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Volume Preserving Mean Curvature Flow
as a Limit of a Nonlocal Ginzburg-Landau Equation.

Lia Bronsard* Barbara Stoth?

Abstract. We study the asymptotic behaviour of radially symmetric solutions of the nonlocal
equation ' .
eps = eAp+ SW'(p) = A(t) = 0

in a bounded spherically symmetric domain f C R®, where A,(f) = 1 £, W(¢) dz, with & Neumann
boundary condition. The analysis is based on “energy methods” combined with some a-priori
" estimates, the latter being used to approximate the solution by the first two terms of an asymptotic
expansion. We only need to assume that the initial data as well as their energy are bounded. We
show that, in the limit as ¢ — 0, the interfaces move by a nonlocal mean curvature flow, which
preserves mass. As a byproduct of our analysis, we obtain an I? estimate on the “Lagrange
multiplier” A,(t). In addition we show rigorously that the nonlocal Ginzburg-Landau equation and
the Cahn-Hilliard equation occur as special degenerate limits of a viscous Cahn-Hilliard equation.

Section 1: Introduction.

‘We consider the nonlocal reaction-diffusion equation introduced recently by Rubinstein and
Sternberg [RS])

epi— ebp+ IW'(g)- A1) =0, (1.1)
=1 fw
A0 =; fwipes
in a bounded domain 2 C R"®, 8 2 2, with Neumann boundary condition
[
=0. 1.2
Bn soxp 1.2)

The potential W is a bistable potential, that is W 2 0 and it vanishes exactly at two points.

® Department of Mathematics, McMaster University, Hamilton, Ont. L8S 4K1, Canada. Supported by an
NSERC Canadian grant.

# Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, PA 15213, USA, and Institut fir
Angewandte Mathematik, Universitit Bonn, 53115 Bonn, Deutschland.



The typical bistable potential is given by

Wie)=31- &), 13)

and we will present our results for this specific potential. However we point out that our results
can be extended to the more general case.
An important property of this flow is that its mass is preserved, that is

8, /n oz, 1)dz = 0. )

Rubinstein and Sternberg ([RS]) introduced the nonlocal equation (1.1) as a simpler alternative to
the classical Cahn-Hilliard equation [CH]

epr = A(~cAp + -W'(sP)). . (1.5)

to model phase separation after quenching (rapid cooling) of homogeneous bma.ry systems such
as glasses and polymers. The function ¢ represents the difference in concentration of the binary
mixture and hence is a conserved quantity. Using multiple time scale asymptotic expansions to
study the behaviour of the solution to (1.1)-(1.2), Rubinstein and Sternberg [RS] obtained formally
that the domain § is divided in regions where ¢ is close to the local minima of W. Moreover the
interfaces {I';} dividing these regions evolve (in the limit £ — 0) with normal velocity

1
Vieri-S e [ &
v=m= T

where x; is the sum of principal curvatures of I'; and [T';| is its perimeter. This is a nonlocal volume-
preserving mean curvature flow. We propose to use an energy-type method to prove rigorously this
picture in a certain radially symmetric setting. More specifically, we assume that  is a ball in R"
and that ¢ is radial with several “transitions” spheres. Equation (1.1) is already written in the time
scale for which the nonlocal mean curvature flow occurs in times of order one. But by a rescaling, we
see that this problem corresponds to the singular perturbation problem ¢, —£2 A+ W'(p)—€A = 0.

Next, we shall compare the two equations (1.1) and (1.5), as well as their respective asymptotic
limiting flows. The Cahn-Hilliard equation is the gradient flow in H=32(Q x (0,T)) (cf [Fi]) for
the functional

El)= / £Vl + SW(p)ds, (1.6)

while the nonlocal equation (1.1) is the gradient flow in L2(Q x [0,T]) for the same functional
(1.6) against the mass constraint (1.4). The associated (time independent) minimization problem,
that is, the problem of minimizing (1.6) with a mass constraint, has been studied by Luckhaus
and Modica [LM]. They obtain rigorously the first order expansion in ¢ of the associated Lagrange
multiplier. In this context, we can interpret loosely the nonlocal term A = A.(?) in (1. 1) asa
Lagrange multiplier. In fact, because of the Neumann boundary condition (1.2), the expression for
Ac(t) is exactly what is needed for the gradient flow of E,[¢] to conserve mass.

The asymptotic bebaviour of the solutions to (1.1) and (1.5) are very different. Formal analysis
of Pego [P] suggests that the asymptotic behaviour of (1.5) is given by the so—called Mu]]ms-Sekerh
[MS] or Hele-Shaw problem:

Au=0in O\, u=-xonT, g_u ==V,
nir
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where I' is an interface, s is the sum of principal curvatures of I' and V is its normal velocity.
This has been proved recently by Stoth [S3] in the radial case in R", n < 3. Alikakos-Bates-Chen
[ABC] have a convergence result in general domains assuming that the limit flow is smooth and
with particular initial and boundary conditions.

