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Algorithms for Computing Motion by Mean Curvature

Noel J. Walkington*

Abstract. We propose a finite element algorithm for computing the motion of a surface moving
by mean curvature. The algorithm uses the level set formulation, so that changes in topology of the
surface can be accommodated. Stability is deduced by showing that the discrete solutions satisfy
both L°° and W1'1 bounds. Existence of discrete solutions and connections with Brakke flows are
established. Some numerical examples and application to related problems, such as the phase field
equations, are also presented.

1. Introduction. We consider the numerical solution of problems that involve
computing an interface whose motion is governed by its mean curvature. The most
elementary example is to determine the motion of a surface whose normal velocity
is proportional to it's mean curvature. We will always describe the position of such
a surface by the zero set of a function. This idea was introduced in the physics
literature [33] and first used as a computational procedure by Osher and Sethian [32].
An elementary calculation shows that the level sets of a function u satisfying the
equation

L*L v ( ^ (i Vtt®Vtt>\ .n2n

will move with velocity equal to mean curvature. This is of great practical value,
since the alternative of calculating intrinsic derivatives on a discretized surface is not
a tractable problem. A surface moving by mean curvature may develop singularities
(causing a change in topology etc.). When such singularities develop, the classical
description of the problem involving intrinsic derivatives no longer makes sense; how-
ever, by accepting weak solutions of (1), the level set solutions can be continued past
singularities to arbitrary times. Indeed, the viscosity solution technique has be used
to establish the existence of unique weak solutions of (1) for all times [9, 18, 37].
Moreover, numerical simulations based upon (1) have been used to calculate solutions
past the onset of singularities [10, 32, 35],

The viscosity solution technique relies pivotally upon the the presence of a maximum
principle for the underlying equation. It was shown by Barles and Souganidis [3] that
numerical schemes also satisfying a maximum principle will converge to the unique
viscosity solution under very mild additional assumptions. Unfortunately there is no
known discretization of (1) that satisfies a discrete maximum principle; indeed, there
doesn't appear to be an unambiguously natural discretization for the mean curvature
equation. Moreover, there has been almost no analysis of any of the the discrete
schemes proposed. Below we present several related numerical scheme for the solution
of (1), and show that they are stable in the sense that an Z°°(fl) bound on the initial
data be inherited by the solution at all times, and the solutions will also be bounded
in Wl>1{Q), the Sobolev space of functions with integrable first derivatives defined on
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the space-time cylinder Q = ft x (0,T). This latter bound shows that a sub-sequence
of the solutions will converge strongly in Ll{Q), which is often sufficient to establish
convergence of distributional solutions of equations; however, currently there are no
results in this direction for solutions defined in the viscosity sense. These bounds
for the mean curvature equation follow from their divergence structure, that is, the
first equality in equation (1); indeed, it is this form of the equation that suggest our
numerical scheme. However, the existence theory exploits the second equality in (1),
which implies a maximum principle from which stronger WliO°(Q) bounds can be
deduced.

We briefly review the existence theory for the motion of a surface by it's mean curva-
ture. The most complete theory for (1) is developed using viscosity solutions. Prior to
this, classical techniques from parabolic equations had used to obtain smooth solutions
(see e.g. Angenent [1]), which may only exist for short times in dimensions greater
than two. The viscosity technique was first introduced by Crandall and Lions [12] for
first order equations. Jenson [26] established the crucial maximum principle, extend-
ing the viscosity technique to second order equations. Subsequently, Chen, Giga and
Goto [9] and Evans and Spruck [18] exploited these ideas to obtain unique generalized
solutions for (1) that exist for all times to and beyond the onset of singularities. An
alternative weak notion for the motion of a surface by it curvature was introduced by
Brakke [4]. Brakke associates the surface with a varifold, and essentially integrates by
parts to obtain a weak formulation of motion by mean curvature that uses the Radon
Nikodym derivative to relax the traditional smoothness assumptions necessary to de-
fine curvature. While Brakke obtains the existence of solutions, there is no uniqueness.
Examples of non-uniqueness are easily constructed from examples where the viscos-
ity technique gives fat level sets; that is, where the level sets of the solution develop
interior. A definition of motion by mean curvature, motivated by formal asymptotic
expansions, was proposed in [5] and [14]. The idea is to approximate the surface as
the level set of the solution of a parabolic equation containing a small parameter, such
as the Allen-Cahn equation. Formally, the zero set will converge to a surface moving
by mean curvature as the parameter goes to zero. Subsequent to the development of
viscosily and Brakke solutions, it was shown that this process is justified in the sense
that it recovers both viscosity and Brakke solutions [17, 25],

A broad spectrum of approaches have been used to numerically approximate the mo-
tion of a surface by mean curvature. The most direct approach is to attempt to
parameterize the surface. This technique, similar to front tracking in hyperbolic prob-
lems, encounters serious problems, since the solutions loose regularity in finite time.
Roosen and Taylor [34] developed a method the approximates a curve moving by
mean curvature in the plane by line segments (facets) using this approach. When the
curve is a graph, Girao and Kohn [22, 21] have shown that such faceted approxima-
tions converge. An alternative to discretizing the surface is to assume that it may be
represented by a graph. The advantage of this technique is that the classical theory
for parabolic equations can be used to obtain smooth solutions prior to the onset of
singularities. Recently Decklnick and Dziuk [13] have shown that a discrete space,
continuous time, finite element algorithm will exhibit optimal rates of convergence
while the solution remains smooth. The method of choice for problems that involve
change of topology are level set algorithms based upon direct discretization of (1)
[10, 32, 35, 36, 2]. While such algorithms appear to give acceptable solutions, there



are practical problems associated discretizing the problem when certain gradients van-
ish. Frequently such details are only discussed in a vague fashion, as are existence and
stability of the discrete solutions. To date, no convergence theory for approximations
of (1) has been established. However, Nochetto, Paolini and Verdi [31] have shown
that level sets of numerical approximations of the Allen-Cahn equation do converge
to a surface moving by mean curvature, as the parameters tend to zero. In [16], Evans
shows that a continuous space, discrete time scheme converges to the viscosity solution
of (1). The idea of this scheme is to show that judicious truncations of solutions to
the heat equation will generate the correct semi-group.

