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Abstract. Incoherent phase transitions are more difficult to treat than

their coherent counterparts. The interface, which appears as a single

surface in the deformed configuration, is represented in its undeformed state

by a separate surface in each phase. This leads to a rich but detailed

kinematics, one in which defects such as vacancies and dislocations are

generated by the moving interface. In this paper we develop a complete

theory of incoherent phase transitions in the presence of deformation and

mass transport, with phase interface structured by energy and stress. The

final results are a complete set of interface conditions for an evolving

incoherent interface.
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C conf igurat ional surface s tress for p h a s e 1 ( m a t e r i a l ) . . . § 1 2
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1. INTRODUCTION.
This paper concludes a two-part series on phase transitions in

deformable solids, with and without mass transport, with the interface
between phases sharp and capable of supporting energy and stress. Part 1,
which was restricted to coherent phase transitions, is here extended to
phase transitions that are incoherent. As in Part 1, the discussion is limited
to a theory that neglects the flow of heat, concentrating instead on deform-
ation and mass transport. In addition, inertia is neglected.

In a coherent phase transition the body B occupies a fixed region of
space in a uniform reference configuration, the individual phases, which we
label i=l,2, occupy complementary subregions B^t) of B, and motions are
continuous across the undeformed phase interface S(t) = B1(t)nB2(t). As is
clear from the statical treatments of Cahn and LarchS [1982], Larchd and
Cahn [1985], and Leo and Sekerka [1989], incoherent phase transitions are
far more complicated. The interface, which appears as a single surface in
the deformed body, is represented in its undeformed state by a separate
surface Sx(t) for each phase i, even though we choose uniform reference
configurations for the two phases with corresponding reference lattices coin-
cident. Such complications lead to a rich but detailed kinematics, one in
which defects such as dislocations, vacancies, and interstitials may be gen-
erated by the moving interface.1

We begin with a discussion of the underlying kinematics and with a
systematic treatment of two-phase motions y=(y1,y2)« &t each time t, y i

maps material points X in the undeformed region Bi for phase i into
points x = y i(X,t) in the deformed body. We write F for the deformation
gradient: F=Vy1 in phase 1, F=Vy2 in phase 2; in addition, we denote by
Fi the limit of F as the interface is approached from phase i.

Associated v/ith each two-phase motion are three basic kinematical
quantities:
(1) The incoherency tensor H, which measures the stretching and twisting

of one phase relative to the other at the interface. H is the tangential
part of the relative deformation gradient

dislocations are discussed by Brooks 11952], Nye [1953], Frank [1955], Bilby
[1955], Bilby, Bullough. and De Grinberg [1964], Christian [1965.1985], Bollman [1967],
Christian and Crocker [1980], Pond [1985,1989]. Christian and Crocker [1980], p. 181
and Larch* and Cahn [1985], p. 1587 note the possibility of vacancies and dislocations.
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H = F2"1F1. (1.1)

For any point x of the deformed interface, H is a linear transform-

ation dX2=HdX1 between infinitesimal line segments dXi on Si that

coincide at x when deformed. If, for all such line segments, dX2 = dX1

(or dX2 = QdX1 with Q a symmetry rotation of the lattice), then the

deformed lattices fit together and the interface is infinitesimally

coherent at x.

(2) The production-rate of lattice points, as measured by the jump [W] in

the interfacial volume flows Wi = VJ/JJ , where, for each i, Vi is the

normal velocity of Sif while ^ is the surface Jacobian for y i

considered as a deformation of Sj.

(3) The slip, as measured by the difference (y2)°-(y1)°, where (y^0 is

the time derivative of yi following the normal trajectories of S^t).

The incoherency tensor, the lattice-point production, and the slip

completely characterize incoherency: an initially coherent motion is

coherent for all time if and only if, at each time, the interface is

infinitesimally coherent and the slip and lattice-point production vanish

identically.2

The basic physical principles upon which our theory is based are

balance of forces, balance of mass, and a version of the second law of

thermodynamics appropriate to a mechanical theory.3 The standard

forces associated with continua arise as a response to the motion of material

points. The mechanical description of a phase transition requires additional

forces4 that act in response to microstructural changes at the phase

interface. We refer to the former as deformational forces, to the latter

as configurational forces.5 What is most important is that, in addition

to the usual force and moment balances for deformational forces, we

postulate an additional balance for configurational forces.

We assume tha t there are 2t species, a = l,2,...,2t, of mobile atoms
2Cermelli and Gurtin [1993].
3Cf. Gurtin [1991].
4Cf. the discussion given in the Introduction of [Gu]. Throughout we write [Gu] for
the reference "Gurtin [1993]11, which is Part 1 of this series, and [GS] for the refer-
ence "Gurtin and Struthers [1990]".
5 Here we depart from terminology introduced in [GS] and [Gu], where the term
accretive forces was used.
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with molar densities pa and corresponding diffusive mass fluxes h a . 6

Bulk fields that strongly influence the motion of the interface are the
grand canonical potential GO and the Eshelby tensor C defined by

oo = $ - S pana , C = col - FTS, (1.2)

with 5 the bulk energy, |jia the chemical potential of species a, S the
bulk stress, measured per unit undeformed area (Piola-Kirchhoff stress),
and 1 the unit tensor.

The final bulk relations are the balance laws

DivS = 0, (p«r = -Divh a , (1.3)

supplemented by constitutive equations

* = ^(F.p), S = d^tF.p), m = dpi^F.p), ( 1 4 )

for each phase i, with

p - (p1 p«), U -

and with mobility Dj(F,p) a linear transformation compatible v/ith the
inequality Zaha«V|ja < 0. (For completeness we assume elastic behavior in
bulk, but the interface conditions we derive are independent of the parti-
cular choice of bulk constitutive equations.)

We turn next to the development of appropriate interface conditions.
To best illustrate the basic ideas, we begin with a theory that neglects
interfacial energy and stress, but includes interface kinetics. The resulting
interface conditions consist of an equation

[y-]-n = -[JW] (1.5)

expressing kinematical compatibility at the interface, a jump condition

I ^ = 0 (1.6)

- 3 -
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balancing forces across the interface, equations

S^-Cjii = (PilWx + pi2W2) (1.7)

(i = l,2) balancing normal configurational forces on each phase at the
interface, equations

- 0 (1.8)

(i-1,2) characterizing the vanishing of the tangential traction in each phase

at the interface, a relation

[paW] = i r ^ - n ] (1.9)

expressing mass balance for each species a, and a condition of local

equilibrium

lna] = 0 (1.10)

for each species a. Here n is the unit normal to the deformed interface %,

ni is the unit normal to the undeformed phase i interface Sit [i] denotes

the jump in a bulk field f across the interface, ii denotes the interfacial

limit of f from phase i, and pH are kinetic coefficients.

In the derivation of these interface conditions the slip was not

included among the independent constitutive variables,7 a direct conse-

quence of this assumption is (1.8). The local equilibrium condition (1.10) is

an assumption made from the outset.8

The balances (1.6M1.8) can be expressed more succintly as a normal

force balance

(1.11)

7 Although we do discuss the form the basic equations take when the slip is
included as a constitutive variable.
^Gurtin and Voorhees [1994] develop a theory in which this assumption is dropped.
Their theory neglects deformation.
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and a partial balance

SiCiiii = (p^Wj 1- p i 2 W 2 ) n i (1.12)

for each phase i.

We turn next to a theory that includes interfacial energy and stress,

but neglects mass flow within the interface. Here it is convenient to choose

phase 1 as a reference for the interface, to measure interfacial fields

relative to S ,̂ and to use the abbreviations

S = Slt n » nla

We consider a single interfacial energy ^ , but endow the interface

with three stress fields:

• a deformational stress 8 that represents the (Piola-Kirchhoff) stress in

the surface and acts in response to the stretching of the phase 1 interface;

• a configurational stress C that represents microstructural forces in the

phase 1 interface;

• a configurational stress DC that acts in response to the stretching and

rotation of the phase 2 lattice relative to that of phase 1.

We show, as a consequence of thermodynamics, that the tangential part of

the total surface stress

A = C + F^S + HTK, (1.13)

which represents the net configurational contribution of the stresses to the

rate of working, is a surface tension whose value is the interfacial energy ^.

Among the constitutive equations considered for the interface are

relations giving the interfacial energy \\>, the surface stresses S and K,

and the normal part B = ATn of the total surface stress as functions of the

limiting value F=F1 of the deformation gradient, the relative deformation

gradient H, the limiting values p1 and p2 of the list of densities, the

normal n to S=S1, and the volume flows W1 and W2. We show, as a

consequence of the second law, that \\>, 6, K, and G are independent of

Pi» P2» ^v a n c * ^2» a n c * t^at the energy

- 5 -



4 = $(F,H,n) (1.14)

generates the stresses through the relations9

8 = SF^(F,H,n), K = 3H^(F,H,n), 6 = -c>n4,(F,H,n). (1.15)

We show further that ^, S, and K depend on F and H through the
tangential deformation gradient F and the incoherency tensor H, that

S = aF^(F,H,n), K = d ^ F ^ n ) , (1.16)

and that C = CTn is given by

C = -Dn^(F,W,n), (1.17)

with Dn the derivative following n.
The final results — which form a complete set of conditions for an

incoherent interface — consist of the compatibility condition (1.5), the mass
balance (1.9), the local equilibrium condition (1.10), an equation

\\>K - (FTS + HTKM + DivsC - n - C ^ = p11W1 + P12W2 (1.18)

that represents a normal configurational balance for phase 1, an equation

DivsK + KC2n2 =

that represents a configurational balance for phase 2, a deformational force
balance

Div s S + KS2n2 - S1n1 = 0, (1.20)

and the constitutive relations (1.16) and (1.17). Here 0H.= }1/}2>

stresses I and K are surface tensors whose values at a point XcS are linear
transformations from the tangent space at XcS into R . In the formulas (1.15) these
stresses should be interpreted as their trivial extension to linear transformations
from R3 into R3.

- 6 -



L = Lx= -V sn and K = Kx = tr L, respectively, are the curvature tensor and
the total (twice the mean) curvature for S.

We also discuss the form the general theory takes when described
spatially (in the deformed configuration), and we discuss the reduced form
the interface conditions take when the interfacial energy ^, per unit
deformed area, is noninteractive; that is, + s ^ i + +2 ^ t h t^ie energy ^
for phase i dependent on kinematic quantities for that phase only.10

discussion here is based on work of Leo and Sekerka 11989], who use the
adjective "greased" to signify an interface whose energy is noninteractive; for statical
situations our results are consistent with results derived variationally by Leo and
Sekerka.

- 7 -



2. GENERAL NOTATION
We will frequently refer to the papers — and will generally follow the

notation — of Gurtin and Struthers [1990] and Gurtin [1993]; for that reason
we use the abbreviations:

[GS] = Gurtin and Struthers [1990],
[Gu] = Gurtin [1993].

In particular, our notation concerning tensors in IR3 is given in §2 of [Gu],
as are definitions of: deformation; evolving two-phase region; interface;
control volume; jump [cp], average (<p>, and limit cpi (from phase i) of a
bulk field cp at the interface, a notation we will also use for arbitrary fields
(p1 and cp2 on the interface, the subscripts here denoting the phase to
which the field is associated (cf. the paragraph containing (4.1)). Our
terminology involving surfaces and smoothly evolving surfaces can be found
in Appendices Al and A2 of [Gu]; specifically, defined there are the notions of
superficial field, surface gradient, and surface divergence. As in [Gu], we
write

6i = (-D1, (2.1)

and, for linear spaces U and V, we let

Lin(U,V) = space of linear transformations from U into V.

In addition, we use the specific abbreviations

Lin+ = {FcLin(lR3,lR3) : de tF>0} ,
Unirn* = {F€Lin+ : detF = 1 },
Orth+ = {QcLin+ : QTQ = 1 },

We label material points by their positions X in a fixed homogeneous
reference configuration. We label spatial points (points in the deformed
body) by x. We use an overbar to denote the referential-to-spatial
transformation; i. e., e. g., S is the Piola-Kirchoff stress, T = S is the
Cauchy stress; p is the mass density in the undeformed body, p is the
density in the deformed body. Finally, we use the following notation for

- 8 -



derivatives:

(...)* material time-derivative (holding X fixed);

3t(...) spatial time-derivative (holding x fixed);
V, Div material gradient and divergence (v/ith respect to X),
grad, div spatial gradient and divergence (v/ith respect to x).

- 9 -



A. KINEMATICS

3. TWO-PHASE DEFORMATIONS
3.1. REFERENCE CONFIGURATION

The description of a solid undergoing a phase transformation is more
complicated than the more classical descriptions encountered in continuum
mechanics, one reason being the role played by the lattice s t ructure of the
material , especially at an incoherent phase interface. Within our theory
the reference configuration for each phase should be envisioned as a copy of
IR3 together with a lattice £(X), which, for each XcIR3, models the
microstructure of the material at X. Here we assume tha t each phase is
referred to a uniform reference configuration in which the lattice does not
v a r y from point to point, with the

reference configurations chosen so that
the lattices of the two phases coincide.

Thus, in effect, we refer the phases to a single uniform reference config-
uration with lattice £ .

3.2. BASIC DEFINITIONS
We label the phases 1 and 2, and reserve the letter i for the label

when the part icular phase is unimportant . By a two-phase body we
mean a pair B = (B1,B2) with Bj a closed region in IR3. Given a two-phase
body B, let y=(y1 ,y2) be a pair of mappings with y> a mapping x^
of Bi into IR3, and let

Then y is a two-phase deformation of B if:
(i) yt is a deformation of Bi for each i;

(ii) % is a smooth surface in IR3.
B i represents the deformed phase i region;



represents the deformed body; J& represents the deformed interface;

the inverse image

represents the undeformed phase -i interface, it being tacit that the

phases not separate at the interface. We emphasize that — to allow for

incoherency — we do not require coincidence of the undeformed interfaces

S1 and S2, nor do we require that B1 and B2 be disjoint.