Both limiting flows are nonlocal and some existence results are known for each of them. Indeed,
- Gage [G] has proved that a convex curve evolving by the volume constrained mean curvature flow
eventually becomes a sphere with the prescribed area. Also, there are simple examples which show
that non—convex surfaces may develop singularities in finite time (see e.g. [RS]). For the Mulline-
Serkerka problem, Chen [C] has proved a weak, local-in-time existence result for general smooth
initial manifolds, and a global existence result for curves (??) which are small perturbation of
spheres. _

The most striking difference between the two limiting geometric flows is the effect of small
spheres. Indeed, in the radial case we can easily calculate explicitly the respective evolution laws
for the interfaces. In the three dimensional case, assuming that there are two interfaces r3(t) < r4(t),
the nonlocal problem is given by (7.43)

. 1 n-n . 1 -1
ﬁ=2( r;+r,’+r;)’ rzgz( n n+n)’ (7
while the Mullins-Sekerka problem is given by '
' . 1r-r
Y o 3 1
#11] = far}, n= ;;"3 T (1.8)

Therefore, as r; approaches 0, it is clear that #; approaches 0 in (1.7), while it approaches --,!‘;

in (1.8). But, once the smallest sphere has disappeared, #; must be zero since the mass must be
preserved. This means that the flow for r; is strongly affected by asymptotically small spheres
in the Mullins-Sekerka model. In fact, Rubinstein and Sternberg [RS] used a multiple scattering
expansion known as the point interaction approximation method, to suggest that the Mullins-
Sekerka problem is not the appropriate asymptotic limit of the Cahn-Hilliard equation when there
are asymptotically small spheres.

There is an interesting connection between equations (1.1) and (1.5). Indeed, Rubinstein and
Sternberg observed that equations (1.1) and (1.5) arise by formally taking different parameter
limits (a — 0 and v — 0 respectively) in the viscous Cahn-Hilliard equation ayp; = A(W'(p) —
BAp + vy:). This equation was introduced by Novick-Cohen in order to include viscous effect in
the Cahn-Hilliard model [NC)]. We prove these convergence results rigorously in Section 8. This
suggests that by taking an appropriate choice of parameter limit in the viscous Cahn-Hilliard
equation, one should recover a different limit flow with possibly better properties.

We note that the singular limit of (1.1) provides a notion of weak solution for the nonlocal
mean curvature flow. However there is no uniqueness theorem in general: different sequences of
€’s might produce different limits. The same approach has been used to define a weak model for
mean curvature flow (cf [BK2], [DS1,2]) using the Allen-Cahn equation [AC]. In that case, Evans-
Soner-Souganidis [ESS] have shown that this model coincides with the weak notion of motion by
mean curvature in the sense of viscosity solutions (cf [CGG], [ES)).

We prove the convergence of the nonlocal equation (1.1) to the volume preserving mean cur-
vature flow in a radially symmetric setting. We assume that for ¢ = ¢,

le(-0)llee < C,
E.[¢)(0)<C,

l /a o(z,0) dzl <fl-w, (1.9)



for some positive constant w. The second assumption means that the initial data must have a
“transition-layer structure”, i.e. ¢, & £1. The third condition ensures that there exists at least
one interface. The case of general initial data is much harder, we refer to Soner [So] for the
equivalent problem for the Allen-Cahn equation. Our method is an energy-type method similar to
the methods developed by Bronsard and Kohn [BK1,2), in order to study the singular limit of the
Allen-Cahn equation, and the methods developed by Stoth [S1,2,3], in order to study the singular
limit of the phase-field mode! and the Cahn-Hilliard equation.

We now describe the method in more details. We first use BV-bounds (Proposition 2.3) to
obtain the existence of an L! limit v for a subsequence of ¢, (Remark 2.11), and then restrict
the discussion to this subsequence. In addition we show that there exists a monotone L! limit Eo
for E,[y] (Corollary 2.12) which is used to define time intervals on which the variation of E,[y)]
is uniformly small (Lemma 2.21). These results are not restricted to the radially symmetric case.
In Section 4, we prove a further L?-estimate on the Lagrange multiplier ), in the radial case
(Proposition 4.1), which implies the existence of a weak limit Ao for an approriate subsequence
(Remark 4.10).

The next step is the foundation of our approach. We show that away from the origin and
except at finitely many time points, ¢, is close to the standing wave solution associated to the
equation Au — W/(u) = 0. More precisely, we obtain a locally uniform-in-time bound on || -
e2|¢L|? + 2W(@e)llLe(Ro1) Which is valid except at finitely many time points (Proposition 3.9).

Since W(¢p,) is bounded away from zero in the transition region of ¢, this means that || is
strictly bounded away from zero in that region. Therefore, using the Implicit Function Theorem,
the level sets of ¢, are given by Holder-1 graphs r = ri(t) (see (5.4)) that converge to some limits
r = F(1) (see (5.6)). The task is to find the evolution equation satisfied by r = F(t).

