fc-SAT, can be represented by a Markov chain which we
describe as follows. Consider GUC when applied to a formula u chosen at random (with
equal probability) from the space Q,$n where m = [^J- F o r V ^ *n> *et ^i(Y) b e t h e s e t

of all clauses of size j chosen from a set V of variables. Use v to denote the number of
variables whose truth values are not yet determined by GUC at an intermediate stage. We
call this stage v and so GUC starts at stage n. For the purpose of analysis, all empty clauses
are assumed to be removed by GUC as soon as they are created, and GUC is allowed to
run until the set of clauses is exhausted. Hence, GUC succeeds if and only if the number of
empty clauses created is zero. Let JVt = N{(u) (i = 0 ,1 ,2 , . . . , k) be the number of clauses
containing t literals at stage v of GUC. Thus N{ is a function of v. Note that if Vu is the set
of variables whose truth values remain unassigned by GUC at stage i/, then a clause with
size i (1 < i < k) in the remaining set of clauses at stage v is equally likely to be a clause
in CkiVv) (since each clause initially is equally likely to be any clause in Ci(Vn)). Hence
N = (JVo, JVi,..., Nk) is a Markov chain.

We next write down the transition probability of TV. Use B(r,p) to denote a binomial
variable with parameters r and p and note that v decreases by 1 at each stage. Write
ANi(u) = Ni(u — 1) — Ni(v) as the change from stage v to stage v — 1. Then AiV, are
binomial variables (conditional upon N(v)). We shall write down the distributions of AJV,-
under the different cases where the minimum size of the clauses is i. For i = 1 ,2 , . . . , Jfc, we
write Xt((yo, J/i,..., Vk)) = 1 if min{j | y, ^ 0,1 < j < k} = i, and Xt((yo, l/i, V2,..., Vk)) = 0
if otherwise. Also, Xo(y) = 0 always. Consider the stage v when GUC has just assigned 1 to
a literal x in clause C and is about to remove clauses that contain x and all occurrences of x
from other clauses. Let Aj,o be the number of clauses of size j containing literals x or x (but
not including C). Let AJti be the number of clauses with size j containing literal x (but not
x as all variables in a clause are different). It is simple to check that given N = -/V(^), we
have for j = 1 ,2 , . . . , k that

A^u) = B(A i )O,l/2)

Then for j =O,l, . . . ,Jb,

where A0)0 = Afc+i,i = 0. Note that if Ni(v) = 0, then AN0(u) = 0 with probability 1. Note
also that if Ni(u) > 1, then a clause of size one (with literal x say) is chosen at stage v and
the probability that AN0(v) = 0 equals the probability that none of the other Ni(v) - 1



clauses contains the literal x, which is precisely (1 — l/2v)Nl~1. Hence,

Pr(GUC succeeds) = E [ n (l - 77") * " * ] , (2)

where n\ is the stage when all clauses are removed. Theorem l(b) is obtained by finding
accurate estimates for Y,v{N\{y) - l)t/(2*0 in the case of 3-SAT. Theorem l(a) and (c) are
shown using monotonicity arguments.

We shall also require similar statements for SC. Let Nj(u) be the number of size j clauses
remaining at stage v when SC is applied to a random instance of fc-SAT with n variables
and m clauses. Then similar to GUC, N\v) is a Markov chain with initial state Nf(n) =
( 0 , . . . , 0, m) and transition probabilities given by

W ^ "))' if * = °>J '2 '
A / + i M _ Ajo ( l /)5 otherwise,

where Aofo = ^i+1,1 = 0 and for j = 1,2, . . . , k

= 0,1,2,
otherwise,

Similar to (2), we have

Pr(SC succeeds) = E \f[ (l - i - ) ' " * , (3)

where n[ is the stage when all clauses are removed.

The layout of this paper is as follows. We concentrate on showing Theorems 1 and 2,
while we shall only sketch our proof of Theorem 3. In the next section, we collect some
useful properties of a Markov chain Xt which will be used to approximate N\ in proving
Theorem l(b). We shall then prove parts (a) and (c) of Theorem 1 in Section 3 by developing
monotonicity arguments for comparing different Markov chains. Theorem l(b) is proved in
Section 4 by applying the results stated in Section 2. In Section 5, we describe how GUC is
allowed to backtrack, and prove Theorem 2. In Section 6, we sketch briefly how our proof
of Theorem 2 can be extended to proving Theorem 3.

2 A Markov chain

Use B(m,p) to denote a binomial variable with parameters m and p, and write bj = bj(myp)
for the probability that B(m,p) equals j . We assume throughout this section that mp <
A* < 1. The big O terms in this section are uniform in m and p (but may depend on A*).



We consider a Markov chain Xt with transition probabilities defined as follows. If Xt = 0,
then AXt = Xt+i — Xt equals B(m,p) in distribution; otherwise AXt equals B(m,p) — 1 in
distribution. We assume Xo > 0 and so X = 0 is a reflecting barrier. As we are interested in
bounds that are uniform in m and p, we need to consider a Markov chain Yt which is similar
to Xt except that in the one-step transitions of Yi, we have a Poisson variable P(X) in place
of JB(rn,p). It will be clear that the two chains Xt and Yt are very similar when mp = A,
although it is not possible to couple them so that Xo = Yo and Xt < Yt for all t > 0. We let
A = mp in this section.

Note that Xt has a steady state distribution, denoted by ?r, satisfying

t+i
7Tt = 7TO6, + ^2 *j&t-j+l , Vt > 0.

Writing Gx(s) = X^o5*71"* M ^ e probability generating function of the steady state distri-
bution, it follows from the above equations that

Gx(s) = xo
t>0 j>l t>0

= 7TO(1 ~p + ps)m + -(GX{S) - 7TO)(1 -
s

giving

As Gx(l) = 1? w e have Xo = 1 — mp and

- mp)

Since (1 — p + ps)m < exp(—A + A3) for all s, we see that

s exp(A - A3) - 1

for all s between 1 and the radius of convergence of G. (It can be checked that G(s) is the
probability generating function of the steady state distribution of Yt.) Since A < A*, G(s)
exists for all s < rj, where rj > 1 is a constant depending on A* only, (rj is in fact the unique
root bigger than 1 of $exp(A* — \*s) = 1.) Thus, (5) holds for all s satisfying 1 < s < rj.
Note also that from (4), the mean of the steady state distribution of Xt is

v^ • mp(2 - p — mp)
= I>= ; '• (6)

We would like to consider the number of times that Xt returns to 0 in a certain time period.
To do this, we need to collect some preliminary results. Suppose Xo = 1. Let Hx be the
time elapsed when Xt first hits 0. (H is defined accordingly for Yt with lo = 1.) Note that

= 1 + L\ + . . . + LB in distribution,



where B = J5(m,p) in distribution and LI,...,LB are independent copies of Hx* Hence,
writing Mx(0) = E[exp(0Hx)]j we have

Mx(O) = e\l-p + pMx(e))m- (7)

By considering the functions ft(y) = e*(l - p + py)m, f2(y) = exp(0 - A + Ay), f3(y) =
exp(0 - A* + \*y) and f(y) = y, and by noting that /i(y) < f2(y) for all 0 and y and that
/2(y) < /3(y) for all 5 and y > 1, we have

M*(0)<M(0)<M*(0) , (8)

where the first inequality holds for all 0 < r% and the second inequality holds for 0 < 0 < r£,
and r!J is the radius of convergence of Af*(0), and M(0) and M*(0) respectively are the
smallest roots of

M(0) = exp(0 - A + XM(0)), (9)

M*(0) = exp(^ - A* + \*M*(0)). (10)