Let y be a two-phase deformation. We write:

for the deformation gradient for phase i, and

G^x) = Ff^X), x = yi(X) (3.1)

for the inverse deformation gradient.

We use the invertibility of the deformation to consider fields cp̂ X)

associated with Bi (i = l,2) as fields qp̂ x) on the deformed regions £>; in

fact, we write (Pj(x) rather than cpiC3c), and let cp(x) denote the combined

field given by if̂ Cx) for x in the interior of B1 and <p2(x) * o r x *n *he

interior of B2. This convention allows us to consider the deformation

gradient as a spatial field F(x), and to reserve the subscripted symbol Fi

for the limit of F as % is approached from phase i.

More generally, §j(z) denotes the limit of a field $(x) at ze& as

x-*z from Sit while [$] is the jump in $ across the interface:

[S] « ff2 - « r

The undeformed interfaces Sx and S2 are in one-to-one corres-

pondence with % via the mappings y 1 and y2 ; we say that

X1cS1, and X2cS2 are connpatible if

« y2(X2).

- 1 1 -



In relations involving fields defined on the deformed interface as well as
fields defined on the undeformed interfaces, it will always be understood
that the fields are to be evaluated at compatible points.

We orient the deformed and undeformed interfaces by the following
choice of unit normal fields:

n unit normal to Z outward from Sx,
n 1 unit normal to St outward from B^
n 2 unit normal to S2 inward from B2;

these normals are related by

n = XiFi"
Tnii \ = IFfTn ir

1 = IF^nl. (3.2)

We write

J = detF (3.3)

for the bulk Jacobian; the superficial field

>i - J/Xi (3.4)

then represents the Jacobian of the mapping that carries the undeformed
phase i interface into the deformed interface. We will also use the surface
Jacobian 11 of the mapping that carries S1 into S2:

H - }x/}2. (3.5)

We denote by L^X) and K^X) the curvature tensor and total (twice
the mean) curvature for Sif and by L(x) and K(x) the corresponding
quantities for JZ>.

The inclusions — into IR3 — of the tangent spaces at XcS i and x c ^
will be denoted by Hi(X) and II(x), respectively, while the corresponding
projections will be denoted by P ^ 1^ and F =1T . We shall also make use
of the projection operators

- 1 2 -



Ai = 1 - n^rii = li^i, A = 1 - n ® h = II IP. (3.6)

Then

I(x)cLin(n(x)x,IR3),

iP(x)€Lin(IR3,n(x)^),

A(x)cLin(IR3,IR3).

We write u t a n S . and utan>8 for the tangential components with

respect to S1 and J&, respectively, of an interfacial vector field u:

utanS1 - A i u ' utan>8 =

We then have the useful result:

To verify (3.8) we let w = u t a n 5 . , so that u^w+ocn^ and v/e conclude,

with the aid of (3.2), that AGi
Tu = AGi

Tw. Assume that AG/w^O. Let

p = Fiw, so that p is tangential to Z. Then 0«p*AGJTW = W«W; hence
utanS- = ^- ^ ^ e c°nverse assertion is established similarly.

3.3. TANGENTIAL GRADIENTS. INCOHERENCY TENSOR

The tangential and inverse - tangential deformation gradients

are defined by

Fi = VsiYi = Tih> 6 ! s grad^tyf1) = G j , (3.9)

with Vs. the material gradient (with respect to X) on Si and grad^

the spatial gradient (with respect to x) on Z. Then

F^XkLindi^XH,!?3), Bi(x)€Lin(ii(x)-L,IR3),

but F^X) actually maps tangent vectors at XcSi to tangent vectors at

xc^, and vice versa for Bj(x). Further, fi and Bi are generally not

invertible, but this causes no problem as P¥i is invertible with inverse

-13-



Pi©^11 Further, J-det (P F4).

In discussing the interface it will be convenient to take phase 1 as

reference and to consider the relative deformation h of phase 2 with

respect to phase 1:

h(X) = (y2"
1*yi)(X), XcSj. (3.10)

We will refer to

H = G2T1 (3.11)

as the relative deformation gradient; its tangential part is the surface

gradient of the map h:

H - VSih = mv (3.12)

V/e will refer to H as the incoherency tensor;12 H(X)cLin (n1(X)-L,IR3),

although W(X) maps tangent vectors at XeS1 to tangent vectors at

h(X)cS2. The tensor H also relates the relative orientations of the un-

deformed interfaces:

n2 = X2'
1X1H"Tn1. (3.13)

Given any XcS^, the smoothness of y1 and y2 up to the interface

and the restrictions detF1>0, detF2>0 allow us to extend y 1 and y2

smoothly and invertibly to ^-neighborhoods of X and h(X); thus, given

any point

h admits a smooth, invertible extension to

an R3-neighborhood of X, and H = Vh. (3.14)

The relative gradient H, which measures both the relative strain and

relative rotation between phases, is invariant under observer changes,

which are here transformations carrying (F1#F2) into (QF1,QF2) with
11Cf. IGS], p. 106.
12Cf. Cermelli and Gurtin [1993].
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QcOrth*. Contrast this to classical continuum theories, where rotations are

generally not invariant and consequently ruled out of constitutive relations.

3.4. REFERENTIAL-TO-SPATIAL TRANSFORMS

Given a bulk tensor field T and a bulk scalar field <p, we write

T = J^TFT, <p = J-icp, (3.15)

where J is the bulk Jacobian (3.3). If A is a surface oriented by the unit

normal m, if Q is a region, if both A and Q are contained in one of the

undeformed phase regions, and if Q — oriented by m — and Q denote

the images, at some fixed time, of A and Q under the motion, then

JTmda = jTmda, Jcpdv = Jtpdv. (3.16)
Q A Q Q

Given a superficial (scalar or vector) field (Pj for S:, we define

<Pi - KXVi. (3.17)

where }i is the surface Jacobian (3.4). If A is a subsurface of the

undeformed phase i interface, and Q is the image of A under the motion,

then

J^da = Jipjda. (3.18)
Q A

By (3.2), (3.4), and (3.15), for T a bulk tensor field,

Tan = Ji^Tjiii. (3.19)

Also, applying (3.16)! to the boundary of a smooth region, we conclude, with

the aid of the divergence theorem, that

divT = J^DivT, (3.20)

with div and Div, respectively, the spatial and referential divergences.
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Similarly, given a superficial tensor field T on S^ we write

f = J^TF^I; (3.21)

then, if V and Vi are the unit normals to dQ and dAi respectively, we have

Jfvds = JT^ds, (3.22)

and the identity

Jq-f Vds - Jq-T^ds (3.23)

holds for any superficial vector field13 q on Q. Applying the surface

divergence theorem14 to both sides of (3.22) yields

div^f = J^DivgT. (3.24)

If the unbarred fields in (3.15), (3.17), and (3.21) represent physical

quantities measured in the undeformed body, then the barred quantities

represent these same quantities measured in the deformed body. We will

refer to the barred quantities as the referential-to-spatial transforms

of the unbarred quantities. In using this notation it is important to note

that fi is not the transform of r .̂

n th€ left sid€ of (3.23) q is considered as a function x«-» q(x) on G, on the right
side as a function X^qCyiCX)) on Aj.
14Cf. [Gu], eqt. (A10).
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4. TWO-PHASE MOTIONS

4.1. BASIC DEFINITIONS

At each time t, let y(t) be a two-phase deformation of a two-

phase body (B1(t),B2(t)), and write y = (y1,y2)i with y{ the mapping

y^X/tJ-y^tMX). Then y is a two-phase motion if, for each phase i:

(i) {B(t),B1(t) lS2( tO i s a n evolving two-phase region15;

(ii) away from Sj(t), dB^t) is independent of time;

(iii) y i is a smooth mapping.

Let y be a two-phase motion. We use the following notation:

y;(X,t) = (d/Ot)yi(X,t)

is the material velocity of phase i; V^X.t) and V(x,t), respectively, are

the normal velocities of S^t) in the direction n^X/t) and &{t) in the

direction n(x,t); yi"
1(x,t) is the (fixed-time) inverse of y^X/t),

y-HySX.t)*) - X, XcB^t). (4.1)

As in Section 3.2, we use the invertibility of the motion to consider

fields tPi(X,t) associated with B^t) (i=l,2) (and smooth up to the inter-

face) as fields <pj(x,t) on the deformed regions B^t), and let <p(x,t) denote

the combined field given by (p1(x,t) for x in the interior of B1(t) and

cp2(x,t) for x in the interior of B2(t). We w ^ refer to such fields cp(x,t)

as spatially described bulk fields, a convention that allows us to

consider the deformation gradient and material velocity as spatial fields

F(x,t) and y#(x,t), and to use the notation defined in the paragraph of [Gu]

containing (2.1) with { B(t), Bj/t), B 2 ^ ) a s t ^ ^ evolving two-phase region.

A (local) trajectory for & is a vector function z of time (on some

open time interval) with Z(T)C>8(T) at each T; Z passes through x at

time t if z(t) = x; z is normal if z# - Vn. (Since J& is, by hypothesis, a

smoothly evolving surface, given t and xc£(t), there is. always a

trajectory — even a normal trajectory — through x at time t.) Trajec-

tories for Sj are defined analogously. We define compatible trajectories

for the interface as trajectories z, Zlt Z2 for Zt S1, and S2,
15Cf. Sect. 2 of iGul.
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respectively, such that

z(t) = y1(Z1(t)ft) = y2(Z2(t),t); (4.2)

the velocities z\ Z1
#, and Z2

# of compatible trajectories satisfy

Z.-.n.-V,. Z - .n -V, ( 4 3 )

z- - y ^ + F ^ - . y 2 -*F 2 Z 2 \

The (fixed-time) invertibility of yi allows us to construct compatible
trajectories through compatible points; (3.2) and (4.3) therefore yield

V = \iVi + y/.n, i = 1,2, (4.4)

a constraint that rules out the formation of voids at the interface.
We will also use, as an intrinsic measure of the motion of Sit the

relative velocity

\j. = v - y^n = \Vi (4.5)

and the volume-flow

Wj « Vj/Ji « U J / J J (4.6)

for phase i (cf. (3.4) and (4.5)). Wi represents the volume flow across the
phase i interface in the direction - n, per unit deformed area (cf. Section
5.2). By (3.4), (4.4), (4.5), and (4.6), we have the compatibility conditions:

[XV] = [JW] = [U] = -ly]-h. (4.7)

4.2. COMPATIBLE INTERFACE AND EDGE VELOCITIES
a. Interface velocities

(Local) parametrizations x = z(p,t) for ^(t) and X^Z^p/t) for
S^t), i = l ,2, are compatible if

z(p,t) s y1(Z1(p,t),t) = y2(Z2(p,t),t); (4.8)
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the trajectories defined by z(p,t) and Z ^ t ) for p fixed are then

compatible, and the corresponding superficial fields v(x,t) = (d/c)t)z(p,t),

x = z(p,t), and v^tMa/aOZ^p/t) , X-Z^p.t), satisfy

v i # n i = vi* v-n * V, (4.9)

as well as the compatibility condition

v = y1* + F1v1 = y2
# + F2v2. (4.10)

We will refer to superficial fields v, v1# and v2 consistent with (4.9) and

(4.10) as compatible velocity fields for the interface. (By (4.4), (4.9) are

redundant, (4.10) and one of (4.9) impies the other.) Here it is important to

note that vx and v2 need not be normal to S1 and S2, respectively,

but their tangential components are not independent, as vA and v2 must

induce the same velocity field v for &. Working with compatible velocity

fields guarantees the equivalence of the description of the evolution process

with respect to any of the interfaces &, S1, and S2. To choose compatible

velocity fields it sufficies to specify one of the fields v, v1# or v2 , for

then the other two may be computed using (4.10).

In what follows we will use two particular choices of compatible

velocity fields v, v1, and v2 : one choice is normalized spatially, while

the other is normalized materially using phase 1 as reference.

(i) The spatially normalized interface velocities v, v1; and v2

have v normal,

.v = Vn, (4.11)

so that, by (4.10),

vt = G v̂ - yf), i = 1,2; (4.12)

(ii) the interface velocities v, v l f and v2 materially normalized

with respect to phase 1 have v1 normal,
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v x = V ^ , (4.13)

so that, by (4.10),

v - y ^ + F l V l , ( 4 1 4 )

v 2 = G2(-[y-] + F{v±).

It is important to note that v and V are not the referential-to-
spatial transforms of v i and Vt.

b. Edge velocities
Let Ai(t) = yi"

1(Q(t),t), with Q(t) a smoothly evolving subsurface of
Z(t), let V and Vi denote the outward unit normals to the boundary
curves c)Q(t) and cJA^t), and let V ( 3 Q ) t a n and V ( d A . ) t a n denote the

intrinsic tangential edge velocities of the boundary curves dG and
9Aj (the normal velocities of dAi and 8Q in the tangent planes to Si and
^) . 1 6 We say that parametrizations x = z(u,t) for c)G(t) and X^Z^u.t)
for SA^t), i=l,2, dire compatible ii z(u,t)=y1(Z1(u,t),t) = y2(Z2(u,t),t). The
corresponding superficial fields w(x,t) = (9/3t)z(u,t), x=z(u,t), and
w^X.tMS/dOZitu/t), X = Zi(u,t), then satisfy

w - n , = Vif w^Vi = V ( 3 A . ) t a n f ( 4 1 5 )

^ • n = V, w-V = V ( a Q ) t a n ,

in conjunction v/ith the compatibility condition

w = yx
9 + F1w1 = y2

# + F2w2 (4.16)

(cf. (4.10)). More generally, let w(x,t) and w^X^), respectively, be
defined for all X€dG(t) and all XcdA^t). Then w, w 1 § and w 2 are
compatible edge velocities if they are consistent with (4.15) and (4.16).
As before, we shall use two specific normalizat ions of the edge
velocities: the spatial normalization

l e d . Appendix A of [Gu].
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w = Vn + V(SQ)tanV = v + V(SQ)tanV, ( 4

(with v and v4 spatially normalized); and the material normalization

with respect to phase 1

V l n l + VoA^tanVl = v l

w - y f + F ^ = v + F^VoA^.^Vi), (4.18)

w2 = G2(-[y] + FiW^ = v2 + H(V (3Ai) tanV1)

(with v and v i materially normalized with respect to phase 1).