We present the idea of the method for £ = . Let z = £5% be a rescaling and &(z,t) = ¢(r,1).
The equation for & becomes

PPYIND ¥V duk 3 YING 21777 SO
e - 7,2 e’ ey r,’ + EW ()= A =0.
We multiply it by ®'(, where ( is a smooth time dépendent test function, and in order to localize
around r,, we integrate over (—Jz, J=) and over (f1,12). This gives

/ / ¢ [ - 7:(2') - ;’-Eé‘-(o')’ - A&'] dz dt

- / (% [;(o')’-wm]f; dt.

Now, if ®(z) were the expected standing wave solution % tanh (z) =: $o(z), this would lead to the
following equation for the limit ¥ '

-co/c[u(l;—ﬂ] at=2 [,

where ¢p = f:; \/2W(¢p'5 dyp is the constant surface tension, and v is the direction of the jump.
Thus all interfaces # evolve according to —cp (f‘ + 551) = 2u'Ao (Proposition 7.31). ‘But using

the mass conservation property we can calculate o explicitly in terms of # (Proposition 7.38),
thereby deducing the equation for the limiting interface.
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This formal derivation was done assuming that & = ®, around each interface. Section 6 is

- devoted to establishing H'? and H'**® bounds on the difference between & and &, (Corollary
6.37). We need a bound of order ed+? for some positive s, in order to replace & by &, in the
above equation. As expected for this type of problems, this means that we have to prove these
estimates for a higher order expansion. It turns out that in our case a second order expansion is
“sufficient (Proposition 6.14). The main observation used in the proof is that the linearization of
the nonlinear operator around the standing wave defines a strictly elliptic operator (see Berger and
Fraenkel [BF] and Proposition 6.24).

We put everything together in Section 7, where we derive rigorously the equation for the
limiting interfaces. There are several difficulties to overcome. The most serious one is that we
cannot exclude a-priori the possibility that several interfaces r! converge to the same point as
€ — 0. There are two cases to distinguish. Either an odd number of interfaces collide, and this
corresponds to a “true” interface or jump of the limit v, or an even number of interfaces collide, and
this corresponds to a “phantom” interface, i.e. ¥ = 0. They correspond to interfaces separating the
same phase. We prove that true interfaces evolve by the nonlocal flow and that their “multiplicity”
is one almost everywhere. Furthermore, we show that phantom interfaces evolve by mean curvature,
but we do not characterize their multiplicity (Corollary 7.42). Making use of the properties of the
nonlocal flow, we also show that all interfaces decrease and at that most two true interfaces can
meet or nucleate (Corollary 7.42 and Remark 7.48). In fact there are examples where two interfaces
collide and disappear in the interior of the domain (Example 4.49). It is not clear whether they
continue as a phantom interface or completely disappear.

In the case n = 2, we note that as long as there are an even number of interfaces, the nonlocal
flow is simply mean curvature flow. In other words, the mean curvature preserves area in that case.

Our estimates of Section 6 are strong enough to prove a formula for the limit energy Ey, that
counts both true and phantom interfaces together with their multiplicities. From this it follows
that there cannot be any nucleation in the interior if there is no nucleation at the origin. But we
cannot rule this out after the first geometric singularity of the nonlocal flow (see Remark 7.50).

Finally, we note that when n = 1, the evolution of the interfaces is expected to be exponentially
slow in £. This can be proven easily using the energy method of [BK1)] combined with the result of
Grant [G). This exponentially slow motion has already been proven rigorously for the Cahn-Hilliard
equation (cf {ABF), [BH), [G], [BX]). '

Section 2: Energy estimates

In this section, we derive all the energy estimates necessary for the next sections. We assume
that ¢, is a solution to (1.1) with the boundary data (1.2), that the domain  C R" is bounded
with Lipschitz boundary and that

EJ¢)0)<C. (21)
Here and throughout this paper C denotes a positive constant, that might vary from line to line.
We show that the energy

ELok0) = [ 3196 + {W(p)ds 22)

is a Lyapunov functional for (1.1)(1.2), and use this fact to obtain appropriate BV bounds, as
well as some “weak” Holder estimates on ¢,. We then produce an L! limit for the solution ¢,.
In addition we use the fact that E,[y)] is a monotone function to show that it is weakly compact
in BV(0,T) and compact in L!(0,T). Finally we ust the monotonicity of the energy to construct
positive time intervals, where the variation of the energy is uniformly small in &.
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Proposition 2.3. Energy estimates.