(Again, it can be checked that M is the moment generating function for H.) By observing
that r!j; is the value of 0 at which the line /($/) = y is a tangent to the curve f(y) =
exp(0 — A* + A*y), we find that r£ = A* — log A* — 1. Further, by considering 0 close to r$,
we see that \*M*(0) < 1. Also, we shall need to bound M"(0) = ^ . From (9), we have

M\0) = M(0)/(l-\M(0))

M"(0) =

Using the fact that \M*{0) < \*M*(0) < 1, it follows from the second inequality in (8) that
for 0 < 0 < rj,

Also, for 0 < 0, we have

V " ' - ( 1 - A ) 3 - ( 1 - A * ) * '

Thus, for any 0 < (1 — e)r$ (where e > 0 is any fixed constant), we have

M"(0) < A, (11)

where A is a fixed constant (depending only on A*). Note that from (7) and (9), we have

E[HX] = E[H) = 1/(1 - A). (12)

Consider next that XQ = 0. For n > 1, let rn be the time elapsed when Xt first returns
to 0 for the n-th time. We shall obtain a concentration result for rn (when n is large).
Observe that TX equals Hx in distribution (this is because X\ has the same distribution



when Xo = 0 or Xo = 1) and so Tn is distributed as a sum of n independent copies of Hx-
Hence, E[rn] = n/(l — A). We shall use the inequalities

P r ( r n > A ) < Mx(0)nexp(-A0),
P r ( r n < A ) < Mx(-0)nexp(A0),

for any 0 > 0. As Mx(0) < M (0) by (8), we shall bound M(0). Using Taylor's theorem and
(12),

M(0) = 1 + 0/(1 - A) + M"(()02/2,

for some f between 0 and 0. Using (11), we have that as 0 —• 0,

M"(0 = 0(1),

which implies that
M{B) = 1 + 0 / ( 1 - A) + O(62).

Hence, for any A > 0 and small 0 > 0,

Pr(rn > n/(l - A) +

< M(0)n exp(-n0/(l - A) - A0U1'2)

< exp(O(n02) - ABn1'2).

Also, we have for any A > 0 and small 0 > 0,

Pr(rn < n/(l - A) - An1/2)

< M(-0 ) n exp(n0/(l - A) - AOn1'2)

< exP(O(n02) -

By putting 0 = n"1/2, we have for any A > 0 and for large n

Pr(|rn - n/(l -mp)\> An1'2) = 0 ( 6 ^ ) . (13)

We therefore have the following lemma.

Lemma 1 Let rn be the time elapsed when Xt first returns to 0 for the n-th time given that
Xo = 0. Then for any A > 0, we have as n —» oo,

Pr(|rn - n/(l - A) | > An1'2) = O(e~A).

Lemma 2 Suppose that Xo = n for any integer n > 1. Let Hn = min{< | Xt = 0}. T/ien
/or any A > 0,

P r ( | # n - n/(l ^ A) | > An1/2) = O(e'A). (14)

A/so, toe ât>e for any A > 0

Pr(3< < Hn s.t. Xt > n/(l - A) + An1'2) = O(e~A). (15)



Proof Simply observe that Hn is distributed as a sum of n independent copies of
and so Hn equals rn in distribution, which gives (14). Equation (15) follows from (14) and
the fact that Xt decreases by at most 1 in each transition. •

Lemma 3 Let NT be the number of times that Xt equals 0 in the time interval [0, T], given
that Xo = 0(log10 T). Then for any A > 0, we have for any constant A! > 0 that

Pr(| NT - T(l - A) I > AT1'2) = O(e~A + T~A'). (16)

Proof Use H to denote the minimum value of t such that Xt = 0. Using (14) with
n = O(log10T), we have for any constant A' > 0 that

P r ( # > log11 T) = 0(e-lo«6T) = O(T'At).

Hence, with error probability O(T~A') for any constant A1 > 0, we may assume N'T > NT >
N!p_lo n T in distribution, where N'T is the number of times that Xt = 0 in the interval [0, T]
given that Xo = 0. Now Lemma 1 implies that as t -• oo,

Pr(|7V; — *(1 — A) | > At1'2) = Oie-^1-^) = O(e'A).

The lemma now follows by taking t = T and t = T - log11 T. D

Lemma 4 Suppose that Xo = 0. With T\ as defined in Lemma 1, we have for any A > 0,
there is a constant p € (0,1) and a constant C > 0 so that

Pr(rx > A) < Cp'A. (17)

For each t, let Rt = min{fc > 1 | Xt+k = 0}. That is, Rt is the waiting time after time t
until the next return to 0. Then for any A > 0, there is a constant p € (0,1) such that as
T-+OO,

Pr(3* G [0, T) s.t. Rt>A) = O(Tp'A), (18)

and
Pr(3t € [0, T] s.t. Xt>A) = O(Tp'A), (19)

Proof Since T\ equals Hx in distribution, we have

> A) < Mx(0)exp(-Ae).

Inequality (17) follows by putting 0 = r^/2. To show (18), let Si be the time elapsed between
the (i — l)-th and the i-th return to 0. That is, each Si equals T\ in distribution. Let N be
the number of times that Xt = 0 for t € [0,T]. As N < T, we have from (17) that there is
a constant p G (0,1) such that

Pr(3i < T s.t. Si > A) = O(Tp~A),

from which (18) follows easily. Inequality (19) follows from (18) and the fact that Xt decreases
by at most 1 in each transition. D

10



Lemma 5 Suppose that Xo = O(log10T). Then for any A > 0 and for large T, there is a
constant p G (0,1) and a constant C > 0 such that

Pr(XT >A)< Cp~A + 0{T'A'\

for any constant A' > 0.

Proof Let H be as defined in the proof of Lemma 3. Note that for t > H, it follows
from a simple coupling argument that Xt is bounded above in distribution by a steady state
chain X[ with the same transition probabilities as those of Xt. Hence,

Pv{XT>A) < Pr(XT>A\H<T)Pr{H<T) + Pr(H>T)

< Pr(X't > A)Pr(H <T) + Pr{H > T).

Now from (14), we have
Pr(# > T) = O(r-A'),

for any constant A1 > 0. (Note that although Pr(H > T) should be exponentially small,
our bound here will suffice for future applications.) To bound Pr(XJ > A), we note that
according to (4) and the comments that followed, the moment generating function Mw(0)
of X[ is properly defined for 0 < logrj. Hence, similar to proof of (17), there are constants
p € (0,1) and C > 0 such that

Pr(X; > A) < Cp~A.

The lemma now follows. D

Suppose that Xo = 0. With rn defined as before, let Wn = ]d=o^t- We would like to show
that Wn is concentrated (as n —> oo). Note that

where Ui,...,Un are independent copies of W\. To find E[Wi], let W- be the sum X\+.. .+Xr

given that Xo = i and T is the first time that X gets to 0. Then it can be checked that

w; = w{ + (i-i)Hx + wu,
W[ = B + W'B,
Wi = B + W'Bi

where all equations hold in distribution only and B is a binomial variable with parameters
m and p. It follows that

and so
mp(2 —p — mp)

2(1 - mp)2 '

11



We therefore have

We first bound W\. Using (17), we have

> log2 n) = O{n-A),

for any constant A > 0. (For the rest of this section, we use A to denote a constant
independent of n, m,p). Also we make no attempt to minimize the powers of log n or log T.)
Also, using Lemma 1, we have that

Pr(rn > 2n/(l - A)) = 0{rCA).

Thus, using (19), we have

Pr(3< € [0,rn] s.t. Xt > log2n) = 0{rTA).