In Section 2 below, we introduce several related schemes for the approximation of (1).
The schemes are designed to inherit a natural energy estimate satisfied by (1), and
are similar in spirit to approximations of the minimal surface equation given in [27].
By developing explicit difference formulae for the schemes, we identify modifications
and/or restrictions on the mesh that will guarantee the the discrete solutions will also
satisfy L°°($l) bounds. To keep the ideas clear, all of the estimates in Section 2 are
obtained formally, and we postpone until Section 3 the technical details required to
justify the formal calculations. Section 4 shows that one of our schemes generates a
discrete Brakke flow. Section 5 exhibits some numerical experiments, and in Section 6
we discuss how our ideas can be extended to other problems involving motion by mean
curvature.

2. Numerical Schemes for the Mean Curvature Equation. We consider
solutions of the mean curvature equation (1) on a bounded domain, fi, with Dirichlet
boundary conditions. Proceeding formally, we multiply (1) by a smooth function, v,
vanishing on the boundary and integrate to get

It is this weak form of the equation motivates our spatial discretization. Note that

so setting v = ut gives

Integrating over time gives gives the basic energy estimate

rT

showing that the VF1'1(fi) semi-norm decays. The desire to retain this estimate mo-
tivates our temporal discretization1.
In order to discretize (2), we introduce a triangulation, 7^, of the domain ft, where
h > 0 denotes the diameter of the largest simplex in T&. Denote by Vh the space of

1 The author is indebted to Y. Giga for suggesting that a scheme should satisfy this estimate in
addition to the L°°(Q) estimates established below.



piece wise linear function defined on Th vanishing on the boundary $17, and let r > 0 be
a time step size. Letting un £ Vh denote an approximation of u(nr), we can introduce
a (formally) second order approximation of (2) by requiring un+1 6 Vh,

(Vi/n+1 + Vun) - Vt; __

Given that (generalized) solutions of this problem do exist, substituting v = un+l — un

shows that this scheme satisfies the following discrete version of the W1'1 estimate:

+ > r / - -— = llVtr
m = 0 " ' I ' I I

An estimate on the time derivative follows from

- um)/r\\mu)

< Vf\\Vu°\\LHQ).

It is well known that discretizations like (3) will not generate solutions with i
norms bounded by that of the initial data. In order to obtain such bounds it is usually
necessary to modify the spatial and/or temporal terms. Below we show that the first
order scheme

I u
n+l-un VuVv _

+ \X7U"\V+ I V t ^ l + IVt^l '

obtained by making the numerator of the spatial term in (3) implicit, will satisfy
//^(fi) bounds on suitably chosen meshes (cf. [11]). Diagonal approximations of
the temporal term, discussed below, will establish Z°°(f2) bounds on a broader class
of meshes. These two modifications will not alter the apriori bounds established
above, except that the equality in (4) becomes an inequality. We chose to motivate
these modifications using the complementary volume (co-volume) algorithm. This
algorithm has the advantage that it will enable us to concisely write down explicit
finite difference equations corresponding to (3).

2.1. Dual Meshes. Given a triangulation of a bounded domain (1 C Rn (n = 2
or 3), we can construct a dual (non-simplicial) mesh. Each cell, Vi, of the dual mesh
is associated with a node X; of 7^, and is bounded by the lines (planes) that bisect and
are perpendicular to the edges emanating from the node (see Figure 1). The dual cell
associated with a particular node can also be characterized as the set of points in ft
that are closer to that node than any other. The perpendicular bisectors will meet at
the circumcenters of the simplicies of Th which form the nodes of the complementary
mesh. We will refer to the edges, nodes etc. of the dual mesh as co-edges, co-nodes
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etc. While it is possible to modify an arbitrary triangulation so that the co-edges
do not self intersect, we will restrict ourselves to triangulations whose interior angles
are no greater than ?r/2. This guarantees that the circumcenter of a simplex will be
contained within the simplex, and co-edges intersect only at the co-nodes.

We will denote the edge of Th connecting the iih node to the j t h by O{j, and its length by
hij. Similarly, o- will denote the co-edge (co-plane) that is the perpendicular bisector
of <jtj, and h- will denote its length (area). We denote by £,j the set of simplicies
having a^ as an edge: S{j = {T 6 Th \ o^ C T}. Note that in two dimensions, £tj
will generically contain only two simplicies (see Figure 1); the exceptions being the
boundary edges that only meet one simplex. For each T £ £,-j we let cf- be the length
(area) of that portion of a'- that in T, i.e. cj- = \a[- n T\. Let Mi be the set of
simplicies that have the ith node as a vertex, and for each node of Th let C{ denote
the set of nodes connected to the ith node by an edge. We will let Yli(-) an(^ ]C(t,j)(0
denote sums over the nodes of Th and the edges of Th respectively.

2.2. Co—Volume Discretizations. Co-volume approximations of (1) are mo-
tivated by integrating the equation over a co-volume Vt, and integrating by parts.