4.3. NORMAL TIME DERIVATIVES FOLLOWING THE INTERFACE

The normal time derivative q>°(x,t) following Z(t) of a

superficial field <p(x,t) on <&(t) is the superficial field defined as follows: for

any normal trajectory Z(T) through x at time t:

cpD(x,t)= (d/dT){cp(z(T),T)}|Tmt. (4.19)

When the superficial field is the limit $j(x,t) from B^t) of a bulk scalar

field $(x,t),

(4.20)

Analogously, let cp(X,t) be a superficial field on S^t). Then its normal

time derivative cp°(X,t) following S^t) is the superficial field on Sj(t)

given by

(p°(X.t) - (d/dT){cp(Zi(T)fT)}|Tati (4.21)

with Z^T) the normal trajectory through X at time t. As before, when

the superficial field is the limit i^X/t) from B^t) of a bulk scalar field

(4.22)
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The relations (4.20) and (4.22) have obvious analogs for vector and tensor
fields. Note that the symbol (0° defines the normal time derivative on
both S1(t) and S2(t); when we use this symbol the underlying surface
should be clear from the context. (In most cases (-)° will denote the
normal time derivative with respect to Ŝ .)

The above definitions, the discussion in the paragraph containing (4.8)
and (4.19), (4.21) yield the identities:

(yf1)0 - vif

y.° = v - VnD r, w = (4.23)

v/hen the interface velocities are spatially normalized, and

vi • v = y r + F i v i n i '
/ - i NO uo (4.24)
(y2 °yiJ = h° = v 2

when the interface velocities are materially normalized with respect to
phase 1 and (0° is the normal time derivative with respect to S .̂

Further, for cp a superficial scalar field

, (4.25)

with (-)° the normal time derivative with respect to S*; and analogous
relations hold also for vector and tensor fields. We will verify (4.25) for
i*l. Choose xc>8 and t arbitrarily. Let Z(T) be a normal trajectory for
>8(T) through x at t, let Z(T) be a normal trajectory for S 1 ( T )
through X = y 1 ' 1 (x , t ) at t, and, without loss in generality, let t = 0.
Then, for tp described spatially,

(tp° - tp°)(x,O) =

since z(0) = y1(Z(O),O) = x. Writing u(T) = grad/8tp(z(x),T), it follows that

= T-I{Z(T) - z(0) + y1(Z(0)f0) -
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§(0+) - (z-(0) - y^tX.O) - F^

On the other hand, z #=Vn, Z#=V1n1, and (4.25) follows from (4.24)x. This

result also holds for vector and tensor fields.

4.4 SLIP
A basic feature of incoherent motions is that the phases are allowed

to slip along the interface. We introduce, as an intrinsic measure of this
phenomenon, the slip velocity

with (y2)° the normal time derivative following S2 and ( y ^ 0 the
normal time derivative following S1. Then \f is tangential to & and
admits the representation

If = [y#] + [VFn]. (4.27)

This identity follows from property (4.22) of the normal time derivative;
(4.4) then yields the tangency of If to &

In terms of the interface velocities materially normalized with respect
to phase 1,

* • - * V v 2 ) t a n S 2 . (4.28)

Indeed, by (3.6), (4.13), and (4.14),

» v 2 - (v2-n2)n2

* G2(Vi' -Y2 + F i v i ) " V 2 n 2
- G2(yt' - y2* + VJiUi - V2F2n2)

and (4.28) follows from (4.27).
Our definition (4.26) of the slip velocity Jf characterizes it as the
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"deviation rate" of the images in the deformed configuration of trajectories
for Sx and S2 that are both normal. The identity (4.28) yields another
interpretation. Consider a normal S^trajectory. The image of this trajec-
tory in the reference configuration for phase 2 is an S2-trajectory, but in
general it is not normal to S2. It describes the motion on S2 of a time-
dependent compatible point that moves normally on Sv The tangential
part of the velocity field for this S2~trajectory is a measure of the shear
rate across the interface; the multiplication by F2 in (4.28) converts this
shear rate to one measured in the deformed configuration.

An alternative representation of the slip is furnished by the identity

If = [F{Vn-(y-1)D>], (4.29)

which is a consequence of (4.12), (4.23)1, and (4.27).

4.5. SOME IDENTITIES
We begin with identities in which the interface velocities are spatially

normalized. Here u is a bulk vector field; and, for i = l ,2 , a i is a
superficial vector field on Sx.

grad^v = - (n®nD)l - VL, (4.30)

grad^v^ GX
DJ + G^grad^v, (4.31)

grad/8(u1°)= (gradual + (gradu^grad^v), (4.32)

In the next set of identities the interface velocities are materially
normalized with respect to phase 1, the normal time derivative is with
respect to Sv and, for i=l,2, ^ is a superficial vector field on Ŝ

Vs vA = - (niSnpil! - VjL^ (4.34)

Vs v2= H'lli + H V s ^ , (4.35)

VSiv= FiMj • TxVSiVv (4.36)

Vs^i), (4.37)
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I ak-vk = 2 (ak*nk^vk " «32
Ta2>tan*-*- ( 4 3 8 )

k-1.2 k-1.2

The identities (4.30) and (4.34) can be found in [GS] (cf. the proof of
(3.29) in [GS]).

To prove (4.32), let A = gradu. Then, by (4.20),

grad<&(ui°) = grad-8{Otu)i + AjV)}
= (dtA)ji + ((gradA)jV)l + A^grad^y);

the first two terms on the right equal A;0. The identity (4.31) follows from
(3.1), (4.23)!, and (4.32), while (4.37) is the material counterpart of (4.32).

Next, note that, by (4.5), (4.11), and (4.12),

a^v, = G^a^Vfi^- y / )
= (n-G/^KV - y ^ n ) - (G^i

and (4.33) follows.
Equation (4.35) follows from (4.37) with u = h, (3.14), and (4.24)2, while

(4.36) is a consequence of (4.37) with u = y1 and (4.24)1. Finally, to prove
(4.38), we decompose v2 into tangential and normal parts v/ith respect to
S2 and then appeal to (4.28).

4.6. SPATIAL CONTROL VOLUMES
We will formulate balance laws using spatial control volumes, which

are fixed regions of space through which the deformed material flows.
Precisely, a spatial control volume is a fixed region & with the
property that K is a control volume with respect to { S(t), B1(t), B2(t) }.
The time-dependent set S|(t)n!R then represents the portion of 3£
consisting of phase i material

Let § be a spatial field and let D(t) be a (possibly) time-dependent
region in the deformed body. Then we write

(d/dt){j¥dv}(t) = (d/dt){jf(x,t)dv(x)}.
JD JD(t)
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Given a spatial control volume & (with m the outward unit normal to
, we write

{Jidv}- = (d/dt){jldv) + Jfy--fhda, (4.39)
ft ft

for the time derivative following the material currently in ft. Then, for
fte a family of spatial control volumes that shrinks to an arbitrary regular
interfacial set Q, and for § the referential-to-spatial transform of a bulk
field §,

{Jldv}- - -Jlfulda = -J[$W]da; (4.40)
K8 Q Q

the first limit follows from (4.5) and Lemma Bl of [Gu], while the final rela-
tion is a consequence of (3.15) and (4.6).

Similarly, if T is a spatial tensor field, then, by (3.19),

j T m d a -> JIJ^Tnlda. (4.41)
Q

Throughout our discussion of incoherent interfaces we will state and
localize balance laws using spatial control volumes in conjunction with the
referential-to-spatial transforms defined in Section 3.4.
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5. COHERENCY. FORMATION OF DEFECTS17

5.1. COHERENCY

a. Symmetry group of the lattice

We introduce a symmetry group 9 for the reference lattice t .

Unless specified to the contrary, 9 is a subgroup of Unim+, so that all

deformations that leave £ invariant may be represented by Q-. However,

our results concerning the relation between incoherency and coherency

require that we exclude from our discussion arbitrarily large shears. In

fact, this discussion will require that 9 b e a finite subgroup of Orth+.18

In any case, we will refer to the tensors Ac9 &s s y m m e t r y

transformations, and to mappings f :R3-*IR3 of the form

f(X) = AX + q (Ac9, qcIR3) (5.1)

as material isomorphisms. It is important to distinguish the translation

q, which may be any vector, from the translations which — on a micro-

scopic scale — leave the lattice invariant; on a macroscopic scale the set of

microscopic translations is not distinguishable from K3.

b. Infinitesimal coherency

Consider a two-phase deformation. Choose compatible points xc.8,

X^cS^, and X2cS2. Further, let dXi be an "infinitesimal line segment" on

S : at Xif and let d x - F^X^dX^ If dx1=dx2 , then dXx and dX2

coincide when deformed. In this case dX2= H(X1)dX1; thus H(X1) relates

line segments on the undeformed interfaces Sx and S2 that coincide when

deformed. Since the reference lattices are coincident, if dX2 = dX1 for all
17This material is taken from Cermelli and Gurtin [19931.
1 8 Reducing the "effective" symmetry group of the lattice to a subgroup of rotations
requires restricting the deformation of each phase to a sufficiently small neigh-
borhood of the identity, an idea due to Ericksen [1980,1984,1989] (see also Parry
[1976,1982]). Ericksen conjectured and Pitteri [1984] proved that such a neighborhood
— with suitable properties — can always be found. A clear, concise proof of the
Ericksen-Pitteri Theorem is given by Ball and James [1992]. See also Cermelli and
Gurtin [1993] for a treatment of Ericksen's ideas within the framework of this paper.
A slight generalization would be to require that the deformation gradients Vyj be con-
fined to suitable MEricksen-Pitteri neighborhoods" 7li# but to let the transition strain
between phases be large. This can be handled within the present framework with
only minor modifications.
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such line segments at X1 and X2 that coincide when deformed, then the

deformed lattices are also coincident at x. In this case the interface is — in

some sense — coherent at x, and the same can be said if, for some

symmetry transformation A, dX2 = AdX1 for all such line segments. In

this case we refer to the interface as infinitesimally coherent; precisely, the

interface is infinitesimally coherent at xc>8 if there is a symmetry

transformation A such that

HKX̂  = Al^X^, (5.2)

so that M(X1) and A coincide on vectors tangent to S1 at X1 - y1"1(x).

A condition equivalent to infinitesimal coherency at x is that, for some

vector b,

x ^X^ . (5.3)

If, in addition, A is a rotation, then

}2(X2) = ^(X^, n2(X2) = An^X^. (5.4)

c. Coherent subsurfaces

We continue to consider a two-phase deformation. Let C be a

subsurface of Z, and write

q = y-HC) (5.5)

for the subsurface of Si that transforms to C. Then C is infinitesimally

coherent if the interface is infinitesimally coherent at each xcC A much

stronger restriction is the content of the next definition. We say that C is

coherent if there is a material isomorphism f such that

X2 = f(X1) whenever X1cC1 and X2cC2 are compatible. (5.6)

Thus infinitesimal coherence at x is the requirement that infinitesimal

segments of the lattices for the two phases fit together at x, while

coherency for C is the requirement that the lattices fit together over all of

- 2 8 -



C. Note that (5.6) is equivalent to the assertion that the relative defor-

mation h, defined by (3.10), when restricted to Cl9 is the restriction of a

material isomorphism: for some Ac9

h(Z) - h(X) = A[Z-X] for all X.Zcq. (5.7)

Theorem. Let C be a subsurface of Z. Then

C coherent «=* C infinitesimally coherent. (5.8)

Conversely, if the symmetry group is a finite subgroup of Orth+, and if

C is connected, then

C infinitesimally coherent •* C coherent. (5.9)

Proof. The implication (5.8) is immediate. To prove the converse

assertion assume that the symmetry group is a finite subgroup of Orth+,

and that C is connected and infinitesimally coherent. Then, for each

H(X) = Q(X)I11(X), (5.10)

for some Q(X)c9. Choose arbitrary points ZfZ€Cla Since C1 is connected

we can find a smooth curve W in Cx from Z to Z. Let X denote the

set of all points XcW with Q(X) = Q(Z).

Then X is closed. To verify this, choose a sequence Xn, with XncX.

Since W is compact, this sequence converges to some XcW. By (5.10),

Q(X)I11(X) is continuous on W; hence Q(Xn)l1(Xn)-*Q(X)l1(X). But, since

l^X) is continuous, Q(Xn)Il1(Xn) = Q(Z)l1(Xn) -> Q(Z)11(X); thus, as both

Q(X) and Q(Z) are orthogonal, Q(X) = Q(Z) and XcX.

Assume, for the purpose of contradiction, that X*W. As X is closed,

there is a point XcdX, XtfdW, such that Q(X) = Q(Z), and, since X<SW,

there is a sequence Xn-+ X, XncW, such that, for each n, Q(Xn)*Q(Z).