Using the bounds on T\ and Xt and by noting that W\ = ]Cl=o-̂ <) w e have

n) = 0(n-A), (21)

(22)

Next let Ui = min{C/,,log4 n}, t = 1,2, . . . , n. Then we have

Pr(3i s.t. Ui ± Ui) = O(n~A).

Note that
E[Ui] = E[Wk](l - O(n-A)) + O(n~A log4 n). (23)

Since Ui,...,Un are independent and bounded, we apply Hoeffding's theorem to obtain

> vATlog5nJ < 2exp(-21og2n) = O(n~A).

It therefore follows from (20), (22) and (23) that

( 2 4 )

We now use (24) to prove the following lemma.

Lemma 6 Suppose that Xo = O(log10T). Let ST = E?Lo*<- Then we have

Pr

/or ant/ constant A > 0.

> T1'2log6r) = (25)

12



Proof Let N be the number of times that Xt = 0 for t € [0,T] and let H be the
minimum value of t such that Xt = 0. Then we have

H

WN^<ST<WN + ^XU
t=o

in distribution. Lemma 3 gives that

Pr( | N - T(l - mp) |> T^log2 T) =

Using (24), we have

From Lemma 4 (see also proof of (21)), we see that WN-I differs from WN by at most log4 T
with probability 1 — O(T~A). Hence, we have a similar estimate for W^-i. Using Lemma
2, we see that with probability 1 — 0(T~A), we have

and
H = O(log10).

Thus, with probability 1 - 0{T~A), we have

t=0

The lemma now follows. D

3 Proof of Theorems l(a) and l(c)

We shall first assume Theorem l(b) and prove Theorem l(c) by a monotonicity argu-
ment to show that when c > C3, the probability that GUC succeeds is o(l). We first
consider the monotonicity argument. Suppose that we have two random instances of k-
SAT on n variables with m and m' clauses of size k respectively. Assume m < m'. Let
N(v) = ( W o O / ) , ^ ) , N2(v),N3(v)) and N(u) = (^0(^,^1(^,^2(^,^3(1/)) denote their
respective states in GUC when there are v variables whose truth values remain undeter-
mined. We aim to show that N(v) < N(v) in distribution by a coupling argument. Note
that the transition probabilities of N are given at the end of Section 1 and that the transition
probabilities of N are defined similarly with A replaced with A and N with N. Note also
that N(n) = (0,... ,0,m) and N(n) = (0,.. .,0,m ;) and so N(n) < N(n). We shall show
inductively that if N(v) < iV(i/), then N{v — 1) < N(v — 1) by coupling arguments.
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Lemma 7 If N(v) < N(v), then the chains N and N can be coupled so that N(v — 1) <

Proof Let i > 1 be the minimum integer such that Ni(u) ^ 0. Now for j ^ t,
Mv)) = 0 and x.W")) = 1- Thus, for j ? i,

For j = i, we have N{(u) > 1 and note that if Ni(v) = 0 then

Ni(u) - Xi(N(u)) = 0 < &(„) - 1 = NiC) ~ Xi(N(")),

and that if Ni(v) > 1 then Xii^i1')) — 1> fr°m which we have

Ni(u) - Xi(N(u)) = Ni(u) - 1 < Nt{u) - 1 = &{») ~ Xi(N{*>))>

Therefore, we have for all i = 1 , . . . , k,

)- (26)

Observe next that for any two binomial variables B = B(r,p) and B = J5(f,p) with r < f,
we can couple B and B so that

B < B,
B < T-B.

It follows from (26) that for t = 1, . . . , & ,

Ail0(i/) < AM, (27)

M - Xi(N(v)) - AM < A W - Xi(N(u)) - Aifi(u). (28)

It follows from (27) that for t = 1,. . •, fc,

A W H < AM(i/). (29)

Combining (28) and (29) gives that N(v - 1) < N(u - 1). D

Proof of Theorem l (c ) . For c > c3, we have c > c3 — e for any c > 0. Now for a random
instance Jc of 3-SAT with [(c3 — e)n\ clauses and n variables, Theorem l(b) gives that the
limit (as n —• oo) of the probability that GUC succeeds when applied to Xt is arbitrarily
close to 0 for sufficiently small c > 0. Theorem l(c) thus follows from monotonicity. O

To show Theorem l(a), we apply a result of Chvatal and Reed [4] which can be stated as
follows. Suppose that c < 2/3 and consider applying algorithm SC to a random instance
of 3-SAT with n variables and [crcj clauses. Then the probability that SC succeeds equals
1 — o(l)asn—>oo. Theorem l(a) now follows from the following lemma.
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Lemma 8 Consider applying both GUC and SC to a random instance of A;-SAT with n
variables and m clauses. Then

Pr(SC succeeds) < Pr(GUC succeeds).

Proof Consider applying both SC and GUC to a random instance I of Ar-SAT with n
variables and m clauses. Let N(u) = (AT0(i/),.. .,Nk(u)) and JV'(i/) = (N&),... ,N'k(v))
denote the respective states of I in GUC and SC when there are v variables whose truth
values remain undetermined. Note that N(n) = N'(n) initially and that the transition
probabilities of N(v) and N'(v) are given at the end of Section 1. Note also that if N(v) <
N'(v) then A^o < Aj,0 in distribution. Thus, by following the coupling arguments in proof
of Lemma 7, we have that if N(v) < N'(v) then N(v - 1) and N'(y - 1) can be coupled so
that N{y - 1) < N'(v - 1). This shows in particular that AT0(i/) < NQ(V) in distribution,
and so the lemma follows. E

4 Proof of Theorem l(b)

Assume c € (2/3, C3). Recall that

f(x) = /c(x) = j ( l -a:2) + loga:, x € (0,1),

and C3 is the maximum value of c such that f(x) < 1 for all x G (0,1). Let a = a(c) (for
c > 2/3) be the root of the equation f(x) = 0 that is strictly less than 1. Note that a is
uniquely defined and that a is positive. By investigating the behaviour of /(c*(l + c)) for
small e > 0, we see that ca2 < 2/3 and also if

then
n/(a0) = Q(

Note that both an and aon equal f)(n). We shall show that if c 6 (2/3, C3), then iV2(i/) can
be approximated by v${yjn) as v decreases from n to aon. We shall also show that if c
and v are within these ranges, then #3(1/) can be approximated by ci/(v/n)2. (Thus, when
v = [aon\, we see that N2(v) = ®(v0'76) and N3(v) w caln). These estimates enable us to
find the limit of the probability that GUC succeeds.

In order to minimize subscripts, we write W(u) = Ni(v), Y(v) = JV2(i/) and Z(v) = Nz(v).
We shall also consider a process X(v) which runs alongside iV(i/), and so we have a Markov
chain (JV0, W(v), X{v), Y(u), Z{v)). The transition probabilities of (iVo, W, Y, Z) are same as
iV, but those of X need defining. For completeness, we write down the one-step transitions
of {W{y\X{y),Y{u),Z{y)) below.
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AY{v) = A3)1-A2,o

AX(v) = A2,1-xx((No,W,Y,Z))i

AW{v) = A2A-A1>o-xi((NOiW,Y,Z)),
AN0(u) = A U W,

where

A3,o = A3,o(^) =

A2,o = A2,0(i/) =
A2tl = A2tl(i/) = £(A2 ,0 , l /2) ,

The initial state of the process is (JV0(n), W(n), X(n), F(n), Z(n)) = (0,0,0,0, [cn\). As the
transitions of X(u) ignores the effects of —Aio(j'), we have W(u) < X(u) always (which can
be checked by considering the cases where X(v) = W(v) and X(v) > W(i/)). We shall see
that X{v) is a good approximation of W(v).