Jvt |Vtt| ~~ Jdvt \Vu\~dn "" . ^ Jo' \^u\~dii

If u 6 V̂  is piecewise linear, du/dn — (UJ — Ui)/hij on a-, so that

Noting that the gradient of u is piecewise constant we can write

A.

where, \Vuj\ denotes the gradient of u in the simplex T. The co-volume scheme
approximates the first term of the equation by

wThere U{ = u(x{) is the value at the node, and |Vu,-| is an approximation of the
gradient at this node. Fully discrete schemes are made by taking a temporal average
of these spatial discretizations. In order to obtain a scheme that satisfies the energy
estimate we consider

ieCi

where

(7) «,-(v)=r



Note that the coefficients atj are symmetric, a,j(w, v) = dji(u, v) = atj(v, w), and non-
negative. In (6), |V^ t | can be selected as any reasonable approximation of the gradient
of u at the ith node. Since the scheme is formally first order, the natural choice is to
make this term explicit, eg.

We show that this scheme has a (generalized) solutions in Section 3.

Since the a,-j and \Vu{\ are non-negative, it follows that ||un||L°°(Q) < H ^ H L 0 0 ^ ) * To
see this, let u n + 1 achieve its maximum at node z, then

Since the second term on the left is non-negative, it follows that ^f+1 < wj1, so that

In order to show that solutions of this discrete scheme satisfy discrete W1'1 bounds,
we will use the following lemma.

LEMMA 2.1. Let Th be a mesh having simplicies with interior angles not exceeding
x/2, and let u, v 6 14, and w be piecewise constant on Tk, then

wVu • Vv =

where ai3(w) = ( l /A. j )Ere£o wTcTj-

The proof is similar to that given in [30], and reduces to considering the identity on
one simplex.

Multiplying (6) by u™*1 — U™ and summing over all of the nodes in the mesh gives the
energy estimate

(8)
The identity

- un) = |Vun + 1 |2 - \Vun\2

used in the derivation of (8), shows the presence of extra dissipation in the first order
scheme (c.f. 4). Again this implies a bound on ut

m=O

u?+1

where u denotes the function that is piecewise constant on the co-volumes and taking
on the nodal values of u.



While (6) only a first order scheme, this is not inherent in the co-volume algorithm,
it is the need to treat the spatial term implicitly that caused a reduction in accuracy.
A second order co-volume scheme is

where we now choose

Note that it would be very difficult to verify that this scheme was consistent with (1)
if Lemma 2.1 were not available to show that the spatial terms in this discretization
are exactly the difference equations that result from the spatial terms in (3). This
scheme is then a "lumped mass" approximation of (3).

2.3. Difference Equations for the Temporal Terms. Using the following
lemma we may write down the discrete equations that arise from (3) and (5).

LEMMA 2.2. Let Th be a triangulation of Q, and let u and v be piecewise linear
functions defined on Th, and w be a piecewise constant function on Th.

ft2 then

/
Q

wuv = ^T Y^ bij{w)(ui + Uj)vi = ] T bij(w)(ui + u3){vx

where btJ(w) = (1 /12)Ere^ WT\T\.

• // n C »3 then

f wuv =
Q

(hi)

where btJ(w) = (1/20) E T € ^ ™T\T\.

This lemma is proved by simple quadrature. The discrete equations for (3) then
become

ui***1,**) ( a « + 1 - II?) + (uf* - u])) +

r

ject

where a{j(.,.) is given in (7), and

Y, atj(u
n+\un) ( « + 1 + <) - (u^ + «7)) = 0,

. , , 1 v- 2[T1

with (a,^8) = (1,12) in two dimensions, and (2/3,20) in three dimensions.
7



The traditional lumped mass approximation to diagonalize the temporal terms may
be thought of as approximating un-^1 - u" by u?*1 - U™ in the above to give

6 t«
+ 1 - <) + I J2 a,j(un+\un) ( « + 1 + <) - « + 1 + «?)) = 0,

where

2 m i v-̂  2iri

and 7 = 3 in two dimensions and 4 in three dimensions. Of course this can also
be viewed as a vertex quadrature rule assigning a weight of 1/3 to each of the three
nodes of a triangle or 1/4 to each of the four vertices of a tetrahedron. Note that
this diagonalization gives different weights than the co-volume algorithm (6) for non-
uniform meshes.

We finish this section by showing that solutions given by (5) will also satisfy L°°(il)
bounds for suitably chosen meshes. The difference equation for (5) are

Rearranging we obtain

(ratl - 6 t J ) « + 1 - Uj"
+1) =

where bij = 6,j(wn+1,un), and

Tdj-bij = rat3(u
n+\un)-btJ(u

n+\un)

LCI _ El) - — I .

For meshes with all interior angles strictly acute, cf- > 0, so if the time step r satisfies

for each edge <rtj and T € £ij, then the coefficients raij — b{j are all non-negative,
implying ||wn||i,oo(n) < Hw°||Loo(n)- If a ^ interior angles of the meshes are bounded
away from TT/2, then \T\ ~ h2 (h3 in three dimensions), cfj ~ h (h2) and h{j ~ /i so
that this above condition becomes r > Ch2.

2,4. Summary. We summarize the various properties for each of the approxi-
mations introduced above.

• Solutions of each of the schemes (3), (5), (6), (9) are bounded in Z ^ O , T;
and W^(Q) by ||Vtio | |Li(n) and y/T\\Vu°\\LHQ) respectively.

8



• Schemes (3) and (9) are formally of second order (in space and time) and
schemes (6) and (5) are of first order.

• Solutions of (6) are bounded in L°°(Q) with bound depending only upon
I I^IIL 0 0^)*

 an (i f°r strictly acute meshes with sufficiently large time steps, (5)
is similarly bounded.

