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1. INTRODUCTION

Simulations of magnetic, magnetostrictive, and pseudoelastic behavior exhibit hysteresis. These systems have a

highly nonlinear character involving both short range anisotropy and elastic fields and, when appropriate, dispersive

demagnetization fields. In this report we discuss our experience with this type of computation and the applications which

it may serve. Hysteresis occurs even in the absence of an imposed dynamical mechanism, for example a Landau-

Lifschitz-Gilbert dissipation or a driving force and is symptomatic of the manner in which the system navigates a path

through local minima of its energy space. It is robust in the sense that the shape of the loop is invariant over several

decades of mesh refinement It is not sensitive to the particular method. We implemented continuation based on the

conjugate gradient method, although the same results were obtained by other methods as well. Nonetheless, the

propensity of optimization procedures to become marooned at local extrema when applied to nonconvex situations

presents a fundamental challenge to analysis. Understanding and controlling such phenomena present the opportunity to

develop predictive tools and diagnostics.

We present some computational results and diagnostics, developed using methods of nonlinear analysis. As

illustrations: Since the energy picture is mesh independent, computing on a fairly coarse grid suffices to establish its

character. In a simple case described below, the width of the hysteresis loop may be determined analytically. For a

magnetic system, this analysis rests on the introduction of a shadow energy for a simplifed version of the system. This

simplified version suggests possible dispersive interactions which may be attributed to a shape-memory or pseudoelastic

body. We provide a brief illustration of this.

A principal objective of this investigation is to study the magnetostrictive behavior of Terfenol-
D,[l,5,6,7,12,13,14,15,16,17,18,21]. Complete details are given in [19]. Hysteresis in magnetic systems has been
computed both by Preisach modeling [4,25,34,35] and by micromagnetics with various evolution mechanisms, eg. [10].
Recent related thoughts about hysteretic behavior, principally in shape memoiy or pseudoelastic materials, may be found
in [2,3,11,20,26,27,28,30].
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2. A MAGNETIC SYSTEM

2.1 . Formulation

In the framework of micromagnetics, consider a two dimensional system governed by a magnetic anisotropy density

subjected to an externally applied field. This gives rise to a stored energy to which we add the demagnetization energy,

or the energy of the induced magnetic field. Employing the notations

(2.1)

the energy of the system may be expressed, in appropriate units, in the form

E(H,m) = f(cp(m,x)-Hm)dx + ± flVupdx (2.2)

Au = div mxn ia R2 and I m I = 1 in Q.

m
<p(m,x)

H
u

magnetization
anisotropy energy

applied magnetic field

potential of demagnetization field,

Q is the region occupied by the material. The second equation embodies Maxwell's Equations for magnetostatics. The

constraint on m is the requirement that the material be magnetically saturated. In our computational study we choose Q

= (-LJL)x (0,1), a rectangle. An equivalent form of the energy is

E(H,m) = f(<p(m,x)-Hm)dx + \ f V u m dx (2.3)

Linear magnetostriction may be accomodated in this framework without any significant change, cf. Clark [5]. A simple

energy for a two dimensional linear magnetostrictive material is

9(e,m) = <pei(e) + <Pel/mag(£jn) + <Pan(m), (2.4)

£ = J(Vy + VyT),

where y(x) denotes the deformation. The elastic energy q>ei(e) is a typical linear elastic energy. The elastic/magnetic

interaction term has the form

<Pei/mag(e,m) =

Note that it is even in m. The anisotropy energy <pan(m) is the one which appears in (1.1). The analogue of (2.2) is
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E(H,y,m) = f (<p(m,e) - Hm) dx + W V u m d x (2.5)

Relaxation of funcionals having this form is discussed in [9]. Some forms for the anisotropy energy are, with K > 0,

uniaxial<p(m) =

<p(m) =

<p(m) = K(l-qd).m)2(l-q(2).m)2f lq(i)| = 1

(2.6)

or 2 K ( m

(2.8)

In the uniaxial case (2.6), ei is the easy axis. This will be our primary concern here. For (2.7)i, ci and ti are easy

axes and for (2.7)2, ci ± e2 are easy axes. For (2.8), the vectors qW and q<2> are easy axes. This form is useful

when considering the projection onto a plane of a three dimensional situation. As suggested in (2.1), the anisotropy

energy may vary with x e Q. This will be the case when we model Terfenol, for example, or a thin film with a

distribution of easy axes.

The hysteresis diagram for (2.2) is computed

by continuation of solutions with respect to

increasing and decreasing the applied magnetic

field along the xi-axis. The shown diagrams

in Figures 1 and 2 are the overlaid graphs of

(Hk, E(Hk,mk)) and (Hi, E(HJ,mi)) with the

Hk an increasing sequence and the Hi a

decreasing sequence of applied fields.