Let ¢ := ¢, be a solution to (1.1) with boundary condition (1.2) and suppose that the initial
data satisfy (2.1). Let g be defined via g'(s) := +/2W(s) with g(0):=0, and let0 S s <7 < T.
Then the following statements hold

€ / ' / [Bepl? dz dt + E[¢)(r) = Ecle)(s) = 0, (24)
[ Vsl < mp B0 <C, 25
[ [estlasascvr=s. 9)

Proof. First multiplying equation (1.1) by 8;¢ and integrating in z, it follows
e [10wlds-c [ pnpds+ ] [aw(e)az- 20 [ dpdz=0.
' a 0 €Ja o
Using the mass conservation property (1.5) and integrating by part, this reduces to
e [ 10w dz+ [ o [£19er + 2w(o)] é =0
o} o €

Equation (2.4) follows from the definition of E, in (2.2) and integration in time from s to 7.
Next we obtain the BV estimates (2.5) and (2.6). These estimates are not new (see for example
[M] or [BK]) but we include them for the sake of completeness. Using the definition of g, we have

(<t M)
/n IVg(¢)ldz = jn VIW (@) Vel dz < Ele)(1).

Inequality (2.5) now follows from (2.4) and the initial bound on the energy (2.1). Moreover we
obtain the “weak” Holder estimate (cf [BK])

/ / [Oeg(p)ldzdt < ( / / -W(.qv)dzdt) ( / / e|a,¢1=dzd:)

<([ e dt) (Elg)(r) - Eddgle)}
<Cyr—-s.

This completes the proof of Proposition 2.3.

In particular, it follows that the functional E, is a Lyapunov functional for equation (1.1)-
(1.2). From this fact follows the existence of a limit for ¢, and an a-priori bound on the Lagn.nge
multiplier A.(t) = f,W'(p) dz.

Corollary 2.7. Under the same hypothesis as in Proposition 2.3, the following results hold:

¢ € L=(0,T,LY()), (2.8)
mpA) € 7, 29)
sup p(t2)| S OVE+ suplo(z, 0} + 1. (2.10)



Proof. The statement (2.8) is a direct consequence of Proposition 2.3. Inequality (2.9) follows
from (2.8), since

sgp&mt:p-z-]%(v’—vp)dzs'gpg(_/aw’dz)} (/‘,W(v)dz)‘
) < C
S &

The last estimate (2.10) is a consequence of the maximum principle and (2.9).

Remark 2.11. The energy estimates imply weak compactness for the sequence g(,) in BV (2 x
(0,T)), so that we can choose a subsequence g(i) '-_1_-0 g(v) in BV. This in turn implies that

for some subsequence ¢, — v in L!(Q x (0,T)), since g~? exists, and ¢, € L*(0,T;L4(2)). In
addition, v = £1 a.e. and it is “weakly” Hélder continuous

/n|v(z,r)-v(z,o)ldz_<_0\/r-o for T21r2820.

This Hélder continuity of v in L?! is due to Bronsard and Kohn [BK]. Here it is a consequence of
(2.6), since this estimate carries over to the limit by lower semi-continuity.

In addition, by choosing another subsequence if necessary, we may assume that the initial data
#e(,0) converge in L!() to v(-,0). From now on we will only consider this subsequence and we
will still denote it by .. In what follows we will select still other subsequences of this one, but this
does not have an impact on v.

Another important consequence of Proposition 2.3 is that E,[¢](-) is monotone decreasing in
.t and hence weakly compact in BV(0,T).

Corollary 2.12. Let ¢, be as in Proposition 2.3. Then E[¢.)(-) is weakly compact in BV{0,T).
Therefore for an appropriate subsequence of €’s, there ezists a function Eo(-) such that

E[¢c)() = Eo(-) in L}(0,T) and almost everywhere, (2.13)

8iEc[¢e)(-) — 8 Eo(-), (2.14)
where the weak * convergence is in [C°(0,T))".
Proof. By (2.5) E,[¢)] is clearly uniformly bounded in L}(0,T). Moreover the identity (2.4)

implies that E,[y)] is monotone decreasing and thus uniformly in BV(0,T) by assumption (2.1) on
the initial data. Thus we may select a subsequence of £’s as claimed.

The results of Modica [M], Modica-Mortola [MM] and Sternberg [S] show that E, I'-converges
to a functional E, which is defined on BV functions by

E.[v)]=¢ In |Vo]dz, (2.15)

where ¢ := [:1 v2W () dip. In particular, it is easy to see that for almost all t
timigf Edfedl(9) 2 B0 @)
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From Corollary 2.12, we cannot conclude that Eq is E,[v], but we know that for almost all t, we
have Eo(-) 2 E.[v)(")-
In Corollary 2.12 we have shown that for almost all t,

E.[ee)(t) = Eo(2).
Define for any 5 > 0 a set N(n) C [0, 7] as the set of all jump points of Eg with height at least #:
N(a) = {1 eas g o) - esssup Eo(e) 2 0} (217)
Then for any 5 > 0 the set N(n) is finite, since Ep is monotone decreasing in an L!-sense: -
Eo(t) 2 Eo(s) for almost every s 2¢. (2.18)
In fact, since E[@.)(t) < C by (2.5), it follows that

C
#N(n) < ry (2.19)
For t5 > 0 we define T,(n,%) > 0 by
to+Te(n.to)
¢ / ] (Bepe ) dzdt=1. (2.20)
‘O-TC("“) ] ’

The following lemma is very important in our approach. It is based on the fact that Ey is
monotone decreasing. It basically says that given any tp ¢ N(n), we can find an open interval
(to — To(n, %), % + To(n, %)) on which the variation of the energy E,[¢](:) is uniformly small in &.