• Schemes (6) and (5) satisfy the additional bound

Q|» 0

In the above, Q = Q, x [0,T] is the natural space time cylinder.

3. Existence of Solutions. Clearly the discrete schemes presented above are
not well defined when certain gradients vanish. Following [18], we construct generalized
solutions of our discrete schemes that are limits of solutions to approximate problems.
Existence for the approximate problems is deduced from the following form of Brower's
fixed point theorem.

THEOREM 3.1. Let F : 3?n -+ 3ftn be continuous and suppose that for some R > 0
and y £ BR(0), the ball of radius R centered at zero, F(x) • (x — y) > 0 on SR(0), the
sphere of radius R centered at the origin. Then F has a zero in BR(0).

Notation: 1) For e > 0 we let |Vn|c denote \/\Vu\ + e2.
2) Given a scheme such as (3), we will denote by (3)e the scheme obtained by replacing
the gradient terms in the denominators with their e approximates.

LEMMA 3.2. Let Th be a triangulation of the bounded domain £1 C 3ffn, and let Vh.
be the space of piecewise linear functions defined over Th vanishing on the boundary
ofil. Given un € Vh, each of the schemes (3)t, (5)c, (6)t, and (9)c have a solution.
Moreover, the solutions of (3)€ and (5)c satisfy

and the solutions of (6)t and (9)t satisfy

Proof We only consider the proof for (3), since the others follow similarly. Let TV be
the number of interior nodes and for each e > 0 define F : $N -» UN by

2 u-un (Vu
+

In the above we assume an ordering of the nodes of Th so that u £ JfN may be
identified with u G Vh in the natural way.

f 2 (u-un)2 \Vu\2-\Vun\2



If u £ SR(O) where R > 0 is chosen sufficiently large to guarantee that |un | < R
and ||Vtt||Li(n) > l|Vwn||Li(fi) + £|fi|, then F(u) • (u - un) > 0. An application of
Theorem 3.2 shows that F has a zero uc 6 BR(0). Substituting u = uc and F(u€) = 0
into the above establishes the bound. D

Since the bounds on uc are independent of e, compactness of balls in $lN guarantees
that we may pass to a subsequence ue —• unJrl. It is intuitively clear that these are
good candidates for "generalized" solutions; however, it is not clear in what sense
they satisfy the discrete mean curvature equation. We address this question in the
following theorem.

THEOREM 3.3. Let Th be a triangulation of the bounded domain, Q, and Vh be the
space of piecewise linear functions defined over Th that vanish on the boundary. For
each of the schemes (3), (5), (6), (9), there is exists wn+1 £ Vh and functions u and
H satisfying

l Hv + v Vv = 0 V v e Vh
n

for schemes (3) and (5), and

T \Vi\HiVi + j v • Vv = 0 VveVh

for schemes (6) and (9), where v and H are related to wn+1 as follows:

v is a piecewise constant vector field defined on Th. For schemes (3) and (9) and

u"l */ the denominator is non-zeroV = 7 ^

\u\ < 1 otherwise,

and for schemes (5) and (6)

v = 2|Vun^y?, iytxni z/ ^ e denominator is non-zero
|i/| < 2 otherwise.

For schemes (3) and (5), H is a discontinuous piecewise linear function satisfying

2 un+l - un

H = — 7 ^ — T T J r=—r if the denominator is non-zero,

and for schemes (6) and (9) H is piecewise constant on the co-volumes and satisfies

Hi = * —j-*- if the denominator is non-zero.

(Recall that |Vw,| is an approximation of \Vu\ at the ith node.)

Proof We establish this result by passing to the limit as e —• 0 in the equation for
the approximate solutions. Since {||Vttc||^i(n)}c>o is bounded independently of e, we
may pass to a sub-sequence such that uc —> un + 1 .

Let vc be defined by

+ Vun

+ |Vn"|c ' f o r s c h e m e s ( 3 ) a n d ( 9 ) '
10



and

i/c = 2-j : : r-, for schemes (5) and (6).

On simplicies where the denominator doesn't vanish in the limit, it clear that i/e con-
verges to a function v with the same form as i/€, except un + 1 replaces uc. On simplicies
where the denominator vanishes, Vun must be zero, so that Uj = Vue/(\Vue\c + e)
(or Vj = 2\/V/( |Vu c | c + e) or the first order schemes) which has modulus less than
one (or two for the first order schemes). By passing to a subsequence, we may assume
that i/€ also converges on these simplicies too, and hence the whole of fi.

We next consider the temporal term for the lumped mass approximations (6) and (9).
Define Ht to be the function that is piecewise constant on the co-volumes and assumes
nodal values Hf = (u\ - u^)/(r\Vui\€). Selecting v £ V^ with nodal values V{ =
sgn(Hl) in the equation satisfied by ue, where sgn(.) is the signum function (sgn(s) =
1 if s > 0, - 1 if s < 0 and 0 if s = 0), gives

/ e .Vv<2 | |Vt ; | | L i ( Q ) <2\Sl\/h,

showing Hc is bounded independently of c. By passing to a subsequence we may
assume that the Ht converge, and when the denominator doesn't vanish in the limit
it is clear that the limit H has the same form as H€ with uc replaced by un+1.

We finally consider the temporal term for (3) and (5). Again it suffices to show that

is bounded independently of e; however, the proof is a little more tedious. We begin
by observing that H€ is bounded for any simplicies that meet the boundary. Indeed, if
x0 £ T fl dfi, uc(x) = Vue

T • (x - x0) for x £ T, implying \H€(x)\ < 2\x - xo\/r < 2h/r
for x € T. Define the set D by

D = {T £ Th | there is no subsequence Hl
T -+ 0, |Vuc |e+|Vun |e -» 0, and TndQ = 0}.