The computational domain is a rectangle fi =

(-L,L) x (0,1), usually with L = 1,

oriented so that the xi axis is an easy

direction, and partitioned into Ni x N2

squares of side length h = 2L/Ni = I/N2

denoted by

Qij = {xe Q: i h - L < xi < (i +

l )h -L , jh < x2 < (j
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Figure 1. Computed hysteresis picture for uniaxial anisotropy energy (2.6)
with K = 1.6.

i = 0 N i - 1 , j ss 0 f l*. . . iN2-l. The

minimization of (2.2) is approximated in the

space Ah by the Polak-Ribifere version of the
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conjugate gradient method [3132] where

Ah = {m: m is constant on each Qjj,i = 0, . . . , N i - l , j = 0,l , . . . ,N2-1}.

The minimization algorithm requires the computation of energy and also the gradient of the energy with respect to the
discrete variables for a given set of m € A/,. We remark that the most expensive feature of these computations is the
determination of the averages of Vu on the cells Qij,i.e.,

ij = ^ JVudx.
12 ii

We refer to Luskin and Ma [22,23,24] for details. When computing elastic fields, the cells
into triangles appropriate for finite element spaces.

are further subdivided

The configuration begins at an absolute minimum of energy, or nearly so, for a large value of Ho and remains in this
state until Hk changes sign. For these values of Hk, mk ~ m°, which we refer to as the precursor magnetization.
This precursor magnetization is quite close to ei.

©

q
©

©.

©
°f

the first component of the applied field

The system then traverses a metastable regime

where it does not realize minimum energy.

Some small oscillations are observed in this

regime. The metastable regime ends in a critical

field range which appears to be characterized by

the condition that the precursor magnetization

becomes unstable at the critical field, Her*

E(Hcrtm) for appropriate m.
(2.9)

-4.0 -3.0 -2.0 -1.0 4.0

Figure 2. Computed hysteresis picture for cubic anisotropy (2.7)2 with K = 1.6.

In fact, it seems that the computation seeks to
resolve the closure domains first These are the
boundary columns of the computational grid.
We use this as the basis for our estimate of Her-

Near H = Her* the system suffers instability
and witnesses rapid interior oscillations, the
evolution of microstructural domain
configurations, and finally resolution to a nearly
uniform state of approximately absolute

minimum energy. In this regime, the behavior

of the system is analogous to the classical Stoner-Wohlfarth scenario [33]. Miiller and Xu [28] also observe a

stable/metastable/unstable/ stable sequence in the extension of shape memory ribbons. We do not see this behavior when
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the applied field H is parallel to the hardest axis, which is X2 in the uniaxial case and xi ± X2 in the cubic case.

Indeed, there is almost no hysteresis in the hard axis uniaxial situation. Here we are discussing only the major loops of

the system, which are the overlaid graphs mentioned above. We have also computed minor loops and the virgin

magnetization curve.

2.3 Estimation of the critical field and the width of the hysteresis loop

A principal objective of this study is to illustrate that it is possible to predict the width of the hysteresis loop, at least in

some situations. Here we describe such an estimate, which arises as a correction to the

classical Stoner Wohlfarth value, and compare it with the

computational results. Analysis of the computational system

is quite complicated owing to the O(N2) dependent

variables. Instead we approximate it with a simpler system

where the magnetization is assumed constant in each

column. In this way we may profit from the observation that

the closure domains are the first to switch; this can, in fact,

be proved. With Qh the first and last columns of ft, and

H and 1*2 the right and left vertical boundaries of ft, set

Figure 3. The computational region with the closure domain

m =
in

l,and

(E(H,m(h>) - E(H,ei)) and

Our simpler system, which we refer to as a shadow system, has the energy

Es(H£) = E(H,ei) + IQh|v<o)(H4).

This expression may be explicitly computed and the result is

<& - 1XX - Hi) + \(%x - 1)2,

, where

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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Aw = fa R 2 (2.15)

Ihc modern theory of differential equations and the classical theory of singular integrals, cf. Muskhelishvili [29], may be
employed to tell us that

In particular, with 8j(z) is the angle subtended by z and the segment Fj,

| ^ ^ + 92(z)), z

(2.16)

(2.17)

For <p(£) given by (2.6) or (2.7)i, uniaxial or cubic with xi - axis easy, m = ei is a local minimum of (2.12)

when Hi > -Her for

Her = 2K - JL (2.18)

For these <p, the classical Stoner-Wohlfarth value of the critical field is Hsw = 2K. The width of the hysteresis loop is

2Hcr = 4 K - 2X.

