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Abstract

The scope is to study the nonlinear parabolic problem of forward-backward type

m as V • q(Vu) on Qoo = ft x R+

with initial data uo given in H&(Q). Here ft C RN is open, bounded with mildly smooth
boundary and q € C(RN;RN), an analogue to heat flux, satisfies q = V# with <f> € CX(RN) of
suitable growth. When <f> is not convex classical solutions do not exist in general; the problem
admits Young measure solutions. By that is meant a function u € H\oc(Q<x>) FiL00 (R+; HQ(Q))

and a parametrized family of probability measures u = (|/xtt)(xtt)€QOo related to u by Vu =
/ R " Ai/(dA) a.e. in Qoo] via 1/ the nonlinearity q{Vu) is replaced by the moment < v%q >
= /JJN g(A)i/(dA) a.e. in Qoo and the equation is then interpreted in H~l. The family u
is generated by the gradients of a sequence in #/oc(<?oo), is non-unique, but through its first
moment some of the classical properties are preserved: uniqueness of the function u is true;
stability is reflected in a maximum principle and a comparison result. The asymptotic analysis
yields, as time tends to infinity, a unique limit z and an associated Young measure i/°° such
that the pair (z,i/°°) is a Young measure solution of the steady-state problem V • q(Vz) = 0.
The relevant energy function is shown to be monotone decreasing and asymptotically tending
to its minimum, globally and locally in space.
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1 Introduction

We study the nonlinear evolution problem

(1) ut = V-g(Vu) onQoo=Ef2xR+

(2) u(.,0) = uo on ft

(3) u = 0 o n 5 f l x R +

which will be denoted by V. Here Q is an open bounded subset of R* such that the

cone or the segment property is satisfied on the boundary (as for example in the case

of a Lipschitz boundary), and q : R^ -* RN a nonlinear continuous potential gradient

function, an analogue to heat flux, satisfying q = V0, where <f> € Cl(RN) (the space

of continuously differentiate functions on R^) is of suitable growth. The initial data

function uo is given in HQ (£2) and the zero boundary data (3) can be taken to be general

time-homogeneous function g € H1^). (Here Hl(Q) is the Sobolev space of functions

on Q which together with their first order weak derivatives are in L2(Q) and HQ(Q) is

its subset consisting of the functions with zero trace on the boundary of Q).

When <f> is not convex, in which case the monotonicity condition (g(x) — q{y)) • (x —

y) > 0 for x,y € RN is violated on subsets of R^, the differential operator —V • g(V-)

fails to be accretive (e.g. monotone); equation (1) then constitutes of & forward-backward

parabolic equation generally admitting no classical strong or distributional solutions.

The non-convexity of the potential is compatible with the usual requirement that q(X) •

A > 0 imposed on a theory of thermal conductors by the Clausius-Duhem inequality.

A notion of solution appropriate for the study of V is that of a measure-valued or

Young measure solution. By that is meant a function u in a Sobolev space and a

parametrized family of probability measures v = (̂ r,t)(z,t)€Ooo w h i d l is generated by

the gradients of a sequence in the same space and satisfy

r+ocy fa

io in dt

where

inQooJ



for all C in an appropriate subspace of Hl(Qoo)- In addition, u and v satisfy

Vu = < i/yid > = / N\v(d\) a.e. in Qoo

where id(X) = A. So to each point (x,t) in the domain Qoo associated is a probability

measure vXtt on R^; via this parametrized measure the nonlinearity of g(Vu) is replaced

by the expected value of g, while the first moment of the measure is the gradient of the

solution. Tb date the term 'Young measure solution', although strictly derived from the

fundamental theorem of Young measures described in section 2, admits slightly different

definitions by different authors: the decision of what is a Young measure solution of a

problem must necessarily accommodate the way the generating sequence is chosen. The

nature of the Young measure solutions is made precise in section 2.

The approach which we shall assume in this paper for the study of (1) - (3) is the one

employed by Kinderlehrer and Pedregal in [KP1] to establish existence in the case of zero

boundary data (immediately valid in the case of general time-homogeneous boundary

conditions). The method incorporates the explicit methods for solutions of evolution

equations (cf. [BC], [HK]) with variational methods used to accommodate and describe

the oscillatory behavior (cf. [Ba], [E], [KP1], etc). The combination of the two methods

leads to the existence of Young measure solutions of evolution problems which may be

of forward-backward nature.

The analytical context of our approach to obtain existence is to approximate the

dynamics of equation (1) with a sequence of stationary problems, the solutions of which

are in turn interpreted as minimizers of variational principles. More precisely, the time-

discretized version of (1) is the Euler equation of a non-convex variational principle

which at each time step (of size h) is minimized. The minimizer solves the stationary

problem and approximates the solution of V within time h. By taking arbitrarily small

time steps we pass from the stationary to the evolution problem. The method is well

known in the study of semigroups. It has been implemented recently by Horihata

and Kikuchi in [HK] to construct weak solutions to a quasilinear parabolic problem

associated with a convex variational principle. Further, this method has also been

employed by Bethuel, Coron, Ghidaglia and Soyeur in [BC] to establish existence of

weak solutions for a nonlinear heat equation associated to weakly harmonic maps in a



Sobolev-type space of functions of the unit ball into the sphere in R3.

In applying this method to treat V the difficulty which arises is twofold: firstly,

the non-convexity of the potential <f> implicating the minimization of a non-convex vari-

ational principle; secondly, the unwieldiness of the nonlinear dependence of the heat

flow q on the gradient of the solution. Both situations call for sensible generalizations,

in the former case that of a 'minimizer' of a variational principle and in the latter

that of a 'weak solution' of a differential equation. Respectively, the pertinent themes

implemented in [KP1] to overcome these impediments are: firstly, the relaxation of a

non-convex functional and secondly, replacing the nonlinearity of q(Vu) with the ex-

pected value of q against a Young measure. The sense in which V has a solution is then

that of a Young measure solution.

We review the variational method of Kinderlehrer and Pedregal in [KP1] to obtain

existence in the case of zero boundary data, which is immediately valid in the case of

general time-homogeneous boundary conditions. Following, we investigate deeper the

properties of the Young measure solution establishing a uniqueness result. It should be

remarked that as a rule, non-uniqueness results appear in the literature (for example in

[BC] or [HN]) regarding nonlinear parabolic problems especially of forward-backward

nature. In our case, the uniqueness of the Young measure solution, although not directly

dependent on the particular construction scheme of the solution, is contingent upon an

independence property, namely that the heat flux q and the solution u be independent

with respect to the Young measure v and furthermore, a condition regarding the support

of the Young measure i/, namely < i/,g > = < i/,p > where p = V<p** and <f>** is the

convexification of the potential <f>. The function u is unique but the Young measure is

not.

The solution u is also continuously dependent on the initial data in the L2 norm. In

addition, u(-,<) satisfies continuity properties in the I? norm, both as t —• 0+ (mono-

tone decreasing) and as t -* +00. Stability of the solution is reflected in the fact that it

satisfies a maximum principle and a comparison lemma. A consequence of the compari-

son lemma is that the solution is also a local solution in the space variable with respect

to its own initial-boundary data.