We shall need the following bounds for sums of independent binomial variables. Let B\ {rx, px),
. . . , Bk(Tk,Pk) be independent binomial variables. Write r = T\ + ... + T* and p = J2i r\V\lT-
Then for A satisfying 0 < A < rp/3

1 + ... + Bk- rp\> yj3Arp\ < 2exp(-A). (30)

Also, for a binomial variable B(r,p), we have for u > e,

Pr(B > urp) < (e/u)UTp. (31)

All our subsequent error probabilities regarding sums like £ A3|0 are derived from one of
the above inequalities. We shall be bounding such sums by sums of independent binomial
variables. Although the variables in sums like £ A3,o are usually not independent, it is not
difficult to show the stochastic dominance by induction and by conditioning on the outcomes
of the partial sums. Also, we say that an event € occurs with high probability (w.h.p. for
short) if

Pr(5) = 1 - O{n~A), (32)

for any constant A > 0. Now the events £ usually contain bounds, involving some big O
terms, for random variables. In this situation, it will be clear that equations like (32) hold
for any A > 0 by choosing sufficiently large constants (which may depend on A) in the big O
terms. We first prove the following lemma which will be useful for future inductive proofs.
Note that we make no attempt to minimize the powers of log n.
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Lemma 9 Suppose that v > aon. Let h = |n 1 / 2 j , v' = v - h and I = {v' + l , . . . , i / } .
Suppose that at stage v,

Z(u) = ci/3/n2 + *(n),
i » = */(»>/n) + y(n),

i/) = tx>(n) < log1 0n,

where z(n) = o(n) end y(n) = o(n 0 7 6 ) . Tfecn tcrtA high probability,

Z(y') = o ^ / ^ + O^nJ + n^logn), (33)
Y(u') = iZ/CiZ/nJ + OCyCnJ + z H n - ^ + n^logn), (34)
W(v') < log2n, (35)

(The constants in the big O terms are independent of v.)

When proving the above lemma, we shall obtain the following estimates which will be useful
later.

Lemma 10 With hypotheses of Lemma 9, we have with high probability that for all j G / ,

Z(j) = Z{v) + 0{n^\ (37)

j) = Y(u) + O(n>^). (38)

Let T be the minimum value of k > 0 such that W(v — k) = 0, and for j € I, let Tj be the
minimum value ofk>l such that W(j — A:) = 0. Then we have with high probability that

T = 0(w(n) + y/w(n) log n), (39)

Tj < log2 n, for j <V-T. (40)

A/so, we /lave with high probability that for j > v — T,

W(j) = 0(w(n) + y/Mn)\og n), (41)

and that for j <v — T,
j) = O(\og2n). (42)

Note that (39-42) imply that ifw(n) = 0(log2n), then we have with high probability that for
all j el,

) = O(log2n), (43)

T, = O(log2n). (44)
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Proof We shall prove Lemma 9 and point out from where the statements in Lemma
10 follow. Note first that since aon = f)(n), both v and Z{u) equal ft(n). Define A'Z as
the number of times that Y(j) = W(j) = 0 for j € J, and A'Y be the number of times
that Y(j) ^ 0 but W(j) = 0. Similarly, let AW be the number of times that W(j) = 0.
Therefore, we have

Z{f/)-Z{y) = - £ A 3 , o ( j ) - A % (45 )
iei

A'y. (46)

To estimate X îe/ ̂ 3,o(i)? we note that A3fo(i) is bounded above in distribution by a binomial
variable with parameters Z{y) and 3/iA Thus it is not difficult to obtain that J2jei ^3,o(j)
is bounded above by a sum of independent binomial variables, each with parameters Z{y)
and 3/J / . This gives an upper bound (w.h.p.) Uz = O(h) for the sum of the variables.
Since Z(v') < Z(j) < Z{y), we have with high probability that Z(j) = Z{v) - O(h), which
is (37). Hence, with high probability, the distribution of A3to(j) is bounded below by the
distribution of a binomial variable with parameters Z(y) — Uz and 3/IA Since as n —> oo,

v —

we have with high probability that,

v

(47)

Similarly, we have with high probability that

) + 0 ( n l / 4 l o g n ) ? ( 4 g )

which gives us an upper bound Y{y) + O(h) for Y(j) where j € / . As each A2,o(i) is
distributed as a binomial variable with parameters Y(j) + 0(1) = 0(n) and 2/j = 0(l /n),
we have with high probability that

Since A'Y = 0(h), we therefore have a lower bound Y(u) — 0(h) for Y(j) where j € / .
Thus, we have Y(j) = Y{v) + 0(A) with high probability (which is (38)). Hence, with high
probability, each A2,o(i) is bounded above and below in distribution by binomial variables
with parameters Y{v) + 0{h) and 2/(u + O(h)). It thus follows that

£ A2,o(j) = ^ * + 0 ( B i /4 l o g B ) (49)
i€/ ^

with high probability. To estimate A'Z, note first that if v < n - n0'76 (but 1/ > aon), then
from the hypotheses in the lemma, we have

Y(u) = fi
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Note that during the entire time interval / , the number of size two clauses removed is at
most Ej€/A2,o(j) + K which equals O(nll2) with high probability (using (49)). Thus the
quantity Y(j), for j G / , is never zero and so when v < n — n0*76,

A'Z = 0 (50)

with high probability. For the case where v > n - n076, we consider stage k € / with
fc < u _ no.i axi^ write h' = v — k. Then similar to (48), we have with high probability that

± A, l(i) = M , + <!» = 2 ^ ( 1 + o(l)) = »*<I + 0(1)). (51)

Also, note that y(n) = 0(n0-76) (for 1/ > n - n076) and so similar to (49), we have that for
any fixed e > 0,

£ A2,0(i) < eh', (52)

with high probability. Now in order for Y(k) = 0, we must have

£ (A3ll(i) - A2,o(0) < V.
t=ik+l

which, since c > 2/3 and according to (51) and (52), occurs with probability O(n~A), for any
constant A > 0. This shows that with high probability, Y(k) ^ 0 for all k > v - n01 . Thus
with high probability, there are at most n0 1 times when Y(j) = 0 (where j € / ) . Combining
this with (50), we have with high probability that

A'Z = O(n01). (53)

Using (45) and (47) and (53), we have with high probability that

Z(u') = Z ( v ) ^

= Z(i/)(1 - 3fc/i/) + O(na/4 log n)
= Z(u)(u'/uf(l + O(l/n)) + O(n1/4 log n)
= ci/^/n2 + 0(z(n) + n1/4 log n).

This proves (33). Next, we like to estimate A'Y and AW. In view of (53), we have
A'Y = A'W — (^(n0-1) with high probability. To estimate A W , we consider a process
{X(j) | j < n} with transition probabilities as defined in the beginning of this section. We
also let X{y) = W{y). Then as observed before, we have W(j) < X(j) for all j < v. Let
A'X be the number of times that X(j) = 0 for j € / , and so A W > A'X (as W(j) < X(j)).
Next, observe that similar to our proof of (49), we have with high probability that A2,i(j) (for
all j € / ) is bounded above and below in distribution by binomial variables with parameters
Y(v) + O(h) and \j{y + O(h)). Now according to the hypotheses of the lemma,
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which is bounded above by a constant less than 1 (since c < C3). Hence, with high probability,
we have that X(j) (for all j 6 / ) is bounded above and below in distribution by the states of
two Markov chains similar to the Markov chain described in the previous section. It therefore
follows from Lemma 3 (by taking A there as (Y(v) + 0{h))/{v + O(h)), T there as fc, A there
as O(log h)) that with high probability,

( 5 4 )