3.5 x

Ha predicted
uniaxial Her (computed)
cubic Her (computed)

1.2 1.4 1.6 1.8

Figure 4. Comparison of predicted and computed critical field

2.4. Comparison with computation

The graph above summarizes our computational results. The data for both cases were taken from
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amputations on a 16 x 8 grid but these were identical to the results from a 32 x 16 grid. In the uniaxial case the

predicted value is nearly identical to the computed one. Samples of graphical renderings of the computations appear in

Figures 1 and 2. The range of values of the anisotropy constant K was chosen so the energy stored in a body of

constant magnetization was comparable to the induced field energy. We suspect that the variation we see in the cubic

case owes primarily to the inadequacy of mo = cj to serve as a precursor magnetization. A better precursor

magnetization in this case migjit be somewhat tilted from the xi - axis at the four corners of Q, which would require a

more careful shadow energy.

2.5. Shadow energy

We now introduce a more complete shadow energy. Divide Q = (0,2L)x(0,l) into N columns Dj separated by

vertical segments Tj,

Tj = { Rez = aj}, aj = jh, with Dj = { aj-i < Rez < aj} nil, j = 0,1, . . . ,N.

Consider magnetizations and induced field potentials

N
m = X ^ X D j , £ = SN"i l # l = 1 and u e H^Otf): Au = divm. (2.19)

The exact induced field energy is given by

\ fVumdx = i £ JVu-^dx. (2.20)\ fVumdx = i £ JVu-^dx.

This may be approximated by assuming that

fVumdx ~ h JVu-S

which leads to the determination of a symmetric matrix (ajk) of non-negative terms, akk = 0, such that

i J Vum dx - \h I (^) 2 + ih . £ ajk ftjg - $*) (2.21)
.

Let q^m) denote the anisotropy energy in the column Dk. We then obtain an approximate or shadow energy for our

computational system of the form

= h X ( ^ i ) + ^ { ) 2 - Ĥ { ) + ih . ^ ajk ( ^ - *}&). (2.22)
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This expression can be used to predict the behavior of the computation when ei is a hard axis as well as to recover the
estimate (2.19). There is also a Young Measure limit version which has potential in the study of randomly distributed
easy axes.

3. SHAPE MEMORY OR PSEUDOELASTIC SYSTEMS

Our conception is that most nonconvex computational optimization problems result in hysteretic behavior. As an
example we have begun investigation of the Ericksen bar [8], which is a one dimensional version of a shape memory or
pseudoelastic material. Hysteretic patterns of stress vs. load parameter in the extension of shape memory ribbons have
been reported by Miiller and Xu [28], as cited earlier, and by Ortin [30]. Their observations, while quite different, share
certain features, in particular the sequence of states passing from stable to metastable to unstable. These experiments, in
which the orientation of the

Figure 5. Computed hysteresis diagram for 2

an Ericksen bar

sample was not recorded, suggest

attempting a simulation in one space

dimension with an energy density

which is not convex. This amounts

to studying the well known Ericksen

bar. The computation becomes a one

dimensional version of (2.1),

without, however, the induced field

energy. We reproduced the general

features of the experiments, but

further investigation is necessary to

understand if many details are also reproduced by our computations. For the example illustrated in Figure 5, we

computed

1
E(x) = JVu^dx subject to u(0) = 1 and u(l) = x, (3.1)

-2 8

<p(t) = - 100) + 20t

by continuation with respect to the loading parameter t. Note that 9(0)

configuration is rather close to the Maxwell line.

(3.2)

0 suggesting that the computed
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The shadow energy for the magnetic system suggests a possible surface energy correction to (3.1) which may bring the
MOller and Xu theory into sharper focus. Writing e for strain, a more general energy, written in discretized form, is

E(e,x) = hZOpte3) + £a(eJ)2)- ±h .5^ajkeJek (3.3)

In the simplest case, consider only nearest neighbor interactions of equal strength so that

= b

Assuming that the { e*} are nearly in the energy wells oci and <X2 of (p, a = b, and that

Prob { ei • cti} = p and Prob { ei - ct2 } = 1 - p,

cxie finds that, in agreement with [28],

Exp { ^ao(eJ)2- f a o S ^ 1 } = ao(ai - <X2)p(l - p). (3.4)

1 a«
Finally, assuming that a = O(p = h + a i + '" ** *s ̂ y to c o mPu* e toat in toe limit at h -* 0, we obtain the

functional

1

E(u) = J(cp(u f)+ 5ao(uM)2)dx. (3.5)J(cp(u f)+ 5ao(uM)2)dx

This gives rise to a one dimensional Ginzburg-Landau Equation.
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