Again by the continuity of Q(X)11(X), Q(Xn)ll1(Xn)->Q(X)ll1(X). But since

9 is a finite group with orthogonal elements, and since l^X) is con-

tinuous, this can happen only if Q(Xn) = Q(X) = Q(Z) for all sufficiently large

n, a contradiction. Therefore X = W and Q(Z) = Q(Z); hence Q is constant
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on C1. Finally, choosing X,ZcC1 and integrating (d/dcr)h(Z(a)) along a
smooth path ZCcOcCi with Z(0) = Z and Z(1) = X yields h(X) -
h(Z) = Q[X- Z], so that, by (5.7), C is coherent.

5.2. PRODUCTION OF LATTICE POINTS BY THE MOVING INTERFACE
We let { ( = constant) denote the molar density of lattice points in the

reference lattice per unit volume. The density I of lattice points per unit
volume in the deformed body is then given by

J? = «, (5.11)

so that

? (5.12)

represents the rate at v/hich lattice points are produced in a spatial control
volume !R. L(5£) = 0 if 3£ lies solely in one phase; thus lattice points are
produced, at most, at the interface. If we apply (5.12) to a family K8 of
spatial control volumes that shrinks to an arbitrary regular interfacial set
Q, we find that, by (4.40) and (5.11),

Thus

- JUUlda = -«J[W]da. (5.13)
Q Q

the production-rate of lattice points, per unit
deformed interfacial area, is -{[W] = -[Fu]. (5.14)

Coherent interfaces conserve lattice points, since t ^ ^ anc^ v i s ^ 2 -
feature of coherent interfaces is generally not shared by their incoherent
counterparts.

The (positive or negative) production of lattice points by a moving
interface induces defects: since atoms are conserved, a positive production
should induce vacancies, while a negative production should induce
interstitials.
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5.3. WHEN ARE INTERFACES COHERENT?

We now give a characterization of incoherent behavior using three

fundamental kinematical measures: the incoherency tensor, the slip velo-

city, and the production-rate of lattice points.

We will refer to the interface Z as coherent for all time if Z(t) is

coherent at each t, and if the corresponding material isomorphism f for

^(t) is independent of t. Granted this, we may change reference configu-

ration for phase 1 so that the material isomorphism f is the identity.

Therefore, without loss in generality, we may take f to be the identity in

the definition above, and this we shall do. Also, for consistency, the

assertion ">&(0) is coherent" will have associated with it the requirement

the material isomorphism corresponding to ,8(0) be the identity. Direct

consequences of this definition, for an interface that is coherent for all time,

are that

SA(t) = S2(t) =: S(t),

n^X/t) = n2(X,t) =:n(X,t), (5.15)

Vx(X,t) = V2(X,t) =:V(X,t),

and that the motion is continuous across the interface:

Yi(X,t) = y2(X,t) for all XcS(t). (5.16)

Theorem. / / the interface Z is coherent for all time, then, at each

time:

(a) the interface is infinitesimally coherent;

(b) the interfacial volume-production rate vanishes identically;

(c) the interfacial slip velocity vanishes identically.

Conversely, if the symmetry group is a finite subgroup of Orth+, if Z(0)

is coherent, and if (a), (b), and (c) are satisfied, then Z is coherent for

all time.

Proof. Assume first that the interface is coherent: (5.8) then implies

(a). Next, the standard compatibility conditions for a coherent interface,

namely, [F] = [F]n®n and [y#] = -V[F]n (cf. (3.6) and (3.8) of [Gu]), yield,

- 3 1 -

TT



by virtue of (4.27), conclusion (c). Finally, (4.6), (5.4)x, (5.14), and (5.15)

imply that W ^ W j , which is (b).
Assume next that the hypotheses of the converse assertion are satis-

fied. By (a), (5.4) is satisfied. Thus (b), (4.6) and (5.14) imply that, for all
compatible points X£SX and X2€S2,

V2(X2,t) = V^X.t). (5.17)

Assume first that Z(t) is connected. By (a) and (5.9), Z(t) is
coherent at each t; thus the function h defined by (3.10) at each t is
the restriction to >8(t) of a material isomorphism

h(X,t) = QX + q(t), (5.18)

where Q is independent of t, since 9 *s finite and h(X,t) continuous in
t; in fact, the initial coherence of the interface and our agreement in the
first paragraph of the section yields

Q = 1, q(0) * 0, (5.19)

so that, by (5.4)2,

n2(X2,t) = nx(X,t) =:n(X,t). (5.20)

Next, let Z1 and Z2 be compatible trajectories; then, by definition,
Z1(t) and Z2(t) coincide in the deformed configuration and

Z2(t) = Z^t) + q(t). (5.21)

Assume further, that Zx is normal, so that, by (4.28) with * = 0, Z2 is
also normal. Thus q* is parallel to n. On the other hand, (5.17), (5.20),
and (5.21) yield q#-n = 0. Thus q#(t) = O for all t. But the initial coherence
of the interface yields q(0) = 0; hence q(t) = 0 for all t, and h(X,t) is the
identity on S1(t) at each t. Thus % is coherent.

If % is not connected, then the foregoing argument applied to each
connected component of Z again renders h(X,t) the identity on S1(t).
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This completes the proof.
The last theorem shows that an incoherent interface is associated

with the formation of defects. It is generally believed that an absence of
infinitesimal coherency leads to dislocations.19 Here our theory is, in some
sense, lacking, as it makes no provision for dislocations passed on the bulk
material behind an advancing interface. Thus, at best, our results seem
applicable to situations in which the interfacial production of dislocations
has only minor effect on the bulk mechanics. Removing this restriction
would be an interesting topic for future study.

19For discussions related to interfacial dislocations, in statics, cf. Brooks [1952], Nye
119531, Frank [1955], Bilby [1955], Bilby, Bullough. and De Grinberg [1964], Christian
[1965.1985], Bollman [1967], Christian and Crocker [1980], and Pond [1985,1989].
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B. SIMPLE THEORY WITHOUT INTERFACIAL STRUCTURE
We begin with a theory that neglects interfacial energy and stress,

but includes internal configurational forces that act at the interface in

response to the exchange of material between phases.

6. PRIMITIVE QUANTITIES

We consider 2t species, a = 1,2,... ,2t, of mobile atoms, labelled so

that — in the absence of defects — the atoms of species ac{l,2,...,b} lie on

lattice points, while the atoms of species G€{b+l,b+2,...,2(} are interstitial.

Let y be a two-phase motion. The following fields are the primitive

quantities of the theory:

bulk fields

Pa

h a

na

s
c
e

free energy
density
diffusive mass flux
chemical potential
deformational stress
configurational stress
internal configurational force

interfacial field

B1 internal configurational force (i = l,2)

The field 5 is the bulk free-energy per unit undeformed volume. The

bulk densities pa are atomic or molar densities, measured per unit

undeformed volume. Since { represents the number of lattice points, per

unit undeformed volume,

d := « - (pi* p2 • . . . • pb) (6.1)

represents a density of defects; for d > 0, d is a density of vacancies, for

d < 0, Id I is the density of lattice-point atoms forced into interstitial

positions. The bulk mass flux ha is measured in moles per unit unde-

formed area (and per unit time) and represents the transport of atoms of
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species a relative to the material (lattice); the field

+ h 2 + . . . + hb) (6.2)

then represents a flux of defects.

A basic hypothesis of our theory concerns the chemical potentials

and asserts that

| j a is continuous across the interface. (6.3)

This, an assumption of local-equilibrium, allows us to consider the \ia as

chemical potentials for the interface as well as for the bulk material.

The deformational stress S is the standard Piola-Kirchhoff stress,

measured per unit undeformed volume. The configurational fields C, e,

and 8i (i = l,2), which are nonstandard, represent forces associated with

the internal structure of the material; they act in response to the addition,

removal, and rearrangement of atoms at points of the body. The stress C,

measured per unit undeformed area, represents configurational forces

acting between neighboring parts of the body; e, measured per unit unde-

formed volume, is an internal bulk force related to nonuniformities in the

crystal lattice; 9i$ measured per unit undeformed area, acts at the

interface in response to the exchange of material between phases.

We allow also for the following external fields:

bulk fields

Qa mass supply

b deformational body force

interfacial fields

qa m a s s supply
g deformational force
fi configurational force

Qa, the external supply of species a to the bulk material , is measured in

moles per unit undeformed volume. The external supply qa of species a to

the interface represents a supply of mater ia l of both phases, and is
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measured in moles per unit deformed area, as the deformed interface is
where the two phases interact. Similarly, b, measured per unit
undeformed volume, and g, measured per unit deformed area, represent
external forces applied to the bulk material and to the interface,
respectively, while fif measured per unit undeformed area, is an external
configurational force on the phase i interface.

The external fields might be viewed as virtual supplies and virtual
forces; they allow the primitive fields to be specified arbitrarily without
violating the mass and force balances, a feature that facilitates our use of
the "second law11 in restricting constitutive equations.20

The following referential-to-spatial transformations will be used re-
peatedly:

1 = J'1*, pa = J^p*, 5 = J-*e, b = J-*b, Qa = J"1Qa,

S = J-1SFT, C = J'1CFT, ha = J^Fh0 , (6.4)

S = S "1B T = S ~1f

20Cf. the paragraph labelled (2) in the Introduction of [Gu].
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7. BALANCE LAWS FOR MASS AND FORCE

We formulate basic balance laws in the deformed body, where the

two phases are comparable, but, as solids are best described materially, we

express the resulting local relations in the undeformed body.

7.1. BALANCE OF MASS

Let ft be an arbitrary spatial control volume. We write balance of

mass for ft following the material points currently in ft. Thus, since the

mass flux ha is measured relative to the material, balance of mass is

the requirement that

{Jpadv}# = -Jha-fhda+ Jqada+ jQa dv (7.1)
ft d& £nft ft

for each species a, where we have used the referential - to - spatial

'transforms (6.4) to express the basic quantities in the spatial description.

Here and in what follows, m is the outward unit normal to 33R,.

Using (4.40) and the analog of (4.41) for vector fields to localize (7.1),

we arrive at the interfacial mass balance

[paW] = i r ^ - n ] - qa. (7.2)

We can rewrite the left side of this balance as [pa]<W> + [W]<pa>; the first

term is analogous to the standard term J"1[pa]V for a coherent interface,

but the second term, which, by (5.14), represents a rate of mass transfer

due to lattice-point production, is a direct consequence of incoherency.

The local areas of the undeformed interfaces are rendered compatible

in this balance by the presence of the surface jacobians ^; in fact, by (4.6)

we can rewrite (7.2) in the form

i r ^ h a - n - paV)] = qa. (7.3)

If we consider control volumes that exclude the interface, we are led

to the standard relations

(pa)- = -Divha +Qa (7.4)
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in bulk (in the interior of B1 and B2).

7.2. CONFIGURATIONS- AND DEFORMATIONAL FORCE BALANCES

We postulate, for each spatial control volume 3£, the force and

moment balances

JSmda + Jbdv + Jgda « 0,

Jr* Srh da + Jrx bdv + Jr*gda = 0,

where r = x-x0 with x0 fixed, and where we have used the referential-

to-spatial transforms (6.4) to express the stress and forces in the spatial

description.

For an incoherent interface the lattices are independent; for that

reason we do not postulate a configurational force balance for t£ as a

whole, but instead characterize configurational forces by means of balances

for the individual control volumes B^tjnft. Precisely, for each spatial

control volume & and each phase i, we postulate a configurational

balance

JCfhda + /( i i+fj jda + J e d v = 0. (7.6)

Shrinking 3fc to the interface in (7.5)! and (7.6) using (4.41), we arrive at

the interfacial force balances

lyiSn] + g = 0, 6iCini + • i • ft = 0. (7.7)

Similarly, using spatial control volumes t£ that do not intersect the

interface yields the bulk relations

DivS + b = 0, SFT « FST, DivC + e = 0. (7.8)
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7.3. IDENTIFICATION OF THE CONFIGURATIONAL STRESS WITH THE BULK

ESHELBY TENSOR

It is convenient to introduce a grand canonical potential

GO = $ - Z a p a n a , (7.9)

where here and in what follows Sa designates the sum over a from 1 to

A basic hypothesis of our theory is that the configurational stress C

be equal to the bulk Eshelby tensor:

C = w l - FTS. (7.10)

This assumption is actually a consequence of a more general treatment21

that allows for control volumes &(t) that evolve with time and thereby

capture the mechanics and energetics associated with the addition and dele-

tion of material points at control-volume boundaries. Note that by (3.15)

the relation (7.10) has the alternative form

GTC = col - S. (7.11)

2*Gurtin [1994]. A sketch is given here in Section 8.2.
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8. ENERGETICS. DISSIPATION INEQUALITIES
8.1. STATEMENT OF THE SECOND LAW. GLOBAL DISSIPATION INEQUALITY

In the mechanical theory discussed here the second law is the re-
quirement that the energy of material currently in a control volume &
increase at a rate not greater than the expended power P(&) plus the
energy E(&) supplied to R by mass transport.

As with balance of mass, we will write the second lav/ for & follow-
ing the material currently in %. Thus, since the chemical potential \ia

represents the energy of a mole of species a,

- 2 a { - J u a h ° - f h d a + Ju aq a da + j\iaQa dv}. (8.1)

Deformational forces act in the deformed body as a response to defor-
mation. The stress S and the body force b act in the bulk material away
from the interface, and we presume them conjugate22 to the material
velocity y \ The external force g acts at the interface, and we assume
that g is conjugate to the velocity v of the deformed interface. Configu-
rational forces are associated with the nondeformational kinetics of material
points, and, for that reason, we assume that they expend power only at the
interface, where the phase i regions undergo change. Thus bulk configura-
tional forces do not expend power, but the external forces fj, which act at
the interface, do. We assume that fi is conjugate to the velocity v i at
which the phase i interface moves through the reference configuration. We
therefore express the power expended on a spatial control volume 3fc in the
form

J Sm-y #da + Jb-y# dv +

(8.2)

where v1 # v 2 , and v are compatible velocity fields for the interface. We
do not allow 8i to contribute to P(3£), since it acts internally to 3£.