We shall show next that A W and A'X do not differ by much. We do this by finding an
estimate for

which will also be useful later. Let r' = min{fc < v \ X(j) = 0} and use rj to denote
the minimum value of k > 1 such that X(j — k) = 0. Note that when X(j) = 0, W(j) is
necessarily equal to 0 (as W < X). Hence whenever Aito(j) > 1, its cumulative effect on
23 W stops when X next gets to 0. Thus,

)-wu))< £ f
Recall that as argued above, X(j) behaves like the Markov chain Xj discussed in the previous
section. To estimate r', note that if w(n) = 0, then r9 = v\ otherwise we apply (14) (with n
there as w(n), and A there as O(logn)) to obtain that

v - r' = 0(w(n) + y/w(n) logn),

holds with high probability. (Since W(j) < X(j), this gives (39).) Similarly, using (15), we
have with high probability that for all j between v and r,

X(j) = 0(w(n) + y/w(n) log n), (55)

from which (41) follows. Thus, with w(n) < log10n, we have u — rf = O(log10n) and
X(j) = O(log10n), from which we obtain that

£ ) = 0(\og20n)

holds with high probability. Next, for j between v1 + 1 and r, we have from (19) that with
high probability,

W ( j ) < < X ( j ) < l o g 2 n , (56)

and so 42) follows. Next we use (18) to obtain that with high probability,

r;<log2n, (57)
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from which (40) follows. (Note that strictly speaking, we have only showed that X(j) can be
approximated by a Markov chain Xj defined in the previous section for j € / . This creates
a problem when estimating rj for j "close" to i/. However, as it can be seen easily that our
previous approximations for Z(j) and Y(j) work for j between 1/ — log3 n and 1/ also. This
means that X(j) can be approximated by Xj for all j between 1/ — log3n and 1/. As (18)
gives that r9

u, = O(log2n), inequality (57) now follows from (18) too.)

Note that Aif0(j) is a binomial variable with parameters W(j)+O(l) and 1/j. Thus it follows
from (56) that £jL,,#+1 ^ifi(J)Tj ls bounded above by a binomial variable with parameters
0(Mog2n) and O(l/n). Hence (31) gives that

with high probability. It thus follows from (56) that

£ A1)0(i)r;<log3n

with high probability. We thus conclude that with high probability,

n). (58)

It follows that with high probability, we have

This together with (54) give that with high probability,

A'W = n1'2 - y ( * y / 2 + O(nJ/4 log n). (59)

Hence, combining (46), (48), (49), (59) and the fact that A T = A'W - O(n01), we have
with high probability that

m - * m . „«.+0(n./, log „). (60)
It follows from the hypotheses of the lemma that

= Y{u) (l -

= f(u/n)(u - n1/2) + ^ - ( £ ) ' _ n1/2 + O(y(n) + n^logn
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On the other hand,

u'f(u'/n)

- C» - "

This proves (34). For (35), we use the fact that W(u') < X(v') in distribution. Since as
observed previously that X(j) can be approximated by a Markov chain Xt defined in the
previous section, inequality (35) follows from Lemma 5. It therefore remains to show (36).
Note first that

(W(j)- 1)+

From (59), we have with high probability that

(I) J

(I) f 2 W(j) - h + A'w\

( I ) f £ W (̂i) + AW - n1/2 j . (61)

A'W - n1/2 = -V*11 + 0(n^4 log n). (62)

Using the fact (see also discussions before (54)) that with high probability, X(j) is bounded
above and below by two Markov chains whose one-step transitions are governed by binomial
variables with parameters Y(v) + 0(h) and l/(i/ + 0(h)), we apply Lemma 6 with mp there
equals

v + O(h) - v +°{n h

and p = l/(i/ + 0(h)) = l/n(l + o(l)) and T = h. Thus, we have with high probability that

From (58), we thus have with high probability that

n^Y(»)(2-Y(v)M ,
j£ K3) 2v{\ - Y(u)/u) K g '
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It therefore follows from (61), (62) and the above that with high probability,

^ (W(j) - 1)+

7/n)) + W")11"") + °(n"3/4 log6 n)'
where the last equality follows from the fact that Y(u)/u = f(v/n) + y(n)/u. This proves
(36). •

We now make use of Lemma 9 to show Theorem l(b). Let h = \nll2\ as before, and
write m = n — ih and J, = {nt + 1,.. . ,n t«i}. Define J as the greatest integer such that
n — Jh> aon. Note first that by using induction and by applying Lemma 9 repeatedly, we
have with high probability that for all i < J,

Z(m) = cn?/n2 + O(in1'4 log n), (63)
Y(m) = n,/(n,/n) + O(m1/4 log n), (64)
W(m) < log2n, (65)

where the constants in the big O terms are independent of i. Note that since i < J = Ofo)
the error terms in the (63) and (64) are both equal to 0(n3/4 log n) = o(n°-7s). This implies
that the values of Z(rij), Y(n,-) and VT(n<) (i < J) satisfy the hypotheses of Lemma 9, and
so induction works by applying Lemma 9 repeatedly. We shall now prove the following two
lemmas from which Theorem l(b) follows immediately.

Lemma 11

lim PrfGUC does not

Lemma 12 Suppose that at

fail before

stage nj}

Z(nj) =

Y(nj) =

W(nj) <

stage

njf(
log10

nj) =

n.

= exp ( -
4a:(l - f(x))

\
J (66)

Then
lim Pr(GUC creates an empty clause at and after stage nj) = 0. (67)

Proof of Lemma 11 Note first that

L, (W(u) - 1)+ ' (W(j) - 1)+
^ 2v *-" *-** 2i
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Now since from (63), (64) and (65), we have with high probability that for all i < J, the
quantities Z(nt), Y(rii) and W(rti) satisfy the hypotheses of Lemma 9, we have from (36)
that with high probability,

1)

k
+ 0((i - l )n-1 M log n + n-z'A log6 n),

for all i < J. Hence, we have with high probability that

£ (K» - 0(iT1 '4 log6n). (68)

Since Jn ll2 —* 1 — a as n —> oo, the sum on the right hand side of the above equation
converges to

(69)

It therefore follows from (68) that for any fixed e > 0,

U=flF + 2x(l - / (*))

holds with probability tending to 1 as n —* oo. Finally, as explained in (2), we have that

Pr(GUC does not fail before stage nj)

= E

= E

The lemma therefore follows from (69) and the fact that nj = H(n). •

Proof of Lemma 12 It is useful to note that as remarked when we defined a, the quantity
ca2 is bounded above by a constant less than 2/3. Note also that from the hypotheses of
the lemma, we have Z(nj) = ca3n(l + o(l)) and Y(nj) = o(nos). We consider a further
h! = L̂ 0#8J stages after stage nj. We claim that by that stage, GUC will have arrived at
a stage n* where Y(nm) = W(n*) = 0. To see this, it is not difficult to check that in these
further h! stages, with high probability,
(I) at most 3ca2n0>8/2(l + o(l)) new clauses of size 2 are created by GUC,
(II) at least h! clauses of minimal sizes are removed by GUC.
(Note that (I) is similar to (48) and can therefore be proved similarly.) Since ca2 < 2/3
and Y(nj) + W(nj) = o(n0'8), it is not possible (with high probability) to have (I) and (II)
unless some of the clauses of minimal size removed are of size 3. This shows that with high
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probability, there is n* > nj - h! such that Y(n*) = W(n*) = 0. Note also that similar
to (47), we have with high probability that between stages nj — h' and nj, only O(nos)
clauses of size 3 are removed. Thus at stage n*, we have with high probability that there are
Z(n*) = ca3n(l + o(l)) clauses of size three remaining, and that there are n* = cm(l + o(l))
variables whose truth values remain unassigned. Since the ratio of number of size three
clauses to number of variables at stage n* is strictly less than 2/3, we know from part (a)
of Theorem 1 that the probability that GUC creates an empty clause at and after stage n*
is o(l). It therefore remains to argue that for n between n' = nj — h' and nj, GUC creates
no empty clauses with probability tending to 1 as n —> oo. To do this, note that as in (I)
above, we have with high probability that