In section 3 we investigate the asymptotics of V. As time tends to infinity, the



solution u(-,t) converges to z strongly in I? (monotonically decreasing) and weakly in

Hl and the measure v has a (weak) asymptotic limit i/00 such that the pair (z,u°°)

constitutes a Young measure solution to the steady-state version of P, V • g(Vz) =

0. This is achieved by showing that the set of all weak limit points of (tx(-,t))t>o in

Hl is invariant under the operator V and further, there exists exactly one such weak

limit point z. The asymptotic Young measure i/00 has restricted support satisfying

supp 1/00 C {q(X) • A = 0} n {<£** = <f>}.

In section 4 we introduce the relevant energy function JE7(t) = J£° #**(Vu)(x,t) dx.

As time tends to infinity, the energy converges to zero roonotonically decreasing globally

in space. We show that it also vanishes locally in space, that is, on any subdomain o iCQ

(although not monotonically on u).

The forward-backward heat equation has also been studied by Hollig [H], Hollig and

Nohel [HN] and Slemrod [SI]. The treatment in [H] and [HN] concerns the Neumann

initial value problem in the case of one spatial dimension (Q = [0,1]). It establishes in

the model case of a piecewise linear heat flux q, decreasing on an interval [a, 6] C fl,

that a continuum of solutions exist for finite time satisfying (1) weakly in the sense of

L2. Each such solution is obtained as the sum of an explicitly constructed oscillating

function and a smooth function which solves (weakly in I?) an inhomogeneous heat

equation.

The treatment in [SI] involves Young measures but the spirit is different to that

assumed here. V with Dirichlet or Neumann boundary conditions is approximated by a

sequence of regular, singularly perturbed problems whose solutions are used to extract

the Young measure solution. The differences between the Young measure solutions

obtained in [SI] and [KP1] are subtle. In [SI] the heat flux q and the initial data txo

are required to be sufficiently smooth, q must have strictly subquadratic growth and

equation (1) is satisfied in the sense of distributions. In [KP1] q is continuous of linear

growth, UQ £ HQ and equation (1) is satisfied in if"1.

A one dimensional convex analogue to V associated with a potential of linear growth

has been studied by Zhou [Z]. The approach in [Z] differs from a Young measure view-

point but here also a variational technique is developed to solve the stationary and

evolution problems.



2 Uniqueness, stability and properties of the Young mea-
sure solution

2.1 Background

We start with the notion of a Wlj>-gradient Young measure introduced in [KP2] and then

describe some properties. Most statements appear in vectorial formulation although it

is their scalar version which we shall make use of in this study.

Definition. A family of probability measures v = (vx)xen on M, where fi is an open

set in RN, is a W^-gradient Young measure for some p € [1, oo] if

(i) x € ft «-* / M f(A) vx(dA) € R is a Lebesgue measurable function for all / bounded

continuous on M, the vector space RM x^ of M x N matrices over the reals.

(ii) There is a sequence of functions (uk)k>o C Wlip(fy RM) for which the representation

formula

(4) Urn [ <f>(Vuk)(x)dx = / / <f>{A) vx{dA) dx
k-t+oo JE JEJM

holds for all measurable ECU and all <£ in the space

^ exist,ist,}

for p < +oo, and for all functions <j> continuous on M when p = +oo. In the above,

C(M) denotes the space of continuous real valued functions on M. We shall use the

notation

Property (i) above is equivalent to weak* measurability of x € Q *+ vx € Prob(RN)

(the set of probability measures on M), that is, measurability with respect to the weak*

topology on Prob(RN). Strong measurability usually will not be true. Property (ii)

implies that there exists a sequence of functions (u*)*>o C W1|P(f2; RM) such that

<f>(Vuk) —>>< !/,<£> in£ 1 ( f l ;RM )as*-»+oo

for all (f> € £Q, (where the notation —* is used to denote weak convergence in the space

indicated). In particular,

\Vuk\p —* < i/, \A\P > in Ll(Q) as k -> + oo



(a condition not guaranteed for any subsequence by the uniform boundedness of the

(||u*||iyi,p)jfc>0 alone).

As noted in [KP2] the space £Q(RN) is a separable Banach space in the norm

\\<f>\\sp = sup = L ;

Separability is desirable when the duals of the spaces such as L1(Q,£Q(M)) are con-

sidered and the representation formula (4) remains valid if £* (M) is replaced by the

inseparable space

I eC(M) : p
A e M )

The guarantee for the existence of Wlj)-gradient Young measures draws upon the

fundamental theorem of Young measures originally proved by Tartar [T] and built on

ideas developed by Young[Y]; a version appears in Ball [Ba] and an extension was proved

by Schonbek [Sc].

By the theorem, a sequence (**)*> 1 of measurable, mildly bounded functions defined

on a £N-measurable subset S C R^ into R^ has a subsequence {z*)j>i which generates

a Young measure, that is, a parametrized family of probability measures v = (ux)xes on

R^ via which certain weak limits can be characterized (CN standing for the Lebesgue

measure in RN). Namely, the weak limit of the (/(*J))J->1 in Ll(E) exists and is

< "x> / > = Sj^Mf(X) ux(d\) for any £^-measurable ECS and any continuous function

/ such that {f(zi))j>l are weakly sequentially precompact in Ll(E).

Without any boundedness conditions on the (^J)j>i, a subsequential convergence of

the {f{zi))i>l is guaranteed only for / € Cb(M) (the continuous functions on M which

vanish at infinity) weakly• in L°°(S) and the (fx)x€n are subprobability measures. With

improved boundedness conditions on the (z?)j>i the convergence of the (/(**))j>i k

obtained for a larger class of functions / : for example, boundedness of (*J)j>i in L°°

implies f(z*) -*• < i / , / > in weakly* in L°° for any continuous / . Often however,

the situation is that the generating sequence (z*)j>\ is not bounded in L°° and the

weak limit of the composition with a continuous, unbounded but of controlled growth

function / is to be identified. In such a case it suffices to establish that the (/(zJ))j>i

are weakly sequentially precompact in Ll. When the domain is bounded, a general



criterion is provided by de la Valtee Poussin: the (f(zj))j>i are weakly sequentially

precompact in Ll(E) for E CRN bounded if and only if there exists xp : [0, +00) •-• R

with superlinear growth at infinity and such that

< +00.
f JE

The following theorem of Ascerbi and Fusco in [AF] and Kinderlehrer and Pedregal

in [KPl] also serves to characterize weak sequential precompactness in L1 in a varia-

tional setting. It has an important application to minimization problems in variational

calculus. The existence of (local) minimizers of a functional of the form

over WliP(Q] RM) is very closely related to the lower semicontinuity properties of / ,

which in turn are reflected in the quasiconvexity properties of / in the last argument.