It is clear that we may pass to a sub-sequence such that He converges on Q, \ D;
moreover, by passing to a further subsequence, we can assume that Hj is bounded
away from zero and has one sign for each simplex T € D.

We next claim that we can chose v eV^ such that v\j = sgn(Hj) for T € D and zero
at the nodes disjoint from D. To see this, recall that

2 (V - un)2

implying Wj —> Uj for each T € D. Also, since VwJ = 0 for T € D, it follows that uc
T

converges to the constant Uj. It now follows that if e sufficiently small, no node can
belong to two simplicies I \ and T2 € D having H^ and Hj2 of opposite sign, since
this implies un changes sign in one of the simplicies, contradicting Vun = 0. Since
JQ Hcv + i/e • v = 0, it follows that

HV=-[ H'v
JQ\DJD JD

n



implying H* is bounded on D and hence all ft. D

We finish this section by observing that this limiting procedure is similar to that
used to obtain viscosity solutions of (1). The definition of a viscosity solution for (1)
requires

^ = (/ - v ® u) • D2u

to hold (in the viscosity sense) at points where \Vu\ = 0 for some vector u satisfying
\u\ < 1 [18]. In order to get existence, the denominators involving \Vu\ were replaced
by \/|Vtz|2 + £2, and a limit extracted as e —> 0 [18]. As in the above theorem, terms
like Vw/|Vt/| result in vectors v with modulus no greater than one, and satisfy a weak
form of the equation.

4. Discrete Brakke Motions. The schemes proposed in the previous section
a were motivated by integrating certain terms by parts, so satisfy (1) in a discrete
distributional sense. While requiring such equations to hold in the sense of distribu-
tions is traditional in partial differential equations, this does not appear to be natural
for geometric problems. To date, existence for flows by mean curvature have been
obtained using the concept of viscosity solutions, or motion in the sense of Brakke [4].
As pointed out previously, the viscosity solution technique relies upon the maximum
principle, so energy estimates are not particularly useful for this theory. However,
the Brakke definition of motion by mean curvature is a weak statement very much in
the spirit of a solution in the sense of distributions. In this section we show that (5)
generates a discrete Brakke flow.

Since the definition of a Brakke flow is rather technical, we restrict our discussion to
surfaces moving by mean curvature which are level sets of a function u. To introduce
the ideas, we will assume that u is smooth and that it's gradient doesn't vanish.
Adopting the notion of [19] we define

Vti
v = ——, and H = V • i/.

\Vu\

The level sets of u will then move by mean curvature in the sense of Brakke if for each

(10) Dt / <f>\Vu\ < - / (H2</> + Hu •
JQ JQ

where Dt is the upper upper time derivative; Dttp(t) = \im sup s_^t(tp(t) - tp(s)) / (t - s).
To see that this identity holds for smooth solutions of (1), note that H = u%l\Vu\ and

d f
dt JQ

IQ

In the general setting considered by Brakke [4], the integrals of (10) become surface
integrals2, u is the approximate normal, Hu is the mean curvature vector and H2 \s
its magnitude.

Recall that if 5 = {x \ u(x) = c} is a level set of u, then Js f dA = lim€-o(l/2<:) J, ,<c / |Vti| dx.
>|u-c|<e

12



To show that a discrete version of (10) holds for the first order scheme (5), we begin
with a technical lemma.

LEMMA 4 .1 . Let Th be a triangulation ofQ, ah be a non-negative piecewise constant
function on Th, and define a the norm ||.|| on L2($l) by

\\u\\2 = / u2/ah.

For <f> > 0, 4> € Cg(ft) fixed, and uh £ Vh, let v = <t>uh and vh = Ih{v) £ Vh be the
nodal interpolant of v. Then there exists C > 0 such that

and

where C = C(<f>) is independent of ah, and the only mesh dependence is through the
maximum ratio of diameter to largest inscribed sphere for any simplex.

Proof Note that the hypotheses on <j) guarantee that (f)1/2 £ CQ(Q) [15]. Standard
approximation theory shows that there is a constant C such that for any simplex

[ (v- vhf < Ch2 ( \D2v\2 and / |V(v - vh)\
2 <Ch [ \D2v\2.

JT JT JT JT

Since v = <j>Uh and Uh £ Th, it follows that

\D2v\ = \uhD2cj) + 2V0® Vuh\ = \uhD2(f)+ \ /^4V01 /2 ® Vuh\ < C(\uh\ + \\/(j)Vuh\),

where C = max^lJD^II^oo^^l lV^ 1 / 2!!^^)) . The lemma now follows by dividing
both sides of the estimate for a simplex by a j , the value of ah on T, and summing. D

THEOREM 4.2. Let u n + 1 £ Vh be the solution of (5), and define Hn+l and i /n + 1 by

2 tt"+i - u
n

Fix <f> £ Co(fi), and suppose {Th) is a regular family of meshes, then

- / ( | V t t n + 1 h | V u n | ) ^ < - / ( ( J n + 1 ) 2 0 + J ? n + 1 i / n + 1 - V 0 ) 5 ( | V | | ) (

where J5(/i,r;</>) < C(<^>)r1/2 provided h/r remains bounded.

Proof Recall that our existence results show that # n + 1 and i/n + 1 are well defined
even then the denominators vanish, and satisfy

= 0 V v* € Vk-

Fix </> € Co(fi) and let v = 0(wn+1 - un) and v/j = /^(v) be the nodal interpolant of v
on Th* Calculations similar to those in Section 2 show that

- / H^v + v71*1 -Vv = f

0

r
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Noting that we may replace v by v — Vh on the left hand side we obtain

i I (\Vun+1\-\Vun\)4> = - J ((Hn+1)2<t> + Hn+lun+l • V</>) ̂ (|Vun+1 \ + \Vun\)+E(h, r) ,

where

1 r 2 ( t t u ) ( t> pfc)

r i n r IV^+M + IVu"!