Lemma 2.21. Let ¢ = ¢, be as in Proposition 2.3. Let 0 < to ¢ N(n), where N(n) is given by
(2.17) and let T,(n,to) be as in (2.20). Then there ezists To(n,t0) > 0 such that

T.(n o) > To(n,t0) for € < €o(n, o)
In particular
‘0'.'?0(”"0)

Ee)(to - To) - Ele)(to + To) = € /

/ Ou) dzdt < .
‘O-TO(""O) Q

Proof. Suppose to the contrary that T, — 0 for some subsequence. Then using (2.4) and the
monotonicity of E[¢.], we have for almost any 7 > 0

O0<n=lime /8 ? dz dt
Lt = 10 APV g

= 1‘_‘%( E.[#)(to = Te(n,t0)) = Eelp)(to + Te(n,t0) )
< lim (E[¢)(to = 7) = Ec[¢)(to + 7))
= Bo(to - 1)~ Eulto +7).

/‘O+Tl (nt0)



Thus
0<ng m.ig{oEu(c)-mgan(a) <9,

by the choice of #,.

Section 3: A first approximation

The subsequent sections will be restricted to radially symmetric solutions; without loss of
generality we will assume that  is the unit disk in R®, n 2 2.
The evolution for ¢ = ¢,(r,t) becomes in radial coordinates

eBup-eprr - LDy 4 2wrie) - M) =0, @3.1)

#(r,0) = ¢3(r),

where as explained in the introduction, we choose W (i) = (1~ ¢*)?. Moreover, since we consider
the case of a Neumann boundary condition and since ¢ is smooth,

¢(1,t)=0 and ¢'(0,¢)=0. (3.2)
Thus mass is preserved. We assume the following conditions on the initial data
lle2llLmcon) £ C, (3.3)
and '
Eff<C. (34)
In addition, we assume that there exists w > 0 such that
[ el <101, (35)

in order to ensure that the limit problem has an interface.
The next proposition is essential to the approach used in this paper. It is used to show that,
away from the origin, the solution ¢, is a-priori cloee to the function :I:q(%) where ¢ solves

ae=W'(g) with g¢(-)=-1, g(ec)=1, ¢(0)=0.

In other words the solution ¢, is close to the one dimensional standing wave solution +q(£) asso-
ciated to the equation u; = uge — W'(u), as is predicted from the formal asymptotic expansions of
Rubinstein-Sternberg (cf [RS]). For the existence and properties of the standing wave solution ¢
we refer to Aronson-Weinberger [AW] and to Fife-McLeod [FM]. When W(p) = }(1 - ¢?)?, this
standing wave is given by ¢(£) = tanh(§).

Proposition 8.6. Let ¢, and ¢? satisfy (3.1)-(3.5). Let0 < Ry < 1, and ty > t3. Then for any
$3<t<Yy

|-5wer+we], @
L*(Ro,1)

< C(Ro) («E+ (: [ / vfdzdt)‘ +(e ¢g(,,,,)¢,)‘) :



Proof. First we note that ||¢||Le(nx(0,1)) < C by assumption (3.3) and Corollary 2.7. Thexiefore,
multiplying (3.1) by &y’, integrating over (n,p) C (Ro,1), using that the energy is bounded (cf
(2.5)) and the bound on A,(:) (cf (2.10)), it follows

~S WGP +W el = |-S1e 00 + Wieta) =& [ e dr
122 [ Lo elod-ent)| @D
. o )
< ?"P'('h t)'2 + W(p(n,t)) .
S/ trp, LI
sq([wrea) ([wrre) + 35 [weea
+ 26| A¢(1)] llpllLm(ax (o))
2 1 i

< fz-lv'(n.t)l’ +W(p(n 1))+ C% ( /&(w)’f’ df)

+ Cfg +CVE.

Next integrating in 5 over (Ro,1) and again using the bound on the energy (2.5), we find for
H<t<y

] .
-S04 W(plp, )| < C(Ro) («E+ (2 [oztyres) ) (38)

So we are left with estimating the last term in (3.7). For this we follow Stoth ([S1]) and consider
the equation satisfied by 8;¢ on Q x (t2,11)

|
E&u(p - eAO.«p + -‘-W"(tp)D,cp =82 =0.