We recall the notion of quasiconvexity introduced by Morrey [Mo]: a Borel measurable

function / : M —¥ R is quasiconvex if for all A € M,

for all C € W^(D; RM) and for all D open bounded sets in RN with CN(dD) = 0. In

general, convexity is a stronger condition than quasiconvexity but in the scalar case,

that is when either M = 1 or N = 1, the two conditions are equivalent (cf. \D]).

T h e o r e m 2.1 Suppose f € £P(M), for some l<p< +00 , is quasiconvex and bounded

below and let uk—±u in Wl*(Sl; RM). Then

(i) For all measurable E C fi,

f f(Vu)dx < liminf f f(Vuk).
JE "" k-++ooJE

(it) If in addition,

f f(Vuk)dx *^>°° f f(Vu)dx
Jn Jn

then the (/(Vu*))j>o ore weakly sequentially precompact in LX(Q) and a subse-

quence converges (weakly) to f(Vu).



The proof can be found in [KP1]. Pait(ii) is a consequence of (i) and it implies that if

/(Vu*>) ^ ° ° /(Vu) in Ll(Q)

then the Wlj)—gradient Young measure v = {yx)xzn generated by (Vit*>)j>o satisfies

< * / , / > = /(Vu) x a.e. in fi.

The consequence of theorem 2.1 which we will have occasion to use directly in this

paper occurs when a p-growth condition of the function / from below allows one to

obtain information on the IP norm of the gradients. This is described in the next result

and provides a sufficient (but not necessary) condition for a sequence of functions in

WliP to generate a W1|P-gradient Young measure.

Theorem 2.2 Let f and (u*)*>i be as in theorem 2.1 and assume in addition that

+ < C\A\P + 1

for 0 < c < C. Let v = (vx)x€n be generated by the gradients {Vuk)k>i- Then u is a

WlyP-gradient Young measure.

The proof can be found in [KP1].

2.2 The variational treatment and the existence of a Young measure
solution

Assumptions. We define the two separable Banach spaces

and

We assume the heat flux satisfies g = V<j> on RN with <f> G Cl{*.N). We impose the

growth conditions <p e £o, q € To and furthermore,

£8<*";B") := |* € C(R*;R") : ̂ H m ^ j ^ exists j .

(5) (c|o|2 - 1)+ < 4>(a) < C\a\2 + 1 Va € *N

(6) \q(a)\<C\a\ Vo€RN.



We let <f>** denote the convexification of 0, that is,

<f>** = sup{/(x) : f <<f>, f convex}.

Since <f> is in CX(RN) so is <f>** and we set

p :=

We note that q = p on the set {<£ = <f>**} and that <£** and p satisfy the same growth

conditions as <j> and 9 respectively. We assume

<£"(0)=0 and p(0) = 0

which by the convexity of <f>** implies

p(A) • A > 0 VA € RN.

Under these hypotheses we fix ideas by agreeing on the following:

Definition. A measure solution to V>

ut = V • g(Vtz) in Qoo : = f i x E +

tx(x,0) = uo(x) for x in fi

u = 0 on 9fi x R+

with u0 € Hi (fi) a given function, is a pair (u, 1/) where u € if/^CQocOnL00 (R+; H] (Q))

and 1/ = (ux,t)(x,t)€Qoo a parametrized family of probability measures on RN such that

the equilibrium equation

(7) r[(
Jo Jn

(where < uXiUq>- / R N g(A)i/x,t(dA) ) and

(8) < vx,u id > = Vu(x, t) (x, t) a.e. in

hold. Equivalently stated, equation (7) is

(9) ut = V- <u,q> in H"1 (Qoo).

10



If in addition v is an IJ/^QocO-gradient Young measure then the pair (u> v) is called

a Young measure solution to V. In the above, ft C RN is an open, bounded set,

dQ x R+ is the lateral boundary of the parabolic cylinder Q x R+ and id stands for the

identity function. The notation Hl stands for the Sobolev space W1 '2 and H~l for its

dual W~1*2. We will say that (u, v) is a solution or solves to indicate that the pair is

a Young measure solution of V. The function u is also called a solution and the use of

the term is clear from the context.

The zero boundary data can be replaced by g € Hl(Q.) (and the solution u is then

sought in g + HQ (Q)) without any changes in the results that follow. For convenience in

the sequel we suppose g = 0. A generalization to time-dependent data is not immediate.

Remarks. 1. It results from the existence proof below that a Young measure solution

to V exists such that xi* € £2(<2oo) and that (7) is satisfied also locally in time, that

is, for test functions £ € HiodQoo) with t-slices C(#i*) € HQ(Q) for t > 0 a.e. and in

particular for £ G HQ (QT) VT > 0. This means that in addition to (9) it is true that

ut = V-<i/,g> inH^iQoo).

In particular, the solution u is an admissible test function.

2. It is a consequence of the above definition that an equilibrium equation is also

satisfied pointwise in time in H'1(Q): indeed, for t a.e. in [0,T] and for all C €

we have

[ [
Jo Jo.

differentiating in time we obtain

/ / <vXi
./o Jn

/ < vXyUq > -VC(x)dx = - / ut(x,t)C(x)dx t a.e. in R+, VC € H^(Q).
Jo, Jo.

Z. A classical solution to V which is bounded in time is a measure solution with v = S^u.

We establish existence:

Theorem 2*3 (Existence) Under the assumptions stated above there exists a Young

measure solution (u,i/) to V. In addition, %H €

supp vXtt C{a€RN : <f>{a) = <£"(<*)} (x,t) a.e. in Q

11

oo



and (u, v) is also a Young measure solution of the relaxed problem

ut = V-p(Vu) inH-^Qoo)

with the same initial-boundary data.

Proof: The following existence proof is due to Kinderlehrer and Pedregal [KPl].

Step 1. Let ft > 0 be fixed and for each j > 0 consider the functional

**(v; uk^1) := / 4>(Vv) + ^r(v - uhJ'1)2 dx for v € flj(fi)
•/ft 2/1

and

^ 1 / Vv) + i - (v - u**"-1)2 rfx for v 6 H^
/̂

/ f ( ) (
/ft ^/i

We drop the explicit dependence on ft. By relaxation,

/ := inf^vjuW-^rveflSfn)} = inf {*•*(«;ti*^1) : t; 6 flj

Let (ufcj<>*)it>i C #o(^) ^e a minimizing sequence for $ (and ***). By the growth

condition (5) and the Rellich theorem, together with the fT1-weak sequential lower

semicontinuity of $**, there exist u^ € H$(Q) and a subsequence,1 not relabeled, such

that
uhj,k * ± y uhj w e a l c l y ^ jyiJQJ and s t r o n g l y i n

and therefore,

(10) / <t>**CVuhiJ) dx = lim / ^**(Vunjf*) dx = lim / <£(VirJj) dx.