This discussion leads to a statement of the second law in the form of a

A force f is "conjugate to" a velocity v if f 'expends power over" v.
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global dissipation inequality

{ J f d v } # < P(ft) + E(ft) (8.3)
ft

for all spatial control volumes ft.

8.2. ALTERNATIVE STATEMENT OF THE SECOND LAW23

For this section only, consider a spatial control volume ft(t) that
depends on t, let R^t) denote the undeformed phase i region that deforms
to Bj(t)nK(t), let Vi and V denote the normal velocities of SR^t) and
c)ft(t), and let qi and q denote compatible velocity fields for dRj(t) and
dft(t) (as in Section 4.2a).

The forms taken for balance of mass and the second law depend
crucially on how we view the motion of SR^t). A standard precept of con-
tinuum mechanics is that when writing basic laws for Rj(t) the material
external to Rj(t) is irrelevant provided its action is suitably accounted for
by the action of stresses on SR^t). Thus the basic laws should be express-
ible in a form that does not distinguish between whether or not there is a
different phase exterior to SR^t). To accomplish this we might view the
dependence of R^t) on t as representing the addition of material to —
or the deletion of material from — the boundary dR^t). Based on this
viewpoint, we write balance of mass and the dissipation inequality as

(d/dt){Jpada) = M(ft) + J-M da, (7.11)
ft

(d/dt){JIdv) < P
ft 3ft

where -M = pa ( V - y # •m), M(ft) is the right side of (7.1), and

P*(ft) = J (Sm«q + Cm-q)da • Jb-y* dv +
3ft ft

8-v}da, (8.4)

23Gurtin [1994].
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where q = qj on BjncJfc, i=l,2.
In contrast to (7.1) and (8.3), (7.11) and (8.31) do not follow the material

currently in fc(t), but instead follow &(t) itself; thus the terms
(d /d t ) { . . . } rather than { . . . } * and the presence of the terms involving
ha. The form P*(&) taken for the expended power is also based on
following &(t), as the stresses are conjugate to velocities associated with
Sft(t) and SR^t).

The two formulations of the basic laws are, in a sense, consistent: for
stationary K, (7.11) is equivalent to (7.1) and, granted the identification
(7.10) of the configurational stress with the Eshelby tensor, (8.31) is
equ.valent to (8.3). In fact, (7.10) is a consequence of the following two
assumptions: that (8.3') hold for all Jfc(t); (ii) that (8.31) be independent of
the choice of compatible velocity fields qi and q for dR^t) and 3&(t).

8.3. LOCAL FORM FOR THE EXPENDED POWER
a. Invariance under reparametrization. Effective shear

We require that P(&) be independent of the choice of (compatible)
parametrizations for the deformed and undeformed interfaces, or equiva-
lently, of the choice of compatible velocity fields. Tne Invariance Lemma of
[GS] (Appendix C, p. 156) then yields the compatibility condition

r - 0. (8.5)

This relation is useful in developing an expression for the effective
shear acting across the interface. Let

(8.6)

Then (7.7) and (7.11) imply that

Tj = (SjG/qn + GTf~)tanA = (- B^n * Gt
T !J)tMI<8, (8.7)

and, by (7.7)j and (8.5),

To = " T , . (8.8)
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We will refer to

T = T 2 - - T l = - 6 , ( 6 / 1 , ) ^ . (8.9)

as the effective shear. Note that, if f^O, then, by (8.7),

T - - ( ^ n ) ^ ; (8.10)

thus in the absence of external forces Tj represents the shearing traction

exerted across the interface on the bulk material of phase i.

We will refer to

TTd = 8-rii (8.11)

as the normal internal force. Note that, by (3.8),

T = 0 ** ^ - Ufa. (8.12)

More generally, T, TT1, and TT2 uniquely determine &x and 82.

b. Interfacial power density

If in (8.2) we let the control volume & shrink to a regular interfacial

set Gc£, we find, using (4.41), that P(R) tends to

da,
Q (8.13)

£ = [Sn-y-] + f r v 1 + F2-v2 + g-v.

P l oc is the power directly relevant to the evolution of the interface; its

integrand, ji, the interfacial power density, is the power expended on

the interface, per unit deformed area. By (4.10), (7.7), and (7.11), and since

v - ^ = Vj = JiWi , o^F/n = Jf 1w in i, i i = Jj"l8i' il f o l l o ws that
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Thus • i is conjugate to the velocity v i of the phase i interface. In fact, if
we choose the materially normalized velocities (4.13)-(4.14) for v i and use
(4.38), (8.9), and (8.11), we find that

* r v i + *2#V2 = TT1W1 + T72W2 • T-lf; (8.14)

hence the power expended by the internal configurational forces is equal to
the power expended by the normal internal forces TTi over the volume
flows Wt plus the power expended by the effective shear T over the slip
velocity *. By (8.14),

= - I { ( 6 ^ + n^Wj) - T-y, (8.15)

8.4. LOCAL DISSIPATION INEQUALITIES •
The inequality (8.3), when applied to control volumes that exclude the

interface, yields the bulk dissipation inequality

$• < S-F# + Sa ua(pa)# - Za ha-Vu°. (8.16)

To localize (8.3) to the interface we let the control volume tR shrink
to a regular interfacial set Gc,8. By (4.41) and (7.2), E(Jfc) tends to

-JZaUa[p*W]da.
Q

Thus, by (4.40), (7.9), (8.13), and (8.15), shrinking 3fc to the interface in
(8.3) yields the interfacial dissipation inequality

H1W1 • TT2W2 + T-lf < 0, (8.17)

which is a central relation of our theory. Note that, by (8.14) and (8.17),
dissipation at the interface is due solely to the working of the internal
configurational forces 6i.
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9. CONSTITUTIVE EQUATIONS
9.1. BULK CONSTITUTIVE EQUATIONS

Let

P - (P1 p*>, H - (n 1 . . . . ,^) . ft « (h1 h«), (9.1)

(with ft and V|Ji identified with vectors in IR3*). We consider bulk
constitutive equations

S = Si(Ffp)f n = Up.?). * - li(Ffp)f

for each phase i, with

S^F.p) « SpiitF.p), diCr.p) - Spl^F.p), (9.3)

and with mobility D^F^) (a linear transformation of IR35( into itself)
compatible with the inequality 2aha-V|ja < 0, restrictions that ensure con-
sistency with the bulk dissipation inequality. We assume, in addition, that
the constitutive relation for the stress is consistent with (7.8)2.

The Eshelby relation (7.10) yields an auxiliary constitutive relation
giving C as a function of (F,p). In conjunction with this, we consider e
as indeterminate; in fact, as defined by the configurational balance (7.8)3;
(9.3) then yields e = -Z a pa*V|ja -F T b, so that e here responds to spatial
variations in the chemical potential.

9.2. CONSTITUTIVE EQUATIONS FOR THE INTERFACE.
We consider constitutive equations for the interface giving the normal

internal forces TTi and the effective shear T as functions of the normal
n, the volume flows Wx and W2, and the limiting values F1, F2, px,
and p2 of the deformation gradient and density (list):

^ i T = T ( Z ) ,

Z « (F1 ,F2 ,p1 ,p2 ,n,W1 ,W2) ,

where Z is required to satisfy
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(9.5)

to ensure consistency with (6.3). (We choose the normal n, rather than
the referential normals n^ since the ni are not independent.)

Suppose that we are given an arbitrary two-phase motion y and an
arbitrary density field (list) p that is smooth away from, and consistent
with (9.5) across, the interface. Then the constitutive equations may be
used to compute a constitutive process consisting of Z as an interfacial
field, the bulk fields S, $, |i, and 1), and the interfacial fields TTi and
T. The balance laws for mass and force may then be used as follows to
compute the mass supplies and external forces needed to support the
process: the mass balances (7.2) and (7.4) are used to compute the mass
supplies qa and Qa for each a; the force balances (7.7)1 and (7.8^ yield b
and g; 6i is determined from TTi and T using (8.9) and (8.11); and (7.7)2

is used to compute f̂  The forces g and fi computed in this manner
satisfy the invariance requirement (8.5). Therefore

The mass supplies and external forces allow us

to consider arbitrary constitutive processes with

the assurance that the balance laws are satisfied. (9.6)

This leaves only the second law — in the form of the global dissipation
inequality (8.3) — to be satisfied in all constitutive processes. Since the bulk
constitutive equations automatically satisfy the bulk dissipation inequality
(8.16), we have only to satisfy the interfacial dissipation inequality (8.17). A
basic hypothesis of our theory is that all constitutive processes be

compatible with (8.17). The following results are consequences of this
axiom:

(i) The effective shear vanishes:

T = 0. (9.7)

(ii) The following kinetic relations hold:
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where p -̂p^CZ) is consistent with

2
2 Pjk(Z)WjWk > 0. (9.9)

j . k - i

To establish (i) and (ii), note first that, since the dissipation inequality
(8.17) is required to hold in all constitutive processes.

TT1(Z)W1 + TT2(Z)W2 + T(Z)-* < 0 (9.10)

in all two-phase motions.
To prove (9.7), it is sufficient to recognize that since, by hypothesis,

the functions f^Z) and T(Z) in (9.10) do not depend on If, if T * 0 , an
arbitrary choice of If would lead to a term of arbitrary sign and size in the
left side of (9.10).

Thus, letting t s (W 1 ( W 2 ) , <p = -(TT 1,TT2), and suppressing the
remaining arguments in Z, we see that to establish (9.8) and (9.9) it
suffices to show that (p(£)*5>0 for all £ implies the existence, for each 5,
of a linear transformation B(£) from IR2 into IR2 such that (pU) = B(£)£
and S-B($)5>0 for all £. Choose X>0. Then, since (p(xO*X£*0, we have
<p(Xt)*S*O, and letting X-+0, we see that (p(0)-t>0 for all 5, so that
<p(0) = 0. Thus

1
t)ds}^, (9.11)

which yields the desired conclusions with B(£) = { . . . } •
The results (i) and (ii) are also sufficient that all constitutive relations

be compatible with the reduced dissipation inequality (8.17).
By (8.12), the constitutive relations (9.7) and (9.8) may be written in

the equivalent vectorial form

•i = - te i iW i * P i2W2)ni. (9.12)

Thus the internal configurational force 8i is a drag force representing dissi
pation in the exchange of material between phases.
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We may recast the constitutive relations using <W> and the lattice-
point production-rate [W] as independent variables:

2<TT> = -ocu<W>-oc12[W3, m 3 )

[HI = -oc21<W> - a22[W],

with oĉ  suitable (new) kinetic coefficients.

9.3. OTHER CONSTITUTIVE THEORIES
a. Theory without lattice-point production

A theory in which the production of lattice points is not allowed may
be obtained by assuming, from the outset, that

Wx = W2 =: W. (9.14)

Granted this constraint, [TT] becomes indeterminate and (9.13) is replaced

by

2<TT> - -ocW, (9.15)

with oc = 6c(Z)>0.

b. Theory without slip
Aternatively, a theory in which slip is prohibited may be based on

the constraint

* = 0. (9.16)

Granted this, T becomes indeterminate, so that (9.7) is no longer valid,
but (9.8) remains unchanged.

c. Theory v/ith viscous friction between phases
The result T = 0 is a consequence of our failure to include If in the

constitutive equations. If we allow for a dependence on If in the
constitutive functions (9.4) we obtain additional terms in (9.8) proportional
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to if in conjunction with a nonvanishing constitutive relation, similar to

the other relations, for T. In this formulation the relation between T and

y is smooth, so that the friction between phases is viscous, but a relaxation

of the underlying smoothness assumptions would allow a nonsmooth

dependence of T on If, for example of the type encountered in

plasticity.24

24After completing this work, Gurtin attended a lecture of L. Truskinovsky discuss-
ing constitutive behavior of this type. See also the discussion of Larch* and Cahn
11978]. p. 1587.
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10. EVOLUTION EQUATIONS IN THE ABSENCE OF EXTERNAL FORCES
The external forces b, g, and fi and mass supplies Qa and qa

allow for arbitrary processes without violation of the basic balance laws, but
in actual applications these fields are generally unimportant. We now list
the complete set of equations that hold when these external fields vanish.
Here C is the Eshelby tensor:

C = col - FTS, w = 5 - 2 a pana . (10.1)

10.1. UNCONSTRAINED THEORY
a. Dynamics

The interface conditions consist of the compatibility condition

ly'hh = -[JW], (10.2)

the normal force balance

[J-lSn]-n = 0, (10.3)

the partial balance

l (10.4)

for each phase i, and the mass balance

IpaW] = i r ^ - n ] (10.5)

and local equilibrium condition

[Ua] • 0 (10.6)

for each species a (cf. (4.7), (6.3), (7.2), (7.7), and (9.12)).
The partial balances may be split into normal and tangential parts

with respect to Sl$ yielding, for each phase i, a configurational balance
and a tangential slip condition:
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pl2w2),

0.

The relations (10.7)2 together form the tangential part of (10.3).
These interface conditions with the bulk equations

DivS = 0, (p^)- = -Divh a , (10.8)

the bulk constitutive equations (9.2), and appropriate boundary and initial
conditions form the basic free-boundary problem of the theory.