Define the weighted L2{Si) norm, ||.|| by

|2 _ f 2 M2

1

and recall that ||iin+1 - un||2 < r||Vuo||L'(O) a n d ||V«n+1||2 < ||Vuo||^(n)- Applying
the Cauchy-Schwarz inequality to the right hand side of the expression for the error
gives

E(h,r) < i (±\\un+1 - un\\\\v - vh\\ + ||VU"+1||||V(t, - vh)\\ - \

An application of Lemma 4.1 shows

Remarks: 1) It is tempting to select v^ as the projection

Vhe h' Jn |Vu»+i| + |Vt«n| ~ Jn\Vun+*\ + \Vu»\ G h'

instead of Ih(v) in the proof above. While this eliminates the errors in the spatial term,
we can't establish the second order error estimate for v — v^, in the weighted L2(Q)
norm (c.f. [27]). If the error is second order, then the above proof would extend to
the second order scheme (3). Moreover, the error E(h, r; 4>) for the first order scheme
would satisfy E(h,r;<fi) < C(<f>)r.
2) An analogous theorem for the lumped mass schemes is muddled by the fact that
both jffn+1, as defined above, and the piecewise constant function having nodal values
Hi = « + 1 - uf)/\Vui\ will appear.

5. Numerical Experiments. We limit our discussion to schemes (3) and (5)
since we expect the corresponding lumped mass schemes (6) and (9) to behave sim-
ilarly. Also, in order to avoid division by zero, terms of the form |Vw| that were
smaller than 10~7 were replaced by their epsilon approximants |Vu|c with e = 10~9.
This is motivated by our existence results above which obtained solutions by a similar
technique.
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5.1. Solution of the Implicit Equations. Each of the schemes are implicit,
so require the solution of a nonlinear system of algebraic equations. We considered a
natural relaxation scheme (given below) and Newton's method for the solution of these
equations. Numerical experiments showed that the relaxation scheme applied to (5)
was surprisingly robust; however, for (3) it failed to converge (or converged unaccept-
ably slowly). Newton's scheme was extremely temperamental for both schemes. When
it did converge, it did so rapidly; however, even with a good initial approximation ob-
tained with the relaxation algorithm, convergence was not guaranteed. Accordingly,
we only present results obtained using the relaxation algorithm applied to (5).

A natural iteration scheme for calculation of the solutions is to use the current guess
to calculate the gradient terms in the denominator, and then let the updated guess be
the solution of the corresponding linear equation. Specifically, set ti(0)

 = uU-> then for
k = 0,1,2,..., let U(jk+i) G Vh satisfy

1 j Jo r \Vu(k)\|v«(fc)| + |vt.»| ' |v«(fc)| + |Vt.»| "' ' — ' " '

for (5), with the obvious modification for (3). The difference between this relaxation
scheme and Newton's algorithm is apparent if we let 6u = U(k+1) — U(k) an(^ write (11)
as

1 6u v V6u • Vt>
r\Vu(k)\ + \Vun\ \Vu(k)\

where
1 u - un Vu-Vv
r \Vu\ + |Vizn| |VIA| + |Vi

Newton's scheme requires 6u € Vh to satisfy

6uv

for all v € V .̂ A solution, un+1, of the equations will satisfy jQ F(^n+1,i;) = 0 for all
v g yhm Xhis suggests that F(wn+1,.) will be small, and if this is the case, the Jacobian
matrix for Newton's method will be close to that used for the relaxation scheme.

When the mesh is strictly acute, the sequence {um} generated by the relaxation
scheme (11) is bounded in I°°(Jl), H^JULOO^) < ||tn|i,«>(n)> provided r is sufficiently
large. It follows that {u^} will have a convergent sub-sequence, and numerical ex-
periments indicated that the whole sequence usually converged. The L°°(Q) bound
follows from the fact that the denominators are non-negative, unlike the iy1'1(f2)
bounds which require the gradients in the denominator to match those in the numer-
ator.

5.2. Boundary Conditions. Our discussion above assumed homogeneous bound-
ary data. The extension for non-homogeneous Dirichlet data is relatively trivial. For
example, if u € M/2'°°(Q), and we specify u = u on dfi, then the standard translation
argument shows that the continuous problem satisfies the estimate

2 In
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GronwalTs inequality then shows that ||Vt/(*)||Li(Q) and Jf(ut)
2/\Vu\ are bounded by

the initial and boundary data. Discrete versions of these bounds are established in
the obvious fashion.

The situation is quite different for non-homogeneous Neumann boundary data. Specif-
ically, suppose that we consider the following weak problem for u:

Ln \Vu\ \Vu\

where / = (l/\Vu\)du/dn is boundary data. The a-priori bounds of Section 2 were
obtained by selecting v = ut, which may not have a well defined trace on the boundary.
One can integrate by parts in time to get

/7 + ||Vi*(r)||Li(n) = HVtiollLHO) + / (f(T)u(T) - /(0)*o) + f T I f
o JQ I V M | v ; v ' JdQ Jo Jau

and the trace theorem can be used to estimate the right hand side. However, the
bound fdQf(T)u(T) < C\\f(T)\\Loo(dQ)\\Vu{T)\\Li{Q) precludes the use of Gronwall's
inequality unless f(T) is very small. For example, the solutions are bounded when
/ = 0, as are the corresponding discrete solutions.