Then by theorem 2.1

(11) 4T(\

Let i / h j = (^J)x€O be the Young measure generated by the (^uh^k)k>v By theorem

2.2 !/*•* is an fT1-gradient Young measure and by the representation formula (4) for

X^weak limits and (10) and (11) we obtain

[ <fr(Vuhd)dx = / <*/,<£*•> dx = f <v,<t>> dx
Jn Jn Jn

1In fact, the whole sequence converges (weakly) as the minimizer uh%* is unique (see remark 3 following
theorem 2.8)

12



which together with <f>** ^ <f> implies

(12)

and therefore,

(13) < i/hj',^ > = < iA>,^** > = ^"(Vu^) x a.e. in Q,

(14) Vufc>J = < »A>,«d > x a.e. in ft.

In addition,

(15) <vhJ,q> = < i / J , p > xa.e. infi,

(16) V- < i/*J,9 > = V < iA*,p > = V • p(Vuhj) in ^

hold.

Setting the Gateaux derivative of $** to zero at the minimizer u h j we obtain the

equilibrium equation

(17) /p(Vu*'*)-vc + r(«fcJ-«fcJ~1)C<k = o vceH 1

Jo. h,

Let JftJ = [hj, h(j + 1)) and ^ be the indicator function of /*•>' and for t > 0 set

. 0 otherwise.

Define for x a.e. in ft each t € R+,

(18) tih(x,t) : = ^ ^ ( t ) (uhj(x) + Afcj'(t)(tih|i+1(x) - uhj'(x))}

so that u'1 € L°°(R+; J^(«)) and also

uh = 0 on afi x R+.

We let

(19)

(20)

13



probability measures on R^, (where £'o is the dual space of So). By (14) we know

(21) Vwh = < uh,id > (x,t) a.e. in Qoo.

We also let

iA*f q >
i

Differentiating (18) almost everywhere in time we have

Then for each t > 0,

^ = V-<!/*,?> inJST1

or, equivalently, the equilibrium equation

(22) j ^ { ? • VC + ^ C ) dx = 0 VC € ^

holds. Prom (22) it is easy to deduce that

(23) / / < uh,q > -VC + -5-Cdxdt = 0 VC G -^(Qr) VT € [0, +00]
JO JO Ot

(with £(-,<) € i?o(fi))>that is

— = V. < »/fc,9 > in H-\QT)VT e [0,+oo].

By (15), (16) and (19),

(24) <uh,q> = <i/ f c ,p> for each t > 0 and x a.e. in ft,

and

(25) V- < i/fc, g > = V- < i / \p > = V • p(Vtoh)

both in H~x{p) for each * > 0 and in H-l{Qr)VT € [0,+oo].

Step 2. Using the growth conditions (5) and (6) on <p &nd 9 w e obtain uniform estimates

in h for the (uh)h>0 and (w*)*>o in L°° (»+5 ^o(^)) ^ d (^)fc>o in I2((3oo)- Farther we

obtain (^$£)A>O € L2(Qoo) is bounded in h and the ^^(QooJ-gradient Young measures

(uh) are bounded in L°°(R+;£o). Using weak compactness we may therefore extract

14



weakly convergent subsequences indexed by h! -* 0 and a pair (u, i/) satisfying (7) and

(8). Indeed, the two sequences (uh')h'>o and (wh')h'>o have the same L°° (R+; H${Q))

weak* limit2 u satisfying §j € £2(Qoo); along /i' (23) yields the equilibrium equation

(26) jTj^(< i/ ,9 > -VC + §jfO<fc* = 0 VC € J5Tj(QT) Vr € [0,+oo]

(and as in (23) all C € ^ ( Q o o ) with C(-,i) € H%(Q) for almost all t > 0 are admissible).

Further, by (24)

(27) < i/, q > = < i/,p > (a:, t) a.e. in QT Vr € [0, +oo]

In addition, by (12) we have

(28) «uj>pi/C {</> = <£"}.

The measure v is extracted in [KP1] as the weak limit of the sequence of Young measures

(*/h)h>o in £°°(R+;£o)- To complete the existence proof we must establish that v is in

fact an ff/
1
oc(Q00)-gradient Young measure related to u via

t) (x,t) a.e. in Q^.

This question falls in the general setting of the results in the following paragraph and

is directly addressed in corollary 2.5. D

2.3 Some properties of sequences of gradient Young measures and
completion of the existence proof

Given a sequence of Young measures we may often want to extract a (weakly) convergent

subsequence using duality and at the same time ensuring that the limiting measure is

itself a Young measure. The following lemma describes a situation in which this is true.

Lemma 2.4 Suppose that (i>Q)a>o with i/Q = (^^(x.tjeQoo ** a sequence

gradient Young measures and for each a is generated by (Vva»m)m>o where (va'm)m>o

is a sequence in H^Qoo) uniformly bounded in a and m. Then a subsequence (not
3Weak* convergence in L°° (R+; Ho(£l)) is to imply that the sequence and the sequences of the N

spatial partial derivatives converge weakly in L2 ( R + ; L 2 ( )
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relabeled) of the (ua)a>0 and an H^Q^-gradient Young measure v - (vx,t)(x,t)eQc

exist such that

weakly in Ll(QT\ So), weakly in L2(QT\ T'o) and weakly* in L°° (QT\ M ( R N ) ) for each

r>o.
That is,

weakly in L1(QT) for ij> £ £0, weakly in L2(QT) for ip € To and weakly* in L°°(QT) for

tP € C0(R
N).

Remarks. 1. Recall that the assumption on the (fQ)a>o implies that the representa-

tion formula

/ [ xl>(Vva>m)(x,t)0(x,t)dxdtm-±¥ f I ( xl>{A)dv2t(A)0(x,t)dxdt
Jo JQ Jo JnJM '

holds for all ifr € So, 8 £ L1(Qx), and for each a > 0 (not necessarily uniformly in a).

This in turn implies that the representation formula also holds for rp € T or Co{RN)

weakly in I? or weakly* in L°° respectively. A converse of this statement is given by

corollary 2.6.

2. Assume that a sequence of Young measures is bounded in Lj^Qoo', S'o). Duality

cannot be used here to ensure a limit point. However, we are able to reduce to the case

of lemma 2.4 as follows:

Suppose (i/a)Q>o, with va = (̂ x,t)(x,t)€(?oo^ ** a sequence of H^Q<*>)-gradient

Young measures bounded in ̂ ^(Qoo^o) and for each a let (VvQ'*)*>o fee the generating

gradients. Then (i/Q)a>o is bounded in L^iQoolFi) and LfSc(Qoo;M{RN)) and the

sequence (vQ>*)Q>* is bounded in H^iQoo) uniformly in a and k. Hence lemma 2.4

applies.

The proof of this remark is straightforward and is omitted.

Proof of lemma 2.4: Step 1. (Extract the subsequence of the measures) Fix T > 0.

It is straightforward to see that (I^Q)Q>O is bounded in the spaces L2(Qr;^o) and

L°°(QT; M(RN)) which are isomorphic to the dual spaces of L2(QT; To) and L°°(QT; C0{RN))
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respectively. Using this we can extract a subsequence (not relabeled) (va)a>o and a

parametrized probability measure v — (*/s,t)(x,t)€Qoo s u c n

ua ^ v weakly in L2(QT; ^o) and weakly* in L°°(QT; M(RN)).