The grand canonical energy co and hence the basic equations are
invariant when the energy per unit mass is changed by an additive con-
stant. Indeed, if p = Za p

a, and if we replace the energy $ by $* = $ + Kp
with K an arbitrary constant, then the chemical potential, given by (9.3)2

with 3? replaced by $*, is (iia)* = na + K; this yields the desired conclusion:
oo* = $*-Zapa(ua)*=oo.

A consequence of the mass balances are the following bulk and inter-
facial balance laws for defects:

d- = -Divhd € f , [dW] = [J^hdef-n] + i[W], (10.9)

where d, £, and hdef are as defined in the paragraph containing (6.1).
The first of (10.9) follows directly from (6.1), (6.2), and (10.8); the second
follows from (4.40) in conjunction with (6.1), (6.2), and (10.5). Comparing
(10.9)2 to (10.5), we see that the interface serves as a source for defects,
i[W] being -the strength of the source.

b. Statics
When the interface is stationary and the deformation and densities

independent of time, the interface equations have a simple form:

n = 0, qrii - 0, [ r ^ - n ] = 0, [\i«] = 0; (10.10)

as do the bulk equations:
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DivS = 0, Divha - 0. (10.11)

10.2. CONSTRAINED THEORIES
For the theory without lattice-point production the basic equations

consist of the constraint

Wx = W2 =: W, (10.12)

the compatibility condition

[y-].n = -[J]W, (10.13)

the mass balance

[pa]W = i r ^ - n ] , (10.14)

the local equilibrium condition (10.6), the normal force balance (10.3), the
tangential slip condition (10.7)2, and the single configurational balance

[n-Cn] = ocW, (10.15)

v/hich should be compared to the analogous result in the coherent
theory.25

For the theory without slip the tangential slip condition (10.7)2 is
dropped, and the basic equations consist of the constraint

[ y l = -[VFnJ (10.16)

(which implies the compatibility condition (10.2)), the force balance

« 0, (10.17)

the mass balance (10.5), the local equilibrium condition (10.6), and the con
figurational balance (10.7)1.

2 5[GS]. eqt. (14.7); [Gu], eqt. (8.3).
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11. RESULTS IN THE SPATIAL DESCRIPTION

The interface conditions take a particularly simple form in the spatial

description; we now outline the form the theory would take were that

description used from the outset.

The mass and force balances for the interface and bulk material take

the form

[p*U] = [h*]-n - q«f [Sin + g = 0, B^n • %t + f, - 0, ( i i ^

dtp
a + div(pay) = -divh a + Qa, div S + b = 0.

The interfacial power density, whose derivation is analogous to that of

(8.15) and uses (4.33) and the spatially normalized velocities (4.11)-(4.12), is

£ = -Z {(SiWj + n ^ } - T . [y ] t a n j , di.2)

i-1.2

^vith oo = J-1oo and

n1 = (G/ ip- n (11.3)

the spatial counterpart of the normal internal force. This leads to the

interfacial dissipation inequality

n1V1 + TT2U2 + T- [ y ] t a n A ^ 0. (11.4)

The spatial constitutive theory is based on relations

ni = ft^z) (i = 1,2), T = T(Z), (115)

z = (F1,F2,pllp2,n,UllU2)f

v/hich, v/hen restricted by the dissipation inequality (11.4), reduce to

T = 0
(11.6)
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i = 1,2, where T ^ T ^ Z ) is consistent with

2
S ^jk(2)UjUk > 0 (11.7)

j , k « l

and is related to the ^ij of (9.8) through ^ij= J j 2 ^ . The equations (11.6)
are equivalent to the vector equation

GiT»i = -<%Ui + Tii2U2)h. (11.8)

When the mass supplies and external forces vanish, the resulting
interface conditions consist of the kinematic compatibility condition

[ y ] - n - -IU], (11.9)

the normal force balance

n-[S]n = 0, (11.10)

the partial balance

^(o^n - Sji) = (r]ilV1 + Tii2U2)n (11.11)

for each phase i, and the mass balance

[paU] = [ha]-n (11.12)

and local equilibrium condition (10.6) for each species a. The relations
(11.11) may be split into normal and tangential parts (with respect to ,8),
yielding, for each phase i, a normal configurational balance and a
tangential slip condition:

= 0.

When the interface is stationary and the deformation and densities
independent of time, the interface conditions reduce to relations
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n-[S]n = 0, (oo^l - S^n = 0, [ha3-n = 0, lna] = 0 (11.14)

that were derived variationally by Larche and Cahn26 as necessary condi-
tions for the equilibrium of incoherent precipitates. The corresponding bulk
equations are

divS = 0, d ivh a - 0. (11.15)

Note that (11.14) yields the additional relation [oo] = 0.

2 6[1978], €qts. (25)-(27); [1985], eqts.
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C. THEORY WITH INTERFACIAL STRUCTURE
We now extend the theory to include the energy and elasticity of the

interface. We neglect mass transport within the interface, so that the mass

balances are as derived in Section 7.1.

We will continue to formulate basic laws in the deformed body, but,

as before, we will express local relations referentially; in fact, we will ex-

press interface conditions in the reference configuration for phase 1.

Throughout what follows & will be a spatial control volume, and we

will consistently write

A(t) = A^t) ,

fh = outward unit normal to

V = outward unit normal to dQ,

V = outward unit normal to dA,

and n, ni as in Section 3.2.

12. FORCE SYSTEMS. BALANCE LAWS

We add to the force systems introduced in Section 6 the following

interfacial fields, measured per unit deformed area:

S deformational surface stress

Cly C2 configurational surface stresses

The stress S is associated with the response of the interface to defor-

mation, while Cj is a partial stress that accounts for the configurational

response of the phase-i portion of the interface. Suppressing t, S(x) and

Cj(x) are, at each x, linear transformations from ntx)^ into IR3.

The force and moment balances take the form

JSmda + Jbdv+ Jgda + jSvds = 0,
dR R Q dQ (12.1)
J r * S m d a + Jr* b d v + Jr* gda + J r x f v d s = 0
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for each spatial control volume &, where r=x-x0 with x0 fixed. In
addition, for each & and each phase i, we postulate — in place of (7.6) — a
partial configurational balance

JCmda + Jdi+fjjda + Jedv + J^Vds = 0. (12.2)
Q

When tR does not intersect % the balance laws yield the local bulk
relations (7.8). On the other hand, for G*0, shrinking % to the interface
yields, by (4.41), the interfacial balances

jSVds + J[Sn]da + Jgda = 0,
Q Q

Jrxfvds + Jrx[Sn3da + Jr* gda = 0, (12.3)
dQ Q Q

Jt^Vds + /(^CiXi + B^da + Jf^da = 0.
5Q Q Q

The balance laws (12.2) and (12.3) are spatial. Using (3.16), (3.18) and
(3.22), we may rewrite these balances in the reference configuration for,
say, phase 1. With this in mind, we introduce new notation for the stresses
measured per unit area on the phase-1 interface:

S = J1SB1
Tll1 deformational stress

C = |xC1E1
X£1 configurational stress for phase 1

K = h^2®iTfli configurational stress for phase 2

with B1 the inverse tangential deformation gradient (3.9)2. We view S as
acting in response to the deformation as measured from the reference
configuration for phase 1; C as measuring the configurational stress for the
phase-1 material in Z\ K as representing the excess stress due to the
presence in % of phase-2 material. Suppressing t, S(X), C(X), and K(X)
are, at each X, linear transformations from n1(X)-L into IR3. It is
convenient also to use the (trivial) extensions of 8 and K to tensor fields
with values in Lin(IR3,IR3):
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8 e x t = 8P1 ( K€Xt = KP4 (12.4)

(cf. (A4) of [Gu]).
Using these stresses, (12.3)li3 may be written referentially with

respect to phase 1:

JSVds + J(tfS2n2 - Sin^da + Jgda = 0,
5A A A

JCvds + / ( -Cini + aj + f^da = 0, (12.5)
5A A

JCCVds + jH(C2n2 + 82 + f 2) da = 0,
A

with S = JSGT the bulk Piola-Kirchhoff stress, g ^ g , • i -> i i i ,
and n=}1/}2.

The balances (12.3) may be localized to yield27

§ +[S3n + g = 0,

Ci + SjCjii + Bj + i{ = 0 ,

and

§Tn = 0, PS = I T ! , (12.7)

so that 8 is tangential and symmetric. These balances are spatial; writing

S(t) = S^t) (12.8)

and starting with (12.5) yields, instead, the interfacial force balances
expressed referentially with respect to phase 1:

Divs 8 + HS2n2 - S ^ + g - 0,

Div sC - Cjii! + 9X + fj = 0, (12.9)

DivsK + H(C2n2 + 82 + f2) = 0.

27Using (A10) of [Gu] and eqt. (7.16) of {GSl. Cf. Gurtin and Murdoch U975], p. 307.
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Further, the moment balances (12.7) can be written as a single assertion:

Sext FT is symmetric. (12.10)

In the absence of external forces, the local forms of the force balances
become

Div sS + HS2n2 - S ^ = 0,

DivsC - C ^ + »! = 0, (12.11)

DivsK + H(C2n2 + 82) = 0.
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13. ENERGETICS. POWER IDENTITY. DISSIPATION INEQUALITY

13.1. POWER

We assume that the total power expended on a spatial control

volume 3£ is given by

= J Sm-yda + Jb.y# dv +
ft

w + C1V-w1 + C2V*w2}ds +

J{g-v + f ^ + f2.v2} da, (13.1)
Q

where w and wi are compatible edge velocities for dQ and dAit while
v and v i are compatible velocity fields for & and Sj.

If we sh'rink & to the interface, we find that 1P(ft) has the limit

Pl0C(A) =
A

*r1 + KV-w2}ds, (13.2)
dA

when expressed referentially with respect to phase 1.

If we use (4.16) to eliminate w2 and w from the integral over dA

in (13.2), we find terms involving y{ and y2
# and a term

JAV-w ds, A = C + F1
TS + HTK (13.3)

dA

involving only w1#

We assume that the expended power is invariant under repara-

metrizations of the interface.28 More precisely, we assume that P is

independent of: (i) the choice of compatible interface velocities v and v i

for Z and S($ and (ii) the choice of compatible edge velocities w and Wj

for 5Q and SAj.

Invariance under (ii) is equivalent to the invariance of (13.3) under

(ii), and this reduces29 the tangential part of A to a surface tension:
28See IGS], Sect. 7.1.
29Using an argument of [GS]. The result is essentially Theorem 7A of [GS].
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AiA = aflj; (13.4)

a represents the surface tension expressed per unit area on S=S1.
Invariance of (13.2) under changes in Vj yields a result,

(f4 + F^g + «HTf2) t a n S = 0, (13.5)

which is equivalent to (8.5) and, by (3.2) and (7.10), granted the balances
(12.9), also to the condition

(Div sC + F/DivgB + HTDiv sK) tanS - - ( ^ + KHT82) t a n S . (13.6)

13.2. THE POWER IDENTITY

We continue to define Ti by (8.6),

but at this point T 1 is not necessarily equal to - T 2 . TO some extent, (13.7)
is motivated by our next result, the power identity, which shows tha t the
traction

s = ^ T 2 (13.8)

(which is T 2 expressed per unit area on S1) is conjugate to If.
We now further localize the power; the result is the power identity:

Pl0C(A) = J^da + JaV (3A) tands, (13.9)
A c)A

| , = B ^ . F / + Kext.IT - i - n / - oK.V, - s if -

}x Z {BiWi + TT^Wi. (13.10)
i-1.2

•where (•)* is the normal time-derivative v^ith respect to S, TTi is given
by (8.11), and
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B = ATnv (13.11)

Here:

• S€Xt*F1° represents power expended in stretching the phase 1 interface.

• K€Xt-H° represents power expended in stretching and rotating S2

relative to Ŝ^ and in some sense represents an expense of power due to

incoherency.

• CTK1V1 represents power expended in creating new surface for S^

• B-n^ represents power expended in changing the orientation of S^

The vector field fi, which is tangential on S = S1, represents the

normal part of the "total surface stress11 A; B represents shearing forces

exerted "within the interface (in contrast to the Tj which represent shear-

ing forces exerted on the interface by the bulk material).

We now prove the power identity (13.9), (13.10). By (4.18) and (13.3)2,

the integrand — of the integral in (13.2) over dA — has the form

i + Kv-v2 + V.AW(dA)tan,

and, by (13.4), the last term yields the integral in (13.9) over dA. Further,

i + KV-v2)ds =
dA

J{DivsS* v + DivsC*v1 + DivsK*v2 + S«Vsv + C*Vsv1 + K*Vsv2 } da.
A (13.12)

On the other hand, (4.10) yields

KS2n2-y2
# - S ^ - y ^ =

(KS2n2 - S1n1)-v - XF2
TS2n2-v2 + F1

TS1n1-v1;

thus, if we add the integrands of the integrals over A in (13.2) to those in

(13.12), and use (7.10) and (12.9), we find

6-Vsv + C-Vsv1 + K-Vsv2 - *e(u)2n2 + 82)*v2 - (- oo1n1 + • 1 W 1 . (13.13)

To complete the proof we have only to show that (13.13) reduces to ft.
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In view of (3.5), (4.6), and (4.38), the last two terms in (13.13) have the
form

- s-Jf. (13.14)
i-1.2

By (4.35), (4.36), (12.4), and (13.3)2,

S-V sv + K-Vsv2

and, by (4.34) and (13.4),

K€Xt-H* + A-Vsv1#

A # v s v i = " a K i v i " ••ni°-

Thus (13.13) reduces to jx.