5.3. Examples.

5.3.1. Example 1: Regular Problem. We consider approximations of the
radially symmetric solution of (1) given by

(12) u(x, y) = eH-(*2+^2)/2) _ c-i/2? 0 < t < 1,

on the unit square [0,1]2. Note that the gradient vanishes at the origin, and we use
rectangular meshes, so approximating this solution is not completely trivial. Meshes
are constructed by dividing the square into similar rectangles and dividing them along
the diagonal with negative slope. A 2 x 2 mesh is shown in Figure 2a. Figures 3 and 4
show the errors obtained by first holding the time step fixed and refining the mesh and
then by fixing the mesh and varying the time step. The expected second order rates
of convergence with respect to h and first order rates with respect to r are clearly
observed.

5.3.2. Example 2: Discontinuous Initial Data. If 3> : 3f —+ $? is a non-
decreasing continuously differentiate function and u satisfies (1), then <f> = $(u)
also satisfies (1). If we consider $ close to the sgn graph3 it is easy to verify that
||V<^||^i(fi) = ||V$(^)||£/i(Q) remains bounded by twice the perimeter of the zero set of
u. In this situation we expect J) to be partitioned into two regions where 4> ~ 1 and
<j> ~ — 1, with the interface between them moving by mean curvature. We consider
numerical approximations of <j)t = tanh(w/6), as € —• 0. For e sufficiently small, the
nodal values for the initial data will equal ±1 to machine accuracy (except in the rare
circumstance that computed value of u at a node is exactly zero). In this situation
the best numerical approximation will have an interface with width h (or 2h if a nodal
value is exactly zero). Figure 5 tabulates the errors for several values of e, including

3 sgn(x) = 1 if x > 0, - 1 if x < 0 and [-1,1] if x = 0.
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e = 0 which corresponds to initial data taking on values of either ±1. We consider the
solution at t = 15/32, so that the zero set of u has moved from a radius of r = 1 at
/ = 0 to r = 1/4. For small values of e, the relaxation scheme failed to converge (in 500
iterations) if the time steps were too large. While the average number of iterations per
time step remained modest for small £, certain steps required many more iterations
than others. This is to be expected since the boundary values will jump from —1 to
+ 1 when the zero set of u crosses them (the zero set being at radius r{i) = y/1 - 2t).

5.3.3. Example 3: Neumann Boundary Data. Since the solution u, given
in (12), is radially symmetric, the normal derivatives on the bottom and left hand sides
of the square vanish. If we replace the (non-homogeneous) Dirichlet boundary data
on these two sides with the homogeneous Neumann condition, the bounds established
in Section 2 still apply. However, numerical problems were encountered when the
Neumann condition was specified on two sides of the same element, as would be
required at the origin with the mesh shown in Figure 2a. It was observed that the
corner element would quickly attain a zero gradient and "lock up" in the sense that
the discrete solution on this triangle wouldn't change. This behavior only polluted
the solution in elements adjacent to offending corner, and it was observed that the
solution still converged in Ll(il) as the mesh was refined. This problem could be
avoided simply by changing the mesh so that the Neumann condition was required on
at most one edge of an element as indicated in Figure 2b. Figure 6 shows contour plots
of the discrete approximations of (12) obtained with a "good" and "bad" mesh. Note
that there are theoretical subtleties associated with Neumann boundary conditions
for degenerate second order equations [28]. In general, solutions will either satisfy the
Neumann boundary data or satisfy the partial differential equation at a point on the
boundary.

We repeat the calculations of Examples 1 and 2 with Neumann boundary conditions
on the bottom and left hand sides of the square with "good" meshes. Figures 7-8
are the analogues of Figures 3-4 with the mixed boundary data. The first order rates
of convergence with respect to r are clearly observable for all of the norms. While
the Wlyl($l) norm appears to converge at the expected linear rate with respect to
h, the Z°°(f2) and X1(fi) norms do not appear to have attained an asymptotic rate.
Figure 9 is the analogue of Figure 5 exhibiting behavior with discontinuous initial data.
The relaxation scheme always converged with mixed boundary data; otherwise, the
discrete solutions with Dirichlet and mixed boundary data exhibited similar trends.
Figure 10 exhibits contour plots of the solutions obtained with € = 0 for each of the
boundary conditions. As expected, the mixed boundary data results in considerably
more smearing of the initially sharp interface.

5.3.4. Example 4: Fat Interface. Our final example exhibits the fattening of
an initially sharp interface. The initial data is chosen to be u°(x,y) = dist((x,y), i ) ,
where L = {{x,Q) | 0 < x < l}u{(0, y) \ 0 < y < 1} is the set of points on the bottom
and left hand sides of the unit square, i.e.

0/ x = f x if x < y,
1 y otherwise.

The solution was required to vanish on L for all times, and the homogeneous Neumann
condition was specified on the remainder of the boundary. In this situation, the zero
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set of u is initially Z, and develops interior instantaneously. Our algorithm reproduces
this phenomena as indicated in Figure 11 where the contours of the solution are plotted
at * = 1/4.