We show now that the convergence remains valid if we allow tp to have higher growth

provided we compensate by having uniformly bounded test functions.

Claim: < i/*,xp > ^-^ < v,xp > weakly in L1(QT) for all xf> € £o-

Proof of Claim: We use the same cut-off functions used in Ball [Ba] and Slemrod [SI].

Set

0 if |A| > k.

Fix T > 0, V € So and let 0 € L°°(QT)- Define

/ f <ult,iP>e(x,t)dxdt - f [ <vXtt,xP>e(x,t)dxdt
\Jo Jn Jo Jn

\J I dxdt

J j \<v^-

Fix 6 > 0. It is a consequence of the Dunford-Pettis theorem that

rT
I = t;a-m) dxdt

< c lim
m-H-oo J{(xtt):\Vv^^\>k)

< c sup /
a,m J{(x,t):|Vv°»m|

<?\Vva'm\2)dxdt

17



as k - • +00 uniformly in a, because ||Vv°'m||j^(Qr) is bounded independently of a,m

and hence

meas{(x9t) : \\VvQ>m\\ > k} —> 0

as k -» +00, uniformly in a,m.

For each A:, V* € CbCR*) and so 3<J(*,e) such that II <e \f\a\ < S(k,e) (but not

necessarily uniformly in k).

For / / / , assume xf) > 0; Then 0 < tpk /> t/> pointwise and so < i/Xit, tp — -0* >-» 0 as

fc -> +oo. (For general ^, write ^ = V̂"1" — ^~ and (V?+)A: = ^+^*> (^~)fc = !^"^* and

use the monotone convergence of each term). So SK(e) such that III < e VA: > K(e).

We choose k for / and / / / which is independent of a; using this k we then find

<$(€, k) for 77. This shows that the sequence of i/a converges in L°°(QT; M(RN)) to i/

and proves the claim.

Step 2. We now show that the limit point v is an Tf/^QooJ-gradient Young measure.

The idea is to find a sequence of gradients for which the representation formula holds

for all functions in a dense set of So and show that the same sequence works for all i/>

in £$. (It is obvious that for this argument one must work with the separable space £Q

rather than the inseparable space £).

Fix T > 0. Let (<£n)n>i be dense in £0. For each n > 1 we have by Step 1,

fniW") m± i°° <v*,<t>n> inLl(QT)

and also,

<va,<t>n> ^ <v,<t>n> inlHQr).

Therefore a diagonal subsequence indexed by /i(n) exists such that

This way we obtain the sequences (Vv'*^n^)A,(n)>i for each n which we Cantor-diagonalize

to obtain a single sequence (VvM)M>i such that the representation formula holds for each

<t>n, i e .
l < « / , 0 n > in Ll{QT) for all n.

18



Now using density we show that the sequence of gradients just obtained is a gener-

ating sequence for the parametrized measure v obtained in Step 1. For this, let 4> € £o

and e > 0 be given. Find N(e) such that \\<f> - 4>n\\£o < « Vn > N(e). Let 6 € L°° (QT)-

F ( O(x,t)<f>(W)(x,t)dxdt - I f 0 ( x , t ) < vx,u4>> dxdt
Jo Jn Jo m

| * ( V ) tfn()| dx dt

) - <v,<t>n>\dxdt

+ \\8\\L~(ti) f f \<">4>n-<t>>\dxdt

= I+II+III.

For each term we have,

J ft < c€Vn>AT(c), uniformly in/x

II < ce V/x>M(e,n)

III < c\\<f>-<l>n\\e0 f I < i / , l + c'|td|2> dxdt < ce.
Jo Jn

Thus we may choose n for / and / / / which is independent of \i and for this n we find

M for II.

We conclude that

» in L\QT) V<t>€S0

and by remark 1 to the lemma 2.4 this finishes the proof. D

Next we apply lemma 2.4 to conclude the existence proof:

Corollary 2.5 The measure v obtained in the proof of the existence theorem 2.3 is an

H^Qooygradient Young measure (and so the pair (u,i/) is indeed a Young measure

solution ofV).
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Proof: In the notation of theorem 2.3 recall that

for x a.e. in fi and Vt > 0.

Then for each h > 0 the sequence (Vt/^*)*>o, where

generates I A We apply lemma 2.4 on */* to extract a subsequence indexed by ti -> 0

along which the uh converge to an /^(QooJ-gradient Young measure u = ( ,̂t)(x,t)€Qoo

in the sense of the conclusion of the lemma. In particular,

< vh\ id > -* < i/, id > in L2(QT)

(because id € ̂ b)i and (21) then gives

( , t ) (x,t) a.e. in Qoo

since Vwh' -^ Vu in L2(fi). D

The technique used in the claim of Step 1 above can be modified to prove a slightly

more general statement and a partial converse to remark 1 following lemma 2.4. This

is summarized in the following corollary.

Corollary 2.6 Suppose that (2*)*>o a bounded sequence in L2(QT) such that rp(zk)

converges weakly in L2(QT) for all tp € Jb or weakly* in L°°(QT) for all i/> € Co(RN);

then the sequence converges also weakly in L1(QT) for \\> G So.

To prove this simply consider the sequence (V>(**))*>o *& place of < i/Q, ip)a>o and show

it is Cauchy weakly in L1(QT) by using the truncation of Step 1 above to pass from

linear to quadratic growth.

2.4 Uniqueness and properties of the Young measure solution

The following lemma describes a property of the solution upon which the uniqueness

proof relies.
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Lemma 2.7 (Independence) For (u,i/) a solution of (I) and (2) the equality

(29) < i/x,t, q • id > = < i/x,t, g > • < i/Xft, id > (x, t) o.e. tn <?«

holds, i.e. q and Vu are independent with respect to the Young measure v.

Proof: Step 1. (The time-discretized case) Fix h > 0.

Claim: < v£J
9q • id > = < ^,q > • < i>£J,id > x a.e. in ft for j = 0,1,.. . .

Proof of Claim: Let (uh*'k)%Ll be the minimizing sequence to the variational principle

***(v;uh^~1) converging to uhJ weakly in ff^(ft) and strongly in L2(ft). Recall that

( V u ^ ' ' * ) ^ generates vhJ. For all C € #<}(ft) we have,

/ p(Vu^ f c) • VC + r^ (dx k ^ I < vh
x*,

Jn n Jo.

= 0

because p(Vuh^fc) *-^3?< i/^J',p > in L2(Q) and V- < t£ J ,p > = V -p(Vufcj') in

i f " ^ ^ ) . It follows easily that

(t) V

by the estimate

|| V • p(VtM f c) - V • p{VuhJ) \\H-HCI) = sup 1 / [p(Vuh^fc) - p ( V u h j ) I • VC dx

(for all sufficiently large k) < sup / C dx
=1K« h

c for any e > 0

since uh j l* *-::i?) ttfcj in X2(JI) strongly. Recalling remark 1 to lemma 2.4 and noting

that p, id € To and p • id € So, we have as fc -+ oo,

(u) p(VufcJ'*) • Vufc-*fc — ^ < ^ , p > i
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(Hi)

(it;) Vuh^k —* < *W,id > in

Now by the div-curl lemma (see [E], [T] or [Mu]), or by direct computation and using

the i^-strong convergence in (i), we have from (i), (Hi), (iv)

in the sense of distributions; by (ii) above and recalling (15) we have the claim.