13.3. ENERGETICS. DISSIPATION INEQUALITY
Introducing the interfacial energy vf, per unit deformed area, as a

superficial field on J&, we write the global dissipation inequality in the
form

(13.15)
Q

for all spatial control volumes 3£, with $ the bulk energy density per unit
deformed volume, P(&) the total power, and E(K) the energy supplied to
3£ by mass transport (cf. (8.1), (13.1)). Here the time derivative involving
the bulk field $ is the time derivative (4.39) following the material cur-
rently in ft, but the derivative of the surface energy has a more standard
meaning:

(d/dt){J^(x,t)da(x)}.
G(t)Q

It is convenient to introduce the surface energy

(13.16)
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expressed per unit area on S-S 1 . Localizing (13.15) using the power
identity, (A15) and Lemma Bl of [Gu], and (ii) of the Invariance Lemma of
[GS], yields the equivalence of surface tension and energy,^0

<|> « a , (13.17)

and the reduced dissipation inequality

ty° - B ^ - F / - 8C€Xt-H° + B-nf + h { n i w i + n2W2> + s** ^ °' (13.18)

with (0° the normal time-derivative following S.

Finally, we note that, by (13.4), (13.11), and (13.17),

(13.19)

30Cf. [GS], eq. (9.19).
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14. CONSTITUTIVE THEORY
We need only consider the interface; the constitutive theory for the

bulk material is as described in Section 9.1, although we will assume that
each of the functions |i= jl^F.p) may be inverted to give the density p
as a function

p = Pi(F,|i) (14.1)

of the deformation gradient and chemical potential.

14.1. CONSTITUTIVE EQUATIONS FOR THE INTERFACE
We now develop a constitutive theory for the interface appropriate to

a description with phase 1 as reference. Here, for convenience, we use the
abbreviations:

F = F1, n = n1.

In addition, for any unit vector q, we write II(q) for the inclusion of q x

into IR3 and F ri) = fl(q)T for the projection of IR3 into q x (so that
l(n) = l 1 and P(n; = P1).

Using the reduced dissipation inequality (13.18) to suggest appropriate
constitutive variables,3 1 we consider constitutive equations giving the
interfacial energy vj;, the normal internal forces TT̂  the effective shear
T 2 (actually S = J 1 T 2 ) , and the surface stresses S, K, and i as functions
of the limiting value F = FA of the deformation gradient, the relative
gradient H, the limiting values px and p2 of the density, the normal n
to S1, and the volume flows WA and W2. Further, the bulk relations
(14.1) and the requirement that the chemical potential be continuous across
the interface allow us to replace p1 and p2 by the common value \i of
the (list of) chemical potentials at the interface. We therefore consider
constitutive relations of the form

31Cf. Footnote 22 of [Gul.
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t|> = * (Z ) , ^ = TT^Z), s = s(Z),

8 = 6(Z), K = K(Z), 1 = fi(Z), (14.2)

Z = (FlHfu,n,WlfW2).

We assume that the constitutive relation for S is consistent with the

moment balance (12.10), and, to simplify the discussion, we introduce the

extended functions induced by (12.4):

S(Z)€Xt = S(Z)P(n), K(Z)€Xt = K(Z)P(n). (14.3)

Note that we do not write a constitutive equation for 0v1, or equivalently,

for the tangential component A181 of 8 ^ as it does not appear in the

dissipation inequality (13.18). We consider A1&1 as indeterminate; in fact,

as a solution of (13.6).

As in Part B, the external fields allow us to consider arbitrary consti-

tutive processes with the assurance that the balance laws for mass and

force are satisfied. To verify this, assume we are given an arbitrary two-

phase motion y and an arbitrary field [± that is smooth away from and

continuous across the interface. Then the constitutive equations may be

used to compute a constitutive process consisting of Z as an interfacial

field, the bulk fields S, $, p, and ft, and the interfacial fields T\i9 s, + ,

S, DC, and C (with C computed using (13.3)2 and (13.19). The balance

laws for mass and force may then be used to compute the mass supplies

and external forces needed to support the process: the mass balance (7.2)

and (7.4) are used to compute qa and Qa; the force balances (7.8^ and

(12.9^ yield b and g; the normal component of 9X is TT1 and the

tangential component is computed using (13.6); the normal component of

82 is TT2 and the tangential component (with respect to S2) is computed

using (13.7) and (13.8); fi are determined using (12.9)2f3. The forces g

and fi computed in this manner satisfy the invariance requirement (13.5).

This leaves only the reduced dissipation inequality (13.18) to be satisfied.

14.2. THERMODYNAMIC RESTRICTIONS

a. General restrictions
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We require that all constitutive processes be compatible with the
reduced dissipation inequality (13.18). We now state three important conse-
quences of this hypothesis; their verification will be given in Section 14.3.

(i) The interface is free to slip:

TX = T2 = 0. (14.4)

(ii) The interfacial energy is independent of |i, Wx, and W2, so that

*\> = $(FfH,n),

and $ generates the surface stresses through the relations:

S(F,H,n)ext = dF*(F,H,n), K(F,H,n)€Xt = S

6(F,H,n) = -dn(j,(F,H,n);

(iii) The kinetic relations (9.8) hold for the normal internal forces TTj, but
with Z as in (14.2).

The conditions (i)-(iii) are also sufficient for all constitutive processes
to be compatible with the reduced dissipation inequality (13.18).

b. Consequences
By (14.3), S€Xtn = K€Xtn = 0; thus (12.10) and (14.5) imply that

OFvj;)n = 0, OH^)n = 0, (£)F(|;)FT is symmetric. (14.6)

These restrictions select — among all energies (^(F,H,n) — those compatible
v/ith thermodynamics and balance of moments.

The restrictions (14.6)1 2 have an important consequence. In con-
junction with Lemmas (2D)-(2F) of [GS], they render ^, S, and K inde-
pendent of the normal components Fn and Hn, and hence dependent on
F and H at most through a dependence on the tangential deformation
gradient F and the incoherency tensor H; in fact,

- 6 7 -



S(F,W,n) = dF^(F,H,n), K(F,H,n) = c>H 4,(F,W,n). (14.7)

The first of (14.7) gives the stress 8 as a response to the deformation of the

phase 1 interface, while the second gives the stress K in the phase 2

interface as a response to the incoherency between phases.32

A reduction similar to (14.7) is generally not possible for B(F,H,n); in

fact, the partial derivative of ^(F,H,n) with respect to n is not so easily

defined, as both F and H, being linear transformations on n-S depend

on n. What is well defined is the derivative33 Dn^(F,H,n) € n-*- following

n: given any unit vector n, for any unit vector q, q*n , let

i(q) = P(n)Q(q)Il(q) with Q(q) the rotation of q into n about the axis

orthogonal to q and n, and let 0(n) be the identity on n 1 ; then

p , 0 (14.8)

for any b€n x , where q(p) is any smooth curve on the unit sphere

satisfying q(0) = n, q#(O) = b. A trivial generalization of (2.49) of [GS] in

conjunction with (14.6^ 2 then yields

DB+(F,H,n) = d ^ F ^ n ) + d
(14.9)

A consequence of this result is that the normal part of C, namely,

6 = CTn, (14.10)

is given by a constitutive relation C = C(F,W,n) with

C(F,H,n) = -Dn^(F,H,n). (14.11)

To verify (14.11) we simply note that, by (13.3)2 and (13.11),

i = C + S T Fn + 8CTHn, (14.12)

which, with (14.7) and (14.9), implies (14.11).
3 ^In this sense these stresses are similar to stresses introduced by Cahn and Larch6
[1982], eqt. (4), in their statical treatment of incoherency at small strains.
33(GS1. p. 111.
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Invanance under changes in observer yields the requirement

+ (F,H,n) = (j>(QF,H,n) (14.13)

for all rotations Q.34 The condition (14.13) yields the following further
reduction for the reduced response function $ H )

H,n) = i(FTF,H,n). (14.14)

c. The force balances revisited
A useful consequence of (13.3)2, (13.19), and (14.5) is that, in any con-

stitutive process,

(Div sC + FTDivsB + HTDivs K ) t a n S = 0, (14.15)

a result that will be verified in Section 14.3. Further, granted (14.15), we
may use (3.8), (13.6), and (13.7) to conclude that

TX = - T 2 . (14.16)

(Were the slip included in the constitutive equations for the interface, then
the effective shears would not vanish. On the other hand, (14.15) and
(hence) (14.16) would be satisfied and the effective shears would be bal-
anced, rendering the discussion of Section 9.3c applicable here also.)

Consider the system consisting of the balance laws (12.11), the
definition (13.7) of the effective shears, and the constitutive equations as
restricted by (i)-(iii). By (i), (13.7) holds with T ^ O . This has two
consequences: firstly, by (8.11) and (iii), (9.12) holds for both 91 and 82;
secondly, by (14.15), the invariance requirement (13.6) is satisfied. A
consequence of the second of these is that, without loss in generality, the
tangential part (with respect to S) of any one of the equations (12.11) may
be dropped. We will, in fact, omit the tangential part of (12.11)2.

By (13.3)2 and (13.19) in conjunction with (A6) and (A9) of [Gu],

condition (14.13) actually follows from the moment-balance relation (14.6)3.
This is in accord with a result of Noll [1955] for standard continua.
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n.Div sC « +K - (FTS + HTKM. + DivsC,

where L = Lx= -V s n and K = Kx = trL, respectively, are the curvature
tensor and total (twice the mean) curvature for S. Thus, by (9.12), we can
write the normal part of (12.11)2 in the form

- (FTS + HTK)-L + DivsC - n-Cji = p^V^ + P12W2. (14.17)

Note that \\>K - (FTSM can be written as the inner product of the "surface
Eshelby tensor11 ^l± - FTS with L.

The balance (14.17) can also be written in the form

*K - S€Xt-VnF - K€Xt-VnH + Divs e +

(detH)co2 - o^ « B1W1 + B2W2, (14.18)

where Bi = p l i+ (detH)p2i, while (VnF) = (VF)n is the directional derivative
of F in the direction n. The balance (14.18) follows from the equations

(FTS + HTK)-L = - Divs(S
TFn + KTHn) +

(FTDivsS • HTDivsK).n * S€Xt-VnF + K€Xt-VnH,

H(HT(C2n2+ 82) + FTS2n2)-n = K(co2n2 + 82)-Hn =
s K{( 82\ans 2

 + ^n2 + w2)n2}.Hn
= - A2F2

Ts-Hn • (detH)(H2 + co2),

and (9.8), (12.11)lf3, (13.3)2, (13.7), (13.8), (13.11), and (14.4).

14.3. VERIFICATION OF THE RESTRICTIONS (i)-(iii) AND (14.15)
a. Verification of (ii) and (iii)

Throughout this section, the derivative (0° is following S^
Let us agree to use the term motion-potential pair for a pair (y,|JL)

with y a two-phase motion and n« (IJL1,...,!!*) a chemical-potential field
that is smooth away from, and continuous across, the interface. We begin
with a l e m m a : 3 5 there is a motion-potential pair (y, | i ) such that:
OcS1(O), 0eS2(0), and such that the following fields have arbitrarily pre-
35Cf. th€ Variation Lemma of IGSJ
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assigned values at (0,0):

n, n°, F, F°, H, H°, Wj, W^, *, H, H° (i=l,2). (14.19)

The proof will be given in Subsection c.
We now turn to the verification of (ii) and (iii). By hypothesis, the

reduced dissipation inequality (13.18) is required to hold in all constitutive
processes. Thus

- S(Z)€Xt.F° - K(Z)€Xt-H°

1 + fr2(Z)w2} + s(Z).if < o (14.20)

for all motion-potential pairs (y,|i), or equivalently,

- B(Z)€Xt)-F° + (SH+(Z) - K(Z)€Xt)-H° +

^(Z)-W1° + 5W

1 + n 2 (Z)w 2} + s(Z)-ir < 0 (14.21)

for all (y,|i). Thus, appealing to the lemma, we see that the coefficients of

F°, H°, n°, |JL°, and W^ must vanish. Therefore (ii) must hold and

s(Z) = 0, f(1(Z)W1 • fT2(Z)W2 < 0; (14.22)

steps analogous to t-ose following (9.10) then yield (iii).

b. Verification of (14.15) and (i)
Let

u = DivsC +FTDiv sS + HTDivsK. (14.23)

For convenience we suppress the argument t. Choose an arbitrary point
XQ€S and an arbitrary vector q tangent to S at Xo, To verify (14.15),
it suffices to show that u«q=0 at Xo. Clearly,

u-q = Divs(CTq) + (DivsS)-(Fq) + (DivsK).(Hq). (14.24)
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Let q t a n=(l-n®n)q, so that

at Xo: q tan = q, Div sq t a n = 0. (14.25)

By (13.3)2 and (13.19),

CTq * «l>qtan + (n-q)B - 8TFq - KTHq, (14.26)

so that, using the fact that Vsn is tangential and symmetric,

Divs(C
Tq) = (Vs+).q + B-(Vsn)q - Divs(S

TFq + KTHq) (14.27)

at Xo. On the other hand, by (14.5), at Xo,

= -B-(Vsn)q + Sex t . (VF)q + Kext-(VH)q, (14.28)

where VF is, at each point, a linear transformation from IR3 into
Lin(IR3,IR3), and similarly for VH (Cf. (3.14)). Further,

Divs(STFq) = (DivsS)-(Fq) + S-Vs(Fq),

S-Vs(Fq) = 8-(V(Fq)l1) * (SP1)-V(Fq)
= 8€Xt.V(Fq)«Sext.(VF)q,

K.Vs(Hq) = Kext.(VH)q.

The last set of identities in conjunction with (14.23), (14.24), (14.27), and
(14.28) yield the desired result: u«q=0 at XO.