6. Application to Other Problems. Many physical problems involving phase
changes require the solution of a free surface problem. Typically a partial differential
equation will be satisfied away from a free surface, and boundary conditions, which
may involve curvature, are satisfied on the surface [6, 8, 20, 24, 23, 29, 38, 39]. A
typical problem is the limit of the phase field equations [6] which may be written as

(13) ±-(cu + CX) - An = /, in D'(n),
at

v = K + w, on 5,

where \ = 1 on the region interior of the region bounded by S and x = 0 on the region
exterior to S. v and K are the normal velocity and mean curvature of the surface S
respectively, and c > 0,1 > 0, are physical constants. Requiring the equation for u to
hold in the sense of distributions implies the usual jump condition [Vt/] n = Iv, where
n is the normal to S. By introducing a function </> whose zero level set corresponds to
<S, with <f> > 0 on the interior of *S, the free surface condition can be expressed as

In this instance \ = H(<f>), the Heavyside function of <j). Formally, \ a l s o satisfies (14),
so multiplying (13) by u, and (14) by \t and adding the two gives

showing that ||̂ (0llL2(ft)> IMIL^OJ1;//1^)]
 anc^ ^(0 a r e a^ bounded, where A(t) is the

area of the free surface. Of course it is impossible to represent a Heavyside graph on
a discrete mesh, so it is natural to approximate \ by 0, where the initial data for <j>
smears the sharp interface over one or two grid points. A numerical scheme analogous
to (5) is: (un+1,4>n+1)€VhxVh

i - (c(un+1 - un) + £{<f>n+1 - <t>n)) v + V u n + 1 • Vv = 0,

for all (v,ift) € Vh x V .̂ This scheme will satisfy the natural energy estimate

2

Note that the solution is bounded even when c = 0 which arises when studying the
Hele-Shaw instability [7, 40].
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Mesh
L°°(Q.) error
I 1 (ft) error
W1'1 error
Iterations/step
r/h

4 x 4 8 x 8 16 x 16 32 x 32
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0.033204 0.013769 0.006506 0.003232

5.5 5.6 5.68 4.95
0.0283 0.0566 0.1131 0.2263

Norm

0.470337
0.337209
0.190741

FlG. 3. Example 1: Solution att=l, r = 1/100.

Time Step

Z°°(Q) error
I 1 (ft) error
Wlyl error
Iterations/step
r/h

1/10 1/20 1/40 1/80
0.002515 0.001276 0.000631 0.000309
0.001035 0.000500 0.000233 0.000105
0.006339 0.004157 0.003440 0.003254

14.6 11.75 9.275 5.525
2.2627 1.1314 0.5657 0.2828

Norm

0.470337
0.337209
0.190741

FlG. 4. Example 1: Solution at t = 1, 32 x 32 mesh.
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e

L°°(ft) error

Za(fi) error

W1'1 error

\\U\\LHQ)

0.1
0.017816
0.009143
0.005011
0.003293
0.001725
0.001012
0.040553
0.033921
0.032283
0.757039

0.01
0.945311
0.665379
0.489090
0.059355
0.030190
0.019170
0.846847
0.525918
0.370072
0.964624

0.001

1.999981
2.000000

0.178389
0.146915

2.475706
2.335205
0.996498

0.0001

2.000000

0.187377

2.158692
0.999867

2

0

1

0

.000000

.187348

.000000

FlG. 5. Example 2: Solution at t = 15/32, 32 x 32 mesh for 200 (top), 400 and 800 (bottom)
time steps.

Mesh
L°°(il) error
I 1 (ft) error
Wlyl error
Iterations/step
T/h

4 x 4 8 x 8 16 x 16 32 x 32
0.009343 0.003850 0.001783 0.001238
0.003241 0.000322 0.000318 0.000359
0.026656 0.010018 0.004643 0.002476

5.1 4.47 4.52 10.11
0.0283 0.0566 0.1131 0.2263

Norm
0.469908
0.337209
0.190741

FlG. 7. Example 3: Solution of (12) a H = l , r = 1/100 with mixed boundary data, Mesh 2.

Time Step
£°°(ft) error
Ll(Q) error
W1'1 error
Iterations/step
T/h

1/10 1/20 1/40 1/80 1/160
0.011400 0.005915 0.002912 0.001509 0.000836
0.004288 0.002093 0.000969 0.000455 0.000218
0.011779 0.006311 0.003615 0.002618 0.002305

10.8 9.45 7.3 4.975 3.5
2.2627 1.1314 0.5657 0.2828 0.1414

Norm
0.469908
0.337209
0.190741

FlG. 8. Example 3: Solution at t = 1, 32 x 32 mesh with mixed boundary data, Mesh 2.

L°°(Q.) error

X1(fi) error

W1*1 error

\\U\\LHQ)

0.1 0.01 0.001 0.0001
0.094850 1.895185 2.000000 2.000000
0.051566 1.200566 1.999887 2.000000
0.032863 0.917061 1.560559 1.644764
0.031442 0.363090 0.543951 0.549184
0.017206 0.198779 0.329198 0.339603
0.010402 0.142109 0.219024 0.230409
0.119800 2.301089 2.783140 2.604038
0.076891 1.397567 2.384789 2.222679
0.062293 1.208584 1.993385 1.910221
0.757038 0.964617 0.996422 0.999770

0
2.000000
2.000000
1.684151
0.589882
0.361108
0.237778

1.000000

FlG. 9. Example 3: Solution with mixed boundary data at t = 15/32, 32 x 32 mesh for 200 (top),
400 and 800 (bottom) time steps, Mesh 2.
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Figure 1. Complementary Volumes.
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(a) Mesh 1 (b) Mesh 2

Figure 2. Meshes for Numerical Experiments
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(a) Mesh 1, Contour Increment = 0.02
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(b) Mesh 2, Contour Increment = 0.008

Figure 6. Mixed Boundary Conditions on 8x8 Meshes.
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(a) Dirichlet Boundary Data, Contour Increment = 0.1
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(b) Mixed Boundary Data, Contour Increment = 0.07

Figure 10. Example 3: 32x32 Mesh, 800 Time Steps, Mesh 2.
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Figure 11. Example 4: 32x32 Mesh, 200 Time Steps
Contour Increment = 0.01,0 < u < 0.375.

r



 



MAR 0 1

3 8482 01375 bflt7

r