Step 2. (Passing to the limit).

By (20) and step 1 we have

< i / \ g • id > = < i / \ g > • < vh,id > x a.e. in ft V* > 0

We may apply lemma 2.4 to (vh)h>o to pass to a limit point as h -> 0. We obtain a

subsequence, not relabeled, such that for each T > 0,

(v) <vh,q-id>—^<i/,g-id> in L1(QT)

(vi) <vh,q> —^ < i/, q > in L2(QT)

(vii) < i / \ id > — * < i/, id > in L2(QT).

Using the div-curl lemma as in step 1 we obtain (29). D

Theorem 2.8 (Uniqueness and Continuity with respect to initial data) There

is a unique function u : Qoo —• R twift u € Jff/^Qoo) twtfc u(-,0) = uo /or tuAtc/i Mere

eziste a parametrized probability measure v = (̂ x,t)(x,t)€Qoo 5 0 *^0^ (7)i (8), (27) and

(29) ane true. Under the same conditions, uo «-» u(-,t) is continuous from L2(ft) tnfo

X2(ft) /or each t > 0 ("and a/50 into £2(Qr) /or cacA T > o;.

Proof: Suppose (ti, 1/) and (u;, /i) are two Young measure solutions to V with initial

data uo and WQ respectively. Apply the equilibrium equation (7) using (u — tu)x[o,r] as
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the test function3 in the previous section and against <f and gM and subtract to obtain

(where the shorthand notation 7" is used for < * / , / > and similarly for /M)

[T f(r-r)'(id"-i?)dxdt m -fTfd{u~w)(u-w)dxdt
Jo Jn Jo Jti ot

(30) = -|(||(u(-,T)-u;(.,r)|||J(n)-||tzo-tz;olli2(n))

By lemma 2.7 and (27),

l.h.s.(30) = I j (^T? + 'fldt1-

> 0

because the integrand above is precisely the quantity

( Q " ^ ^(da)nXtt(d/3)

which is non-negative by the convexity of #**. This implies for (30)

(31) || (u(.,T) - w(-,T) \\lHtl) < ||tio - i

which is the continuity with respect to initial data. When uo = WQ is used in (31) we

have

u(-,T) = w(-,T) x a.e. in fi, VT > 0

and this shows uniqueness. O

Remarks. 1. The statement of uniqueness does not depend on the method of extract-

ing a Young measure solution for V and it does not require that v be an if ^gradient

Young measure, only that q = p and the independence property of lemma 2.7 hold. In

particular, if (u, S^u) is a classical solution to V satisfying g(Vu) = j>(Vu), a weaker con-

dition than (28), by uniqueness it coincides with the Young measure solution provided

by theorem 2.3 and (28) follows (the independence property is automatically satisfied

by classical solutions). We note that there is no claim that the parametrized measure

v is unique: this is false in general.

3This is allowed by remark 1 to the definition of Young measure solutions to V and (26).
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2. (Corollary to the uniqueness of solution). There is a unique limit point of

the sequences of the existence theorem 2.3 (uh)h>o and (v^)h>o in the weak sense in

HiociQoo) and strong sense in Z^Qoo) and o/(^-)/ l>o weakly in L2(Qoo) and therefore

these sequences converge.

Of course, there is no similar assertion for the Young measure v.

The following Lemma gives some properties of the solution (u, v) which are consequences

of the convexity of <j>** and the independence property. Most will be useful in establishing

the uniqueness of the asymptotic limit (in section 3).

Lemma 2.9 ( Further properties of the Young measure solution) Let (u, u) be

the solution to V and {xih)h>o as in the proof of the existence theorem 2.3. Then the

following are true:

(Recall that by (27) p = q (x,t) a.e. in QT Vr € R+.4)

2. (i) For each T>O,uheC ([0, T); L2(fy) and (uh)h>0 is Cauchy in C ([0, T]; L2(Q)).

(ii) u€C ([0,T]; L2{Q)), that is, u(-,<) - • u(-,t0) in L2(Q) as t -> t0, for each

to > 0. In particular, u(-,t) -* txo in L2(fi) a5 t -» 0.

5. ^y t >-* ||tx(-,t) 11̂ 2(0) w decreasing (and therefore has a limit as t /* +00^.

(ii) t *-+ \\u(-, 6 4-1) — u(-, *)||L2(n) w decreasing for each S > 0;

("m̂  The integral
r+oor
/ / q-Vudxdt
Jo Jn

exists.

Proof: 1. Fix T > 0, let it;* be given by (19) and let C € Hl(QT) with C(-,<) € ^(f2) ,

for t a.e. in [0, T\. By remark 1 to the definition (see section 3.1) C~ tu* is an admissible

test function in the equilibrium equation (23). Using the convexity of <f>** and (23) we

know that

fT f pCVO-V(C~wh)dxdt > f [ p{Vwh)-V(C-wh)dxdt
Jo Jn Jo Jn

4In fact, D. Kinderlehrer and N. Walkington have shown that p(Vu) = p = 5 (x, t) a.e. in QTVr € R+

is true.
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Jo Ja ot

Letting h -> 0 we obtain

/ / p ( C ) ( C ) / / | ) / /
o -/n Jo in <# Jo Jn

Choosing C = u + A(0 - u) for 0 € HI(QT) and letting A -> 0+ we obtain

/T /p(Vu).V(d-tx) > - F I q-V(e-u) V»€flJ(Qr).
«/o i n io in

Replacing 5 — ti with its negative we obtain equality above and this proves 1. 2. Fix

T > 0. Recall that

uh(x,t) = uhJ(x) + ( r - i)(txhj+1 - t*n

for hj <t< h(j + 1). When |t - s\ < h,

\\uh(;t)-Uh(;S)\\LHn) - liZiil

Also, by the uniform estimates in [KP1],

sup ||ufc(.,011^.(0) = 6up | | tAi t , ( n ) < M
>0 j>0

which shows that i t-f uh(-,t) is (uniformly) continuous and bounded on R+ into L2(f2).

Set 17* '̂ := uh - uh> € ^ H Q T ) ; we have,

'^' dxdt

and since (u/l)/l>o converges in L2(QT) and is bounded in H1(QT) we see

^ o s u p | | u h - u * ' | | L 2 ( n ) ( t ) « 0.

Therefore, (uh)h>o is Cauchy in C (R+; L2(Q)). This shows 2.