‘We multiply it by £, and integrate over  x (13,7) for r < #; to obtain

r T 24
/ / Epu pudz dt — / / Eolpidzdt = - / / W(o) ) dz dt
t3 JO t3 /O t3 IO

+/ eo,A,/ oudz dt
t3 [v]

--f [ wree dzat,

by the mass conservation property (1.4). Next we integrate by parts and find using the boundary
condition (3.2) and that W”"(p) = 2(3¢* - 1) is bounded:

[ Steentass [ [ @vordear
3 r
< ]a Clode ) ds +C L ]n (pi(z, 1) dz dt.
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The proposition now follows from (3.8).

Now according to Lemma 2.21, we can choose Tp small enough such that ¢ ]:::;’ Jo(pe)? dz dt
is as small as desired if ¢, ¢ N(n). This means that, away from the origin, the solution Qe is a8
close as we want to the standing wave ¢ in (% — To,% + To). This is the content of the following
important consequence of Proposition 3.6 and Lemma 2.21.

Proposition 3.9 (First approximation).

Let ¢, and ¢} satisfy (8.1) - (3.5). Let0 < Ro < 1and§ > 0. Let 0 # to ¢ N(n)
Jor n = (6, Ro) as defined below in the proof. Then there ezists To = To(6, Ro,t) > 0 and
€0 = €0(6, Ro, %) > 0 such that

& . "
su - +W
t.-roStgto-rr. " 2 ¥l ()

We then rename N(n(6, Ro)) to be N(6, Ro).

<8 for e < ¢o.
L*(Ro,1)

Proof. Define n via ffj = 5z{ry, With C(Ro) as in (3.7), and choose Ty = To(4, Ro, o) to
be as in Lemma 2.21. Then we use Proposition 3.6 with #; = 2 + To and the mean value over
13 € (to — To,to — ) toobtain forto - H <t Sto + To

"-;M.,:w + W(e(-1)

L (Ro,1)

< C(Ro) («E+ (e /"'f [ «p}«izat)i +(2 [ dema) *)

"-; ') + WM"'»“L-(

Ro,1)
to+To \ § -3 $
< C(Ro) (~/E+ (e L . /a so:azdz) +(e’% L i jn spz(z,tz)dzdtz) )
<&,

for £ < £0(5, Ro,to). We then rename % to be Tp.

Remark 8.10. If ¢, = 0, then the same result as Proposition 3.9 holds true with (=To,To)
substituted by [0, Tp). A condition for this is, that €3 [, 8;¢3(z,0) dz — 0, which by equation (1.1)
is equivalent to the condition €3 [(Ape — XW'(¢e))*(2,0)dz — 0.

This proposition is crucial in our approach. It has two important consequences. The first one
is that we can define the interfaces of ¢, by showing that the level sets of ¢, are graphs. This
is done in Section 5. The second consequence is even better approximation of ¢, by the standing
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wave solution associated to (1.1), namely we obtain a second order approximation for ¢,. This will
be shown in Section 6. Finally this approximation will be used in taking the weak limit of equation
(3.1) to obtain the desired limiting equation in Section 7.

Section 4: Two additional estimates in the radial case

In this section we first obtain a better estimate on the Lagrange multiplier A,(-). In Corollary
2.7 we have shown that the L-norm of the Lagrange multiplier is of order Je, but the formal
asymptotics suggest that the Lagrange multiplier is bounded in £. Here we prove that in fact the
Z?-norm of A,(-) is uniformly bounded.

An other objective of this section is to study the blow up of ¢} and W(¢,) at the origin.

So let ¢ = ¢, be a solution of the radial equation (3.1) with the Neumann condition (3.2), the
energy bound (3.4) and the mass condition (3.5).

Proposition 4.1. (Estimate on the Lagrange multiplier). For A, as in (1.1) we have the
estimate

T
/o AP dt < C.

Proof. We multiply the nonlocal differential equation (3.1) by ¢', integrate over (o,p) and
multiply by p"~1o™~1. This yields

Aclt) (Wlp) = ¥(0)p™ 0™ _
(4 » (4
=tam (e [Cot ar - S]] + )| - - e [" Lo ar)
=: G.(p,0). (4.2)

The idea now is to integrate this equality in p over the set where ¢ is close to 1 and in o over
the set where ¢ is close to —1. For this to give a meaningful result, it is important to prove that
the measure of both these sets is bounded away form zero uniformly in #. This follows from the
property that the mass is conserved and the fact that the measure of the transition layers of ¢ are
uniformly small.

Indeed define (for 5 less but close to 1)

C = Ct) = {yefN: n<py,1) < %},
B := B.(t) = {z€Q: -% < 2,0 < =)

‘We observe that these definitions and the conservation of mass imply immediately

£*(C) + L*B) £ L ), 7T
WEC) - TLEB) € M) < 2L%(C) - nL™(E) (4.4)

12



where

M(f) = /a ¥(,0)dz - /a g PED 82

fs the mass, without the transition zones.
But by the energy estimate (2.5) we have [\ g, W(y)dz < Ce, 50 that

1 1
o ¥ter085t < €26 (57755 + i)
Thus for ¢ sufficiently small, assumption (3.5) implies

ol - o1 > 3 >0 “5)

and
£LYC) + £~(B) 2 |9|- — (4.6)

Now note that the eqnatxom (4.3), (4.4) and (4.6) define a polygon and the calculation of the corner
points together with the above estimate (4.5) yields

: o) 00 2 75 (5) - TP, )
if only ) is close enough to 1.