Y{u) = O(n°'%

for all v between n' and nj. Since both n' and nj equal Q(n), we have with high probability
that Y(u)/u = o(l) for all v € [n',nj]. As indicated when showing (54), we have with high
probability that for v € [n;,nj], W(u) can be bounded above in distribution by a Markov
chain Xn defined in the previous section with one-step transitions governed by a binomial
variable with parameters O(nos) and l/n ; . Using (15) and (19) and by following arguments
used in showing (41) and (42), we have with high probability that for all v € [n;,nj],
W(u) < log11 n. This in turn gives that

V

with high probability. Since the expected number of empty clauses created at stage v equals
0{E\W{v)jv\) (see definition of A14), and since there are O(n) clauses, the above equation
gives that the expected number of empty clauses created at stages v € [n;,nj] equals o(l).
Hence, as n —* 00,

Pr(GUC creates an empty clause at stage v 6 [n;,nj]) = o(l). (70)

This completes our proof of Lemma 12. D

5 GUC with backtracking and proof of Theorem 2

Since GUC succeeds with probability 1 — o(l) when c < 2/3, we consider only the case where
2/3 < c < c$. Note first that empty clauses can only be created by GUC when Ni(u) ^ 0.
As our previous analysis shows, N\(u) behaves like a Markov chain in steady state with a
reflecting barrier at 0. Also, given Ni(v), the probability that GUC creates an empty clause
is at stage v is O(Ni(i/)/i/). By allowing GUC to backtrack when it makes a "mistake", we
shall see that a random instance of 3-SAT almost certainly has a satisfiable truth assignment
when c < c3.

Consider applying GUC to a 3-SAT problem. With nb > nc, we use [n&,nc] to denote a "run"
in which Ni(v) is non-zero. That is, a run [fi6,nc] is such that Ni(rtb + 1) = 0, Ni(k) > 0
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(n& > k > nc), and iVi(nc) = 0. We next describe how we allow GUC to backtrack. Recall
that N(i/) is obtained from N(v + 1) by setting a literal x^+i to 1 at stage v + 1 (using
xv to denote the literal that is set to 1 at stage v, and recall that xy is a literal picked
randomly from a randomly chosen clause of minimal size). Also, use S{y) to denote the set
of clauses at stage v. Suppose that GUC is in a run with Ni(n' + 1) = 0, and Ni(k) > 1 for
k = n', n' — 1, . . . , n" where n" < n' is the present stage. GUC then sets a literal xn» to 1.
The backtracking is performed if the setting of xn» to 1 gives rise to the occurrence of two
size one clauses {y} and {y} for some variable y. If this occurs, then GUC backtracks by
resetting the literals xn'+i> xn/, x n ' - i , . . . , xn» to 0. We have to update the set of clauses by
(a) removing all clauses that contain x* (k = n' + l>rc',... ,n") from the set S(n' + 1) of
clauses,
(b) removing all occurrences of Xk (k = n' + 1, n ' , . . . , n") from clauses in the set S(n' + 1).
Hence this new set of clauses becomes S(n" — 1) and the algorithm then proceeds as before
by choosing a literal xn"-i and set it to 1 to obtain S(n" — 2). Stages n" — 2, n" — 3 , . . . are
carried out similarly as before. We call this algorithm GUCB. We say that GUCB fails if
(A) an empty clause is created in the backtracking when resetting the truth values of some
literals to 0, or
(B) it has to reset the truth value of a variable more than once. That is, GUCB fails if it
creates an empty clause in a stage after a backtracking and before the next time when the
number of size one clauses becomes zero.

We use N(v) = (Ar
0(i/),7V1(^),Ar2(^),Ar3(^)) to denote the state of GUCB at stage v when

applied to a random instance of 3-SAT. With n' and n" defined as above, we claim that at
stage n" — 1, the set S(n" — 1) of clauses remains uniformly random.

Claim. If Vn»-i is the set of variables whose truth values remain unassigned at stage n" — 1,
then for i = 1,2,3, a size i clause in S{n" — 1) is equally likely to be any clause in C;(K"-i)-
Proof Let C be a clause of size s in S(n' +1). Note that s > 2. It is clear that if
C fl {x{,Xi} = 0 for all i = n' + l ,n ; , . . . ,n", then C is equally likely to be any clause in
C8(Vntt-i). On the other hand, if C f) {x{,Xi} ^ 0 for some i = n' + l ,n ' , . . . ,n", then let
j be the greatest value of such i's. If Xj € C, then no sub-clause of C is in S(n" — 1) by
definition of S(n"— 1). If Xj € C, then C\ = C — {XJ} is equally likely to be any clause in the
set of all clauses with size | C\ \ made up of variables whose truth values remain unassigned
immediately after stage j . Now since C contains Xj, C is not considered by GUCB until
backtracking. During the backtracking, C is removed from S(nf + 1) if C contains X{ for
some i = j — 1, j — 2,... ,n". Otherwise C2 = C — {av-n,£n'> • • • > £n"} is in S{n" — 1), but
then C2 is equally likely to be any clause of size | C21 made up of variables in K"_i. D

Hence the behaviour of GUCB can be analysed by considering N(u). As before, we shall
allow GUCB to continue after empty clauses are created, that is, we allow GUCB to continue
even when it fails in cases (A) and (B) above. We shall show that the probability that GUCB
fails is o(l). This is done by showing that the effect of backtracking on N is negligible, and
that with high probability, there are at most log5n times when GUCB backtracks. Note
that we make no attempt to minimize the powers of log n in this section.

A A A A A A

To minimize subscripts, we write W(v) for A^(i/), Y(v) for Ni(v) and Z(y) for Nz{v). Recall
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that
/ (x) = —(1 — x2) + log x, x € (0,1).

The constant a is defined to be the unique root of f(x) = 0 within the range (0,1), and
a0 = a+n" 0 2 4 . Also, the integer nj is defined as the greatest integer such that n — Jh> aon,
where h = Ln^2J- We next define some new quantities. Let &o = n + l, /0 = n + l and
/o = n + 1. For integers 1 < t < log5n0, if GUCB backtracks for at least i times before
stage nj, then define &»,/t,/t so that 6t equals the stage number at which GUCB backtracks
for the i-th time, /» equals the greatest integer k < 6t such that W(k) = 0, and / , equals the
smallest integer k > 6t such that W(k + 1) = 0; if GUCB backtracks for less than i times
before stage nj, then define 6t = &,_!, /, = /t--i and / t = / , - i . (That is, [/«,/,] is essentially a
"run" corresponding to GUCB in which the backtracking takes place at stage 6t). We shall
use induction to show that with high probability, we have for all i < log5 n0 that

Z ( f c - l ) = c6?/n2 + O(m3/4 log n), (71)
- l ) = 6t/(6t/n) + O(z2n3/4logn), (72)
- 1 ) = O(log4n), (73)

where the constants in the big O terms axe independent of i. Note that the quantities
Z(b{ — l) ,y(6 t — l),W(bi — 1) respectively are the numbers of size three, size two, size
one clauses immediately after the backtracking at stage 6t. When proving the above using
induction, it is convenient to show at the same time the following estimates that for i < log5 n,

Pr(GUCB creates an empty clause at stage j € [6,- - 1, /,- + 1]) = O(log8 n/n), (74)
Pr(GUCB creates an empty clause at stage &t+i) = O(log6n/n). (75)

That (71 - 73) hold for i = 0 is trivial. Assume therefore that they hold for z, and show
that (71 - 73) remain valid for i + 1. Note that after stage 6t-, GUCB behaves like GUC
until the next backtracking. Therefore, consider applying GUC to a random instance X of
a satisfiability problem on 6t — 1 variables with Z(6t- — 1) size three clauses, Y{b{ — 1) size
two clauses and W(bi — 1) size one clauses. Use Z(j), Y(j) and W(j) to denote the numbers
of size three, size two and size one clauses at stage j < 6, — 1. Also, for j < 6t- — 1, use Tj
to denote the minimum value of k > 1 such that W(j — k) = 0. Note that until the next
backtracking at stage 6t+i, we have Z = Z,Y = Y and W = W.