8. For 0 < 5 < t apply the equilibrium equation (7) with tO£[j,t] ̂  ^^e t e s t function and

have

y« Jn J, Jn at
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(32) .« ~

Using (27), the convexity of <f>** and the independence relation (29) as in the proof of

theorem 2.8, together with the assumption p(0) = 0, we conclude that the l.h.s. of (32)

is non-negative and (%) follows. Letting $ = 0 and t -f +oo in the l.h.s. of (32) we then

obtain (Hi).

Notice that by the uniqueness of solution the pair (u6,v6) s (y>(-,6 + •), "(,*+))

solves V with initial data u(-, 6). For fixed 0 < s < t we apply the equilibrium equation

to each of the solution pairs (u*,i/) and (ti,i/) using (u6 - ri)x[8it] as a test function

and subtract the two equations. Arguing as in (i) yields (ii). D

2.5 Stability: maximum and comparison principles. Localization

We investigate the stability of the Young measure solution. We show that a maxi-

mum principle and a comparison result are satisfied. We conclude the section with a

localization property of the solution (tx,i/), a corollary of the comparison principle.

Theorem 2.10 (Maximum principle) Let (u,i/) and (u>,jx) solve with initial data

UQ and wo respectively. Then (x,t) a.e. in

(33) ess supx€Q (no - u*o)~ < u(x, t) — w(x, t) < ess supx€jj (txo — tuo)*.

Proof: Set

K := ess supx€jj(uo — wo)*•

We introduce auxiliary functions as in the proof for a maximum principle for the solution

of the heat equation with Hl data (cf. [Br]). Fix G € Cl(R) such that G = 0 on (-00,0]

and strictly increasing with 0 < G' < M on (0, +00). For t > 0 define the functions

rt
/ G(s)ds
o

and

rl>{t) ~ I H (u(x, t) - w(x, t) - K) dx.
Jn
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Then tp £ C(K+)nCl(R+)y ip(O) = 0 and tp > 0 on R+. Note that G(u-w-K) € #<J

so that it is an admissible test function for the equilibrium equation. For all T > 0,

f G(u(x,t)-w(x,t)-K)?^
Jn

[
o

/ [
o Jn

< o

because (g" — q**) • V(u — w) > 0 (as in the proof of the uniqueness theorem 2.8), and

G' > 0 on [0,T]. Hence ^ E O and H{u-w-K) = 0 (x,t) a.e. in Qo7, or

r(x,t)-ti;(x,t)-K
G(«)ds = 0 (x,t)a.e. i

/o

which by the choice of G implies

u(x,t) — w(x,t) — K < 0 (x,t) a.e. in

Reversing the roles of u and it; we obtain the lower bound in (33). D

Lemma 2.11 (Comparison principle) Assume (u,i/) and (v,/x) are the solutions to

V with to initial data UQ and VQ respectively. Assume further that

Then

u > v (x,t) a.e. in Qoo.

Proof: Let w = max(u,t;) in Qoo- It suffices to show that

(v —u)+ = 0 (x,t) a.e. in Qoo.

We apply the equilibrium equation for each solution noting that w — u = (v — u)+ is

admissible as a test function.

Jo Jo

f I if . V(n; — u) + t>t(u; — ti) dx dt = 0.
ô JQ
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By subtraction we obtain

rT

fTdr

Jo dt Jn

Since (?" - qv) • V(v - t / )+ > 0, we conclude that

ll(ti-«)+Hi,(n)(r) = o vr>o,

that is, v < u, (x,<) a.e. in Q^o- D

An immediate but rather noteworthy corollary of the comparison lemma is that (tx, u)

solves also locally on subsets of the domain Q. More precisely, we have the following

property:

Corollary 2.12 (Localization) Assume u; C fi is open with Lipschitz boundary and

let (it, v) be the solution to V. Let v be the restriction of u to u. Then v is a solution

with respect to initial data vo the restriction of uo to u.

Proof: Suppose \ is the solution on u (with vo initial data). Apply the comparison

result to the differences x ~ v ^ d v — x- E

3 Asymptotic analysis and the equilibrium Young mea-
sure solution

We investigate the asymptotic behavior of the solution as t -4 +oo and establish the

following:

Theorem 3.1 Let (uyt/) be the (unique) solution ofV; there exists a (unique) z €

H$(Q) and an H^iQao)-gradient Young measure v°° = (^i)(x,t)€Qoo such that

(34) ti(-,t) —y z weakly in HQ(Q) and strongly in X2(f2) ast-> + oo
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(these limits exist without restricting to a subsequence in time).

(35) t •-> ||u(-,t) - z||i,2(n) is decreasing

(36) V- < i/°°,g > = 0 in H'l(Qoo) and ^ ( Q o o )

(37) Vz = < i/00, id > a.e. tn ft (independent of time)

(so (z, i/°°) is a Young measure solution of the steady-state version of V).

(38) < i/°°,g(A) • A > = 0 a.e. in ft

(39) suppu00 C {A

Definition. With z, i/°° as in the theorem, we call z the asymptotic limit of u and i/°°

the asymptotic Young measure; we call the pair (z, i/00) the equilibrium (Young mea-

sure) solution of V.

For the proof of the theorem we first establish two properties of W^uo), the set

of weak limit points of (u(-,t)) t>0 in HQ{Q). This is the content of lemma 3.2 below.

Following, supposing z € W^tio), we solve V with initial data z and obtain the Young

measure solution (u;,!/00). We show that (it;,!/00) solves the stationary problem associ-

ated to V and thus infer that w = z. Furthermore, we show via the equilibrium equation

that Wufao) = {z} and that the pair (z,i/°°) satisfies the conclusions of the theorem.

We define

~ {z € g{x,0) + H%{Q) \ 3(tn)n>! f +oo with u(.,tn)

The notation

indicates that the sequence converges weakly in Hl and strongly in L2 which we may

always achieve by reducing to a subsequence using the Rellich theorem. Note that

Wu,(uo) is non-empty since u € L°° (R+; J^(ft)). Theorem 3.1 establishes that

consists of exactly one function.

We begin by describing some properties of all functions in W
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Lemma 3.2 Let z € W^UQ) and tn -» +00 along which u(-,tn) ^-4 z. Then V* > 0

(40) u(., tn+t)^4z in Hl(Q) -

and

(41) «(•, <n + 0

c s n - 4 +00 (without restricting to subsequences).

Proof: Fix t > 0. Since u € X00 (R+; JST^O)), the sequence (ti(-, tn + *))n>i is bounded

in -ffx(fi); hence for a subsequence (nj-)j>i there exists y(-,t) € Hl(Q) such that as

j -f +00,

«(•, ̂  +1) = * y(., t) in ^ ( f i ) -

and of course,

Note that y(-,t) € Wu(u0); we show that y(-,t) = z. For all C €

f(y(x,t)-z(x))C(x)dx = lim [ (u(x,tnj+t) -u(x,tn>

= lim / / ut(x,s)((x)dsdx
j-++ooJnJtn.

limsup||ut||i2([tn * 4+t]xn)Vi

= 0

since ut € L2(Qoo). This shows y(«, t) = z for x a.e. in £2; as a result the whole sequence

converges to z and (40) holds true.