)

M)
dM
Y/
/)
—
*)-§ 1@ 1"®)

Figure 1: the case i{ 50 ‘

Thus for 5 close enough to 1, depending on w, we obtain that
LYB), LYC) 2 d, > 0 (4.8)
13



for all sufficiently small ¢.
Now we return to formula (4.2). We integrate it over p € B\Bg, and ¢ € C\B&, and use
estimate (4.8) to find (with w, being the measure of the sphere)

2 (1) ﬂ;:z(do - R

<if . ]m.. G.(p,0) dp do]
<einf? ([ 10t a)’ ([wr az)‘ + 2E.(¢) + (n=1)I0P j =3P dr
< C(Ro) (unws ([0 az)’ + '1). “9)

once again applying the energy estimate (2.5) Now we choose Ry small enough, square the inequality
and integrate in time to conclude.

Remark 4.10. As a consequence of this proposition, we choose a further subsequence of ¢’s such
that A, — Ag in L3(0,T’).

Proposition 4.11. For ¢ = ¢, we have the estimate

) ’ / e drat < i ’ / 1 (glvzl’ + -:-W(v,)) Pldrdt < C. (412)

Proof. We multiply the nonlocal equation (3.1) by (—r"~?¢) and integrate over (0,s). This
yields
/ Plele™ldr + (n- l)e/ @22 dr — -/ W (pe)plr™? dr
= =) / pLrldr + ¢ / Bypeplr™ 1 dr.
° ]

Hence

2l / ¢l dr + —/ W(pe)r™—2 dr
< (Steiro) + 2Weete) + 20 e llom) o
+¢ -/0 ’ | Beperl | £°72 dr.

Now the left hand side at s = * is bounded by the mean value of the right hand side taken
over s € (1/2,1). Therefore the energy estimate (2.5), the L*-bound (2.8) and the bound on the
Lagrange multiplier (4.1) give

T ,1/2
/ / (5|¢:|’ + 1W(c,p,)) ™3drdt < C.
0 [ 2 &

14



This establishes the result, since in the interval (},1) there is nothing to prove.

Section 5: Definition of th'e interfaces of ¢, and of the limit v

In this section we present the definition and properties of the interfaces of ¢, and of v. The
definition of the interfaces is based on the fact that Proposition 3.9 implies a lower bonnd on |¢l|
such that we can apply the Implicit Function Theorem. Indeed, let

8 < % and 0 < Q < tanh [% — tanh™1 -}.5] be such that W(Q) 2 % (5.1)

We will study the level sets of ¢, of value less than Q. This precise choice of Q is important
_ in the ellipticity Proposition 6.24 md in the following.

According to Proposition 3.9, ',-l«p,l’ 2 } in the subset of (Ro,1) X (to — To, % + To) defined
by || < Q, since in this set W(y,) 2 4. This means that , must be monotone in r on each
connected component of this set. :

So let o, satisfy (3.1) through (3.5), and define for any Ro > 0

A& = U (to = TO(Go ROv ‘O)JO + To(a, RO: tO))t (5.2)
to# N(6,Ro)

where § is a fixed constant to be chosen later. We remark that by definition Ag, is open and that
its complement has at most finitely many points, all of them in N(§, Ro).

Let Cr, be open and its closure still in Ag,. Then Cg, and hence Cg, can be covered by
finitely many of the (to — To(é, Ro,%0),% + To(6, Ro,%)), that were used to define Ag,. Thus on
CRr,, Proposition 3.9 implies that

sup | = &l + 2W (@)l Lw(ron) < 262,
Ro

Jor all £ £ €o(4, Ro).

We now consider the “c problem” in the strip (Ro,1) x Cr,

Let Q be as in (5.1). Then on {|¢.] < Q} N (Ro,1) x C&, we have €2|¢Ll? > 1. Thus for any
- =Q < a < Q the set {p,(r,t) = a} N (Ro,1) x Cr, consists of a collection of graphs ri(-,a,).
Moreover by the implicit function theorem the following identities hold

ai‘h(':(t’ a),t)+ atrt(t’ ‘)ar¢¢(':(tﬁ a), t)=0,
80':“’ “)81"?0(':(" a),t)=1.

Using the co-area formula this implies an H?2-estimate on rf. Indeed

{Bspe(r, ‘)l’ WP\ Ol 4 18:pe(r, ')I
j;lw( Di<qr>r) ROl / /(o.( eer>he) e DE ke

= /. : (2‘: |8.r:(t,a)]’) da

15



Thus

Q ¢ 1
/c., /_ Q (z‘: 18eri(e, a)|?) dadt £ 7; /c . /& [Bepe(r, t)|? dr dt
< C(Ro,6).