Finally, to establish (i), we note that (13.8) and the first of (14.22)
yield T2=0. Further, because (14.15) is valid, so also is (14.16); hence T ^ O .

c. Proof of the lemma
Throughout this proof, the derivative (0° is following SA.
We begin by constructing a two-phase motion with the desired

properties. Here it is convenient to work backward from the deformed
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configuration. We will choose the deformed interface £(t) such that

is an evolving plane with Oc^(t) for all t; (14.29)

thus, granted a choice of the normal n(t), and assuming that the de-

formed body occupies all of R3, the deformed phase regions Bj(t) are

specified. In this case, we may conclude, with the aid of (4.25), that

nD = n° = n \ grad^n = 0, V(0,0) = VD(0,0) = 0. (14.30)

Assertion 1. We can assign values at (0,0) for

n, n \ Fif Ff. y{\ y{
9\ (14.31)

i-1,2, such that any two-phase motion consistent with this assignment,

with (14.29), and with

VFi(0,0) = 0, (14.32)

i-1,2, is consistent with the preassigned values at (0,0) of

n, n°, F, F°, H, H°, W>, W ,̂ If, (14.33)

i=l,2.

To verify Assertion 1 note first that, by (3.11), (4.22), and (14.32), we

can choose Fit Ff at (0,0) so that F, F°, H, H° have the required values

at (0,0); then, using (3.2), we can choose n and n* so that n and n°

are as required. Note that the discussion thus far assigns values to

ni, V , }if \i9 Jj, li°, Xj0, Ji0, grad^ (yf), (14.34)

i«l,2, and implies that, at (0,0),

grad^ J^ grad^ Xj = grad^ }{ = 0, grad^Fj = 0, (14.35)

where we have used (3.2), (3.4), (14.30), and (14.32). Next, by (4.4) and

(4.6), granted (14.30), we can choose y ^ n at (0,0) to render Wj(0,0) as
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required. Then

VjCO.O) and grad^V^CO) are also prescribed, (14.36)

where the specification of V{ follows from (4.6), while that of grad̂ g Vj

follows upon operating on (4.4) with grad^ and then appealing to (14.30),

(14.34), (14.35), and the identity grad^V = -n°.

By (4.27), ly#(0,0)]tan£ can be chosen to give the requisite value of

If, and we choose the values Yi*(0,0)tan^ consistent with the chosen value

of [y#(0,0)]tan>8. The yi#(0,0) are now prescribed, and, by (4.22) and

(14.36), so also is y1°(0,0). Finally, if we differentiate (4.4) following Z(t),

and then use (4.25), and (14.30), we see that (since (0° is with respect to

Si)

0 = (X^)0 - y^-gradj (XJVJ) + ( y ^ n • y^n*,

at * (0,0), and, since XjVj = JjWif we may use (14.34)-(14.36) and the analog

of (4.20) for yf to see that, at (0,0),

JjWj0 = - ( y ^ ^ n + prescribed quantities.

Thus we can assign (yj##)*n a value at (0,0) that gives Wj° its pre-

assigned value. This establishes Assertion 1.

Assertion 2. There is a two phase motion consistent with (14.29) and

(14.32) that has 0cS1(0), 0€S2(0), and is such that the fields (14.31) have

arbitrarily preassigned values at (0,0).

We begin the proof by choosing n(t) consistent with the prescription

of n(0) and n*(0) (the choice for t>0 is irrelevant). We will construct

the motion by considering, at each t, mappings x «-> gj(x,t) from 33j(t)

into regions Bj(t): if each of the gj's is, at each time, a bijection with

strictly positive determinant, then their fixed-time inverses yj define a

two-phase motion. Repeated differentiations of gi(yi(X,t),t) = X confirm

that there are vectors ftj and €j and tensors Aj and Ej with det Aj > 0

such that, if the ĝ s are as specified above, and if
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gi(O.O) = 0, atgi(O,O) = aj, Ot)
2gi(0,0) = 2e{,

gradgitO.O) = Aif grad 3^(0,0) = E4, (14.37)

grad2
gi(0,0) = 0,

i=l,2, then the corresponding y '̂s are consistent with an arbitrary

constraint of the type (14.31) and (14.32). Choose f(t) with f(0) = 0 and

(df/dt)(O) = 1, and with f(t) sufficiently small that det(Aj + f(t)Ej) > 0,

i=l,2, for all t. We define gi (i=l,2) by the requirement that, at each t,

gi(«,t) be the restriction to Bj(t) of the function

x H taj + t2ei + (Aj + f(t)Ej)x.

This yields (14.37) and the proof of the second assertion is complete.

Assertions 1 and 2 yield the existence of a two-phase motion with the

desired properties as stated in the lemma.

To complete the proof of the lemma, we must construct a

corresponding field |JL = (IJL1, . . . ,JJ*) that is smooth away from, and

continuous across, the interface, and has arbitrary preassigned of |JL and

JJL° at (0,0). Let u and d denote these assigned values; then the field

|i(x,t) s u + td,

since it is independent of x, has the desired properties.
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15. EVOLUTION EQUATIONS IN THE ABSENCE OF EXTERNAL FORCES
We now list the complete set of equations that hold when the mass

supplies and external forces vanish. We shall continue to use the abbre-
viations S=SX, L^l^, K^Kjp n = n1, and F^F^ and, as before, C is the
Eshelby tensor (10.1).

For the general dynamical theory the interface conditions consist of
the compatibility condition (10.2), the mass balance (10.5), the local
equilibrium condition (10.6), the normal partial balance

- (FTS + HTK)-L + DivsC - n ^ n = p n W x + P12W2 (15.1)

for phase 1, the partial balance

DivsK + HC2n2 = K(p 2 i w i + ^22W2)n2 ( 1 5 - 2 )

for phase 2, the force balance.

Div s S + KS2n2 - S1n1 = 0, (15.3)

and the constitutive relations (14.7) and (14.11). (The balances (15.1) and
(15.3) are (14.17) and (12.11)!, while (15.2) is (12.11)3 with 82 given by
(9.12).)

The relation (15.1) has an equivalent form

*K - Sext.VnF - Kcxt.VnH + Divs 6 +

(detH)oo2 - w ^ B{WX + B2W2 (15.4)

(cf. (14.18)) with I given by (14.5)3.
In statical situations the interface conditions reduce to (10.10)3(4 and

- (FTS + HTKM + DivsC - n-Cin.- 0,

DivsK + KC2n2 = 0, (15.5)

Divs 6 + KS2n2 - S1n1 = 0.
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16. RESULTS IN THE SPATIAL DESCRIPTION
16.1. GENERAL THEORY

The interfacial force and moment balances are (12.6) and (12.7), and,
in the absence of external forces, have the form

+ [S]n = 0, ( 1 6 1 )

+ 6iCifi + ^ = 0.

The limit P loc(A), which is now considered as a function Pioc(G) of
the deformed subsurface GC&, is given by

Ploc(Q) = J{[Sn-y#] + g-v + T1^\r1 + T2-v2}da +
Q

J{SV-w + C1V-w1 + C2V-w2}ds. (16.2)
dQ

Invariance of the power, as asserted in the paragraph following (13.3), yields
(8.5), or equivalently

(div^S + G/div^Ci + G2
Tdiv^ C2)tan>8 * TX + T2 , (16.3)

v/ith Ti given by (13.7), and the conclusion that the field

A = I + G1
rt1 + G2

TC2 (16.4)

has the form

A = a l + n®I, (16.5)

with I=ATn and o = c/}v (A is generally not the referential-to-spatial
transform of A.)

Let

(C4)€Jrt = C.IP, (S)€Xt = I F , (16.6)

and let ni and ti given by (11.3) and (13.7). Then
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PIec(Q) = JoV ( M ) t a nds + Jp, da, (16.7)

- i - n D - CT

2 {(CiW^)0 - T^YW^ - ( 6 ^ * njJUi) (16.8)
i-1.2

(p. is generally not the transform of p.). The verification of (16.7), (16.8)
parallels that of (8.13)-(8.15) and (13.9)-(13.10), and uses the identities .(4.31)
and (4.33).

Regarding the energetics, we are led to the conclusion

a = + (16.9)

and to a reduced dissipation inequality in spatial form

F + B.nD - 2 {(CjWGi0 - ttjUi - T^yv) ,^} < 0. (16.10)

i-1.2

The spatial theory is based on constitutive equations of the form
VJJ = $(Z), T 2 = T 2 ( Z ) , ^ = TT^Z),

Ci = C^z), 1 = i(z), (16.11)

z = (F 1 ,F 2 iP i ,P 2 ^' U i ' U 2 ) '

with (9.5) tacit. By (16.4)-(16.5), these yield a similar relation 8-8(z) for
the deformational stress, and we assume that

S(z)ext is symmetric, (16.12)

an assumption that ensures consistency with both requirements of the
moment balance (12.7). (Note that we do not introduce a constitutive
equation for i v but instead consider 0v1 as defined through (16.3).)

Consequences of the dissipation inequality are that: (i) the interface is
free to slip (in the sense of (14.4)); (ii) the interfacial energy reduces to a
function
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and generates Cj and ¥ through

$ G 2 , n ) , (16.13)

(iii) the kinetic relations (11.6)2 hold for the normal internal forces T .̂

Equations (16.5), (16.6), (16.12), and (16.13) imply that C; and $ are

independent of the normal components Ĝ n, and that

C ^ S ^ n ) = ai.$(B l fB2,n), Dfi$(B lfB2,n) « 0, (16.14)

where D^$ is the derivative of (jl following n, as defined in (14.8). The

second of (16.14) implies that the interfacial energy is invariant under

changes in observer:

^{GvG2tn) = $(G1Q
T,G2Q

T,Qn) (16.15)

for any rotation Q.

When the mass supplies and external forces vanish, the resulting

interface conditions consist of the kinematic compatibility condition (11.9),

the mass balance (11.12), the local equilibrium condition (10.6), the

partial balances

Ci + S^o^l - S^h = (r]llV1 + Tii2U2)n (16.16)

for each phase i, and the normal force balance

I - I = -n-[S]n, (16.17)

or equivalently

( a l - Gx
Tt1 - G2

TC2)-I = «n-[S]n (16.18)

^ t h L=-V^n the curvature tensor for J&.

Note that the normal parts of (16.16) and (16.17) may be combined to
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give

gGj, - (C2)ext-gradRG2 + divgl + [w] - B1W1 + B2W2,
(16.19)

with grad^G = (gradG)n and B̂  « T)li + T)2i.

When the interface is stationary and the deformation and densities

independent of time, the interface conditions reduce to (11.14)3f4 and

j + S^oi^l - S^n = 0, S*I « -n-[S]n. (16.20)

Granted (16.4) and the constitutive relations (16.13), (16.20) are equivalent

to interface conditions obtained variationally by Leo and Sekerka [1989].

16.2. NONINTERACTIVE INTERFACIAL ENERGY

The interaction between phases manifests itself in the coupling inhe-

rent in the dependence of the interfacial energy ip = $(GllG2,n) on Gx and

G2. Here we will discuss energies, which we call noninteractive, for which

this coupling is absent:36

$(GlfG2,n) = $1(G1,n) + $2(G2,n), (16.21)

Granted (16.21), v/e can write

41 s +1 + *2* +i = *i(Gi*n)* (16.22)

with Xpi the interfacial energy of phase i, measured per unit deformed

area, and (16.13) yields

= c^A.n), (16.23)

so that Ct is independent of Gj, j * i .

In view of (3.2), the energy i^ = }$if measured per unit referential

area, is given by a constitutive equation

+ir+L(F i fn i), (16.24)

and Sekerka [19891 use the term "greased interface" when the interfacial
energy has the form (16.21).
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and this allows us to define a deformational stress for phase i through

Si = iiCFi.nj) = ^ . ^ ( F ^ ) ^ . ( 1 6 - 2 5 )

If we differentiate the identity

•i(Gifn) = V1+i(Fi.ni) (16.26)

with respect to Gj, regarding n̂  and If1 as functions of (Gj,n) through
the relations

nj » X^G^n V 1 " Ji"lxi' xi = IGfTnl,

we obtain

U \ W ' +iAi - F^O^W - n ^ d ^ . (16.27)

v/here v/e have used the identities (with B an arbitrary tensor)

B.dGini = -A iF i
TBTn i, B-d^Jf1 = ^ ( A ^ ^ - B ,

Now, appealing to (3.6), (3.21), (16.23), and (16.25), (16.27) becomes

rendering the tangential accretive stress in each phase an Eshelby tensor
for the interface.

Similarly, differentiating (16.26) with respect to Fif considering n
and |j as functions of (F^rxj), we find that

K T t h ? ^ Gi+i a$i) . (16.29)

Further, by (16.6), 0^^)51 = 0, so that, by (16.27), (Sp.^Jn^O. Therefore
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S^n = - D ^ . (16.30)

The first of (16.30) is an interesting counterpart of (16.28). By (16.14)2,

(16.21), and (16.30)2,

(M1 + I 2 ) T n = 0,

and this, (12.7)lf (16.4), (16.5), (16.22), and (16.30) yield the conclusion

I = §! + I2 . (16.31)

Note that, by (16.30), the Sj's generally will be neither tangential nor sym-

metric, although balance of moments (16.12) requires that their sum 8 is.

The balance equations that arise when the mass supplies and external

forces vanish are (16.16) and (16.17), but the lack of coupling between

phases, as expressed in (16.23), renders the partial balances (16.16)

independent. Further, granted (16.29), an argument similar to the proof of

(14.15) yields the identity

(16.32)

and we can rewrite the tangential part of the partial balance (16.16) in the

form

j + S&h)^* * 0. (16.33)

Thus the interface conditions for a noninteractive energy are,37 with the

exception of the normal deformational balance, totally uncoupled.
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statical situations the interface conditions reduce to those derived variation-
ally by Leo and Sekerka [1989].
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