Fix T > 0. The sequence (u(-,tn + -))t>o ^ bounded in H1{QT) and thus we can

find x € H1{QT) and a subsequence (nj)j>i along which

Choose C(*)*?(*) 6 ^{QT) with »y(i) defined for each t. By (40),
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for each t > 0. Thus

(42) i>(t) / u{x,tnj +t)C(x)dx j^r V{t) [ z(x)C(x)dx
Jo Jo

pointwise in t and the Lebesque Dominated Convergence theorem applies to (42) to give

[T I I?(*)C(*M*. *», +t)dxdt n ^ ° ° fT I lf(t)C(*)*(x) dT dt
Jo Jo, Jo Jo

(by assumption) = / I Tj{t)£(x)x{xyt)dxdt.
Jo Jo

By the density of separable functions in L2 this implies

x(-,t) = z(-) Vt > 0 x a.e. in 0 .

We conclude that no reduction to a subsequence is necessary and (41) obtains. D

Proof of theorem 3.1: Fix z G WW(UQ) and tn -* +oo along which u(^tn) ^4 z. We

define

Then (un ,i/n) is the solution with respect to initial data t/(-,tn) for n > 0. By lemma

3.2 we know that as n -4 +oo,

t«n(-,t) = * z in JST f̂t) - L2(Q) Vt G R+

tin = * z in

Since z is independent of t it follows that

In addition, note that (i/n)n>o is bounded in X1(Qoo^o)- ^y remark 2 to lemma 2.4

there exists an JJ/^QooVgradient Young measure, u°° == (*4S)(xft)eQoo» ^tisfying

^°° € L°°(Qoo; M(RN)) n L L W O D ; ^ ) n xUQoo;£o) .

For each n we apply the equilibrium equation

£ Jn< »n,<l> V( + j£-Cdxdt = 0 VC € JTHQTJVT € [0,+oo],
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and we may pass to the limit as n -> oo. (Note that the non-local convergence in n

is not guaranteed by lemma 2.4 but by the boundedness of ( ^ ) n > o in £2(<2oo)); we

obtain

j T j <v°°,q>V(dxdt = 0 VC€Hl(QT)Vre[0,+oo]

or, equivalently,

V- < i/°°,g > = 0 in H'l(Qoo) and in ^ ( Q o o ) .

Recall that < i/n,uf > = Vun and converges to Vz weakly in tf^Qoo); in addition, by

lemma 2.4,

< i / \ id >—*< i/°°, id > in iL(Qoo).

Thus,

V* = < i/°°,trf > x a.e. in f2.

FVom (36) and (37) we infer that (z, i/00) solves the stationary problem associated to V

and so the independence lemma 2.7 implies

< i/°°,g • id > = < i/00,? > • < i/°°,trf > (x,t) a.e. in Qoo

and, as before,

(43) < i/00, qid>> 0 a.e. in f2.

On the other hand, for each T > 0, by lemma 2.9(3%),

and applying the independence lemma 2.7 on the l.h.s. we obtain

rT
f I <vn,q-id> dxdt n^°° 0
Jo Ja

o r '
dxdt = 0./ / <i/°°,gtd

Jo Jn

This proves (38). By (28) and (43) we conclude
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The proof of equation (39) will be complete by corollary 4.2 in the next section.

It remains to show (34) and (35). Let 0 < 8 < t and apply the equilibrium equa-

tion to the solutions of V (u,i/) and (2,1/°°) (corresponding to initial data uo and z

respectively); we have (using the notation q°° = < v°°,q >),

/ 7 ( ? 9 ) ( ) /Y
a JQ Ja JQ

> 0

so that

is decreasing and its limit as t —• +oo exists: it is zero because z € W^tio) and by the

Rellich theorem a subsequence exists along which u(-,tj) J^? z in L2(Q). This finishes

the proof of the theorem. D

Conclusion. Let (tx,î ) be the Young measure solution to V with initial data uo- Then

Wtufao) = {2}, i.e. the L2(Q) asymptotic limit of u is unique and the equilibrium

solution (2, i/00) solves the steady-state problem

V- < i/°°,g > = 0 in tf-HQoo) and ^ ( Q o o ) .

4 Energy

Define the energy function

(44) E(t) := / <£"(Vu)(:M) dx for t > 0.
Ja

In this section we justify the term energy for the function in (44); the energy vanishes

at infinity globally in space and also locally (recall from lemma 2.12 that the solution

solves also locally).

Throughout this section (ti,i/) are the solution of V and (z,i/°°) the equilibrium

solution.
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Theorem 4-1 Let E be given by (44). Then E € L1^) andE is a decreasing function

oft. Moreover,

(45) / <jT(Vu)(s,t) dx \ 0 as t^ +oo

Proof: For 0 < s < t,

/ ^*(Vu)(x, <) dx dt
$ JO.

(since <f>** is convex and 0**(O) = 0 ) < / / p(Vu) • Vti rfx d<

= — / / utudxdt

0 + as 5, * -> +oo

[ <f>**(Vu){x,t)dxdt < +oo
Jn

by lemma 2.9 ^ and (Siii). Therefore,

/
Jo

and this shows that the energy is integrable.

Next we give the proof due to P. Pedregal that the energy is decreasing. For T > 0

fixed we have for all t > 0,

fT+\E(s)-E(T))ds = f™ f(<r(Vu(x,S))-<t>"(Vu(x,
JT JT JO

T+* / p(Vu(x, s)) • (Vu(x, s) - Vu(x, T)) dx ds
Jn

^(x,.)-(x,T)>
C75

< o.
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By the continuity of E this implies

E(T + t) < E(T)

for all t > 0 sufficiently small. Since T is arbitrary, this shows that E is in L1(R+) and

decreasing so (45) follows. •

Corollary 4.2 The energy converges ast-* +oo and attains its minimum, i.e.,

(46) lim [ <f>**(Vu)(x,t)dx = / 4T{Vz)(x)dx = 0t-*+oo Jn JQ

Consequently, the asymptotic Young measure satisfies

(47) suppu00 C {</>** = <̂  = 0}

(which completes the proof of (39)).

Proof: Since <£** is convex, the functional

u^ I <f>**(Vu)dx

is sequentially lower semicontinuous with respect to weak convergence in HQ(CI). By

theorem 3.1 we have tx(-,t) -* z in ff^fi) as t —• +oo and

0 < [ 4T(Vz)(x)dx < Kmiidf <(>**(Vu)(x,t)dx

= lim / 4T{Vu){x,t)dx

= 0

because E € LX(R+) and 0** > 0. FVom Jensen's inequality and (46) we obtain (47). D

The energy is also minimized asymptotically locally in the sense of

Lemma 4.3 For all AC Q, measurable

(48) lim /^*(Vu)(x,t)dx « [<fr(Vz){x)dx

t/it5 limit is not necessarily monotone decreasing).
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Proof: By (46) and by theorem 2.1 (ii) we conclude that ((<£** (Vu)(-,t))t>0 is weakly

sequentially precompact in LX(Q) and (48) follows. D
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