Note that the values of Z, Y, W satisfy the hypotheses of Lemma 9. Thus, we apply (39) and
(41) to obtain that with high probability,

fc-fc = O(log4n), (76)
W(j) = O(log4n), for all j e [6 , -1 , / , ] . (77)

We therefore have with high probability that
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Hence, the expected number of empty clauses created in stages j 6 [&,• — l,/f- + 1] equals
0(log8 n/n) (please refer to comments before (70)). Equation (74) now follows.

Next, we apply Lemma 9 to obtain that with high probability

Z(n') = cn'3/n2 + O(in3/4 log n + n1/4 log n),
Y(n') = n'f(n'/n) + O(in3'4 log n + (i + ljn1/4 log n),

Win1) < log2n,

where n' = b{ — 1 — h. These estimates satisfy the hypotheses of Lemma 9. Therefore, if
n' > aora, we may apply Lemma 9 repeatedly. Since we need only apply Lemma 9 at most
(^(n1/2) times before we go past the stage [aonj, we have by using (37), (38), (41), (43),
(40) and (44) that with high probability,

(78)
(79)

0(log2n) (80)
TJ = O(log2n), (81)

for all j € [/iiij]- Note that if there are at most i backtracking before stage nj, then (71 -
73) remain valid for t + 1. Otherwise, we have /,• > /,+i > 6,+i > nj by definitions of /,-+i
and bi+i. Therefore, using the above estimates, we have with high probability that

(82)
(83)
(84)
(85)

Note that from (81), we have with high probability that the length of every "run" equals
<9(log2 n) in the entire history when GUC is applied to a random instance J defined above.
Thus, when GUCB backtracks at stage 6,-+1, we have with high probability that GUCB need
only reset the truth values of v = O(log2 n) variables. Also, we have with high probability
that

/;+!-&,-+i = O(log2n). (86)

We next show that the backtracking does not change the numbers of size three and size two
clauses by much. Note first that by (82 - 86), we have

(87)
(88)

Recall that in the backtracking at stage 6t+i, GUCB resets the truth values of v = O(log2 n)
variables and obtain the set of clauses at stage 6,+i — 1 by updating the set <S(/t+i + 1) of
clauses at stage /t-+i + 1. We next observe that in the initial set of \cn\ (random) clauses of
size three, the expected number of clauses containing a given literal equals 0(1). Thus, we
have with high probability that for any literal x, the number of clauses containing x equals
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O(log2 n). Hence, with high probability, the number of size three clauses in S(/,+i + 1)
containing (at least) one of the v variables is 0(log4 n). This gives that with high probability,

Z(6t+1 - 1) - Z(/ t + 1 + 1) = O(log4 n). (89)

For size two clauses, we note first that at most Z(6,+i - 1) - Z(/,+i + 1) clauses of size two
are added to «S(/»+i + 1). Also, similar to (89), we have with high probability that at most
0(log4n) size two clauses are removed from 5(/,+i + 1) in the backtracking. Therefore, we
have with high probability that

y(fc+i - 1) - Y(fw + 1) = O(log4 n). (90)

Similarly, it is easy to see that with high probability, at most 0(log4 n) clauses of size 1
are created from clauses of size two and size three in 5(/i+i + 1). We thus have with high
probability that

W ^ + 1 - l ) = 0(log4n). (91)

The induction proof of (71 - 73) is now complete by noting that (71 - 73) follow from (87 -
91) and the fact that Z(/<+1 + 1) = Z(/ t + 1 + 1), YX/i+i + 1) = Y(fi+1 + 1).

We next would like to show (75). Let / = {6,+i, 6,+i + 1 , . . . , /«+i, /«+i + 1} and use H to
denote the set of variables whose truth values remain unassigned immediately before stage
&i+i — 1. For j G / , use Xj to denote the literal that was set to 1 at stage j . (Note that
v = /i+i — &t+i + 2 = O(log2 n).) Now in the backtracking at stage &t+i, GUCB resets these
v literals to 0 and update the set <S(/t+i + 1) of clauses. For j 6 J, let Sj be the set of
clauses of size i in the set S(j) of clauses at stage j containing the literal Xj. That is,

S f = {C e S(j) \XJZC and |C |= * } .

Note that if C € Sj , then C must come from a clause C" G <S(/,+i + 1) where C" contains
a literal Xj/, for some j ' € / and f > j . Thus, no clause in UJ€J«SJ can become an empty
clause during backtracking. Note also that if C € Sj (i = 2,3), then the entire clause C is
removed from Sj at stage j , and so no sub-clause of C can appear in Sj, U Sj, for all jf € /

and j ' < j . Thus, if C € «SJ° (i = 2,3), then during backtracking, C - {XJ} is equally likely
to be a size i — 1 clause chosen from the set

cM(vh\j{xj9\j
9 ei Bndf <j}),

where x here denotes the variable of the literal x. Thus, if C € Sj^ (i = 2,3), then
the probability that C becomes an empty clause after the backtracking is 0(v/6 l + i) =
0(log2 n/n). Note that for a clause C € <S(/,-+i + 1) to become an empty clause after
backtracking, the clause C must be contained in Uj€/ Ut-=2,3<SJf). As argued in (89) and (90),
the size of U j€/ Uj=2,3 Sy is 0(log4 n). Hence the probability that an empty clause is created
in the backtracking at stage 6t+1 equals 0(log6 n/n). This proves (75).

It now follows from (74) and (75) that

Pr(GUCB creates an empty clause at stages j 6 [&,-, /,• + 1], for some i < log5 n)
= O(log13n/n).
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Therefore, it remains to show that

Pr(GUCB backtracks at least log5 n times before stage nj) = o(l), (92)

and that
Pr(GUCB backtracks at and after stage nj) = o(l). (93)

To show (92), suppose that U is given and note that GUCB behaves like GUC after each /,
until the next backtracking at stage 6t-+1. Note that using (78) and (79), we have with high
probability that for i < log5 n,

Z{U) = c/^/n2 + O(n3/4 log6 n),
Y(U) = Uf(h/n)+ O(n3'4 log11 n).

Also, W(U) = 0. Next, consider applying GUC to a random satisfiability problem V with
\i variables, £'(/,), Y'(U) and W'(/t) clauses of size three, two and one respectively, where
Z'(U) > Z(li), Y'(li) > Y(U) and W'fi) > W(U). Then by the monotonicity argument used
in showing Theorem l(c), we have W(j) < W'(j) for j > 6,+i. Thus, if V is the minimum
value of v < /, such that when GUC is applied to J', the set of clauses at stage v contains
two clauses {y}, {y} for some y, then it is easy to see that 6;+i < &' in distribution. Next,
fix a constant c" G (c, cs) and consider applying GUC to a random instance X" of 3-SAT
initially with [c"nj clauses of size 3 and n variables. Note that by definitions of /t- and c", we
have U >nj> CLQU (where ag is defined as a0 but with c replaced by c"). Thus, we apply
Lemmas 9 and 10 to obtain that with high probability, the numbers of size three, size two
and size one clauses with respect to X" satisfy that for i < log5 n,

Z"(U) = c'V/n2 + O(n3'4 log6 n),
Y"(U) = /,5(/,y») +

= O(log2n),

where g(x) = 3c"(l — x2)/A + logx. Let N" be the number of stages u before nj such that
in applying GUC to J", the set of clauses at stage v contains two clauses {y}, {y} for some
y. Since Z"{U) > Z(U), Y"(U) > Y(U) and W"(U) > W(U) with high probability, it follows
(by considering the waiting times b' denned above) that

Pr(GUCB backtracks at least log5 n times before stage nj)

< Pr(JV">log5n) + o(l).

Using (43), we see that when GUC is applied to I", we have with high probability that
for all j > nj , the number W"(j) of size one clauses at stage j is O(log2n). Therefore,
the probability that there is a contribution to N" at stage j equals O(E[W"(j)2/j]). Since
W"(j) = O(n), we now have

E[N"] = O(log4 n).

It therefore follows that
Pr(JV" > log5n) = 0(1/log n).

This shows (92).
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To show (93), we have from (78 - 80) again that with high probability

Z(nj) = cnj3/n2 + O(n3'4 log6 n),
Y(nj) = njf(nj/n) + O(n3'4 log11 n),

= O(log4n).

(Note that in the unlikely event where nj € [6,* - 1,/,-] for some i, we may apply {71 - 73)
and (76 - 77) to obtain the above estimates at stage nj.) These values of Z , y , W satisfy
the hypotheses of Lemma 12. Thus, we obtain (93) from Lemma 12. Our proof of Theorem
2 is thus complete.

6 Proof of Theorem 3

We shall only give a sketch proof here. Consider SC when applied to a random instance of
fc-SAT with n variables and m = [cn\ clauses. We restrict our attention to

c>
(k-l\ fc-12*-3

\k-Zj fc — 2 k '

for otherwise SC succeeds with probability 1 — o(l) (see Chvatal and Reed [4]). Let qi{y) be
the probability that a randomly selected clause from Ck{Vn) is of size i immediately before
stage v. It is not difficult to check that for i = 3 , . . . , fc,

Let N&v) be the number of size i clauses at stage v. The above equation implies that with
high probability, we have for i = 3 , . . . , k that

whenever v = il(n). This gives a fairly accurate estimate for N^(u) in particular.

Fix a (small) constant e > 0. Recall that /?i is the largest root of the equation

Let # = p! + c and # ' = ft - c. Note that JV î/ - 1 ) + 7V£(i/ - 1 ) - iVJ(i/) - AT̂ (i/) is bounded
above by

^ A'3il(v) — 1, otherwise,
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where A3tl(^), defined in Section 1, is the number of new size 2 clauses created at stage v.
Since A3 x{y) is a binomial variable with parameters N'z{y) and 3/2z/ and since for v > /?{n,

with high probability, it follows from Lemma 4 (see also proof of (43)) that for v > /?{n,

with high probability. This gives an upper bound for N'2(v) which in turn gives that with
high probability,

It therefore follows as in (3) that

Jirn Pr(SC fails at or before stage # n ) = 0. (95)

Furthermore, for v between f}"n and /?{n, it is not difficult to obtain that there is 7i(e) which
tends to 0 as c —> 0 such that

N'2{v) < 7i(e)n (96)

with high probability. This gives an upper bound for N[{y) and it is not difficult to obtain
in a similar (but simpler) fashion as our proof of Theorem l(b) that there is 72(e) where
72(e) —> 0 as e —> 0 such that

Jirn Pr(SC fails at a stage between #'n and /3[n) < 72(e). (97)

Suppose we allow SC to have limited backtracking (as in GUC described in the previous
section). Then in view of (95) and (97), the theorem follows from the following lemma.

Lemma 13 For all small e > 0,

lim Pr(SCB fails at or after stage P"n) = 0.

We do not prove Lemma 13. Instead, we give a sketch proof of Lemma 14 below, (c < c*
means that Lemmas 13 and 14 can be proved similarly.)

Lemma 14 Let no = \P\n\ and V be a set of no variables. LetX be a random formula with
Ni(no) clauses of size i, where for i = 3 , . . . , k,

Ni(n0) = (k)cn(n0/n)\l -

and Ni(no) = 0 for i = 0,1,2. Each size i clause in X is chosen at random (with equal
probability) and independently from Ci(V). Then

lim Pr(SCB, applied to J, fails at or after stage n0) = 0.
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This lemma can be proved in a way similar to our proof of Theorem 2. The key point is that
when SC (without backtracking) is applied to X, we can follow our proof of (34) to obtain
an estimate for the number N'2{y) of clauses of size two. Indeed, if h = Ln^2J > n« = no — ih,
Jt = {nt + 1 , . . . ,n , - i } and J is the greatest integer such that no — Jh > an + n0 7 6 where a
is defined later, then we have with high probability that

^(n.) = ^Sf [(1 + (* " 2)n,/n)(l - n,/n)fc"2 - (1 + (k -

+m log(n,/(ftn)) + 0{inxlA log n), (98)

which can be proved using induction and difference equations as in Lemma 9. Intuitively,
the above equation can be obtained as follows. Let

) = ^ ( 1 + (k - 2)*)(1 - x)*-2 + logx.

Note that P2(^) "~P2(/?i) is an approximaton to iV^LawJ)/^*1] according to (98). We define
a < /?o as the smallest number so that foix) — frifii) = 0. Note also that

dx i

Thus P2(x) is maximized when x = /?o- Note that

P2(/?o) - ft(A) = (Jfe J{k 2) ( + ^

which is less than 1 according to the hypothesis of the theorem. Thus, taking (98) as
induction hypothesis, we see that N^n^/rii is, with high probability, at most a constant
which is less than 1. This means that we can apply the results in Section 2 to approximate
N[(u), and in particular obtain that (see TTO before (4))

Pr(N[{v) = 0) » 1 - Nfc)/v.

This shows that

- 1) - N&V)) » E [ A ' 3 » - A'2fi(u)} - Pr(JVJ(v) = 0)

Putting y>(x) = E[A^(|znJ)/|znJ), we have for small h > 0 that

h/x + O(h*))±-E[N2(lxn - hn\)] - —E[N2([xn\)]
XTl XTl

— (E[N^([xn -hn\)- E[N2([xn\)]) + -j-E[N^([xn\)] + 0(h2)
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So <p(x) should stay close to the solution of the differential equation (99). The induction
proof of (98) is completed by showing that N^n^i) — N^fii) is close to its mean.

It can be shown that the Claim in Section 5 remains true for SCB when applied to X. That
is, the set of clauses after each (limited) backtracking remains uniformly random. Therefore,
our proof of (92) and the statement before it can be extended to show that

Pr(SCB, applied to J, fails at a stage between nj and n0) = o(l). (100)

It therefore remains to show that

Pr(SCB, applied to J, backtracks at and after stage nj) = o(l). (101)

Proving (101) requires a result similar to Lemma 12. Since the backtracking in SCB does not
change N[{y) by much, we have in particular estimates for N%{nj) (similar to those given in
(94) and (98)). Thus as in the proof of Lemma 12, there is (with high probability) n* « an
such that N\{n*) = N2(n

m) = 0 and that for i = 3,...,fc and for v < n*, N{(i/) can be
approximated by estimates similar to those given in (94). Note that for v < n*, N$(v)lv is
less than a constant which is less than 2/3. Thus similar to (95) and (97), we have (101).
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