Thus we may choose a, € (~Q, Q) such that (for some bigger C(Ro, §))
/ (18eri(t,00)?) dt < C(Ra, ).
Cay

This in turn implies that the graphs ri(-,a.) are Holder-} by imbedding.
We define the interfaces of the & problem by

r5(t) := ri(t, ac). (5.3)

‘WE note that none to these interfaces hits the fixed boundary 8<2, because on the fixed bonﬁdary

¢, = 0 and thus by Proposition 3.9, the values of ¢, have to be close to 1. But on the interfaces

the values of ¢, are given by a, and are hence uniformly away from £1. Thus all the interfaces
exist, as long as they do not hit r = Ro. This allows us to introduce the notation

ri:IiCcCry— (Ro,1) fori=1,..,M, (54)

with #¢ > rit! and r! = Ry on 8I! N Cr,. In addition sign(p.(t,1) — a.) is fixed in Cr,. We
continue ¢, by its boundary values to values r > 1.

Proposition 5.5. The number M, of graphs ri(t) is finite.
Proof. By definition ,(ri(t),t) = a, and therefore there exist points ci(t) such that
ri(t) < ei(t) < et (1),
with the property that ¢l(ci(t),t) = 0. Now the estimates given by Proposition 3.9 imply
W(pe(ce(t).1)) < &,
and ¢,(ci(t),t) have opposite signs for consecutive i’s. In consequence,
l9( e (1), 1)) = 9(pe(eb (), 1))l = lg(e(cgt(2),1))] + g(we(ce(2), )] 2 C(6) > 0.
Thus

M,
C(O)M. <Y lolwe(f*' (1), 1)) - g(welci(®), )]
i=1

S [ sty an
< / I\Pe) ar
§ g0

< C(Ro),
16



by the energy estimate (2.5). Thus M, is uniformly bounded.

- As a result of this proposition, for a subsequence of ¢'s (depending on the set Cr,) the number
M, =: Mp must be constant, and for § = 1, ..., M, there exist

’ " 21‘& - (Ro,ll,
such that ¥ — (5.6)
weakly in H?(I} ) and uniformly. '
Inview~ofthhwedeﬁneformy&>0udmy0& compact in AR, the limit set
T := {(%,%0) | b € Cr, and fp = Fi(%) for some i = 1,...., Mo). (5.7)

This set T contains the free boundary 8{v = -1}, but it may contain more.
Next we study the “e-problem” locally around r any (%, o) € I' (here by locally renaming the
interfaces ri):
Let m, be given by the property that at time 7, there are exactly m, graphs r{ which converge
to o, i.e.
ril) =%, 1<ig<m,. (5:8)

Since all the r{ are uniformly Hlder-}, there exists a bax
B := (1,1) x (a,0)

around (7o, o) that contains exactly m, graphs, all of them defined over the entire interval (7;,7;).
In addition, these graphs in B are O(1) away from all other graphs. Of course, m, is independent
of ¢, if £ £ €0(Ro, Cr,) is small enough.

o w0 o o e > oy

L o] 2 oo ‘l". 2 5‘ ] bey



In conclusion, by putting together all the above results, we have the following

Proposition and Definition 5.9. The local situation.

For all (15, ¥o) € T with Fo # 1 there ezists a natural number mo and a number v € {-1,0,+1}
and a boz B = (13,1;) x (a,b) C Cr, X (Ro,1) such that :
(1) {¢ = a.} N B consists of m, graphs r! over (f,1;), which are uniformly Holder-} and with
derivatives uniformly in L3, and v} > rét1,
(2) m, = my, if € is small enough and at &), ezactly mq interfaces converge to 1o,
(3) ré = ¥ uniformly and 8;r{ — 8,F weakly in L?(#;,%;) for 1 < i < my,
(4) F(R) = o for 1 < i < mo,
(5) Jor some n > 0 with a = 9> Ry the sets {(I;,%;) X (a — 9,a)} N {¢* = a,} and {(1,%3) x [b,b+
7)} N {¢* = a.} are empty,

(6)
+1, if ¢e(fo,6) < 8, and ¢,(fo,b) > a,,
v={ -1, if pe(fo,a) > a, and ¢,(o,d) < a,,
0, otherwise .
If fo = 1, then B = (1;,13) x (a,b) ¢Cr, X (Ro,1), but since we continued ¢, by its boundary
values, the above definitions remain meaningful.
Due to symmetry of the argument we will later on only ezplicitly describe the case p.(1o,b) >
@¢, such that v is either +1 or 0. The case v = 0 corresponds to the case that the limit v has
a ‘phantom® interface at which v “jumps” from 1 to 1 or -1 to -1, whereas the case v # 0
corresponds to true interfaces of v.

Section 6: A rigorous first order expansion

Once again throughout this section we assume that ¢, satisfies (3.1) through (3.5), such that
the analysis of the preceeding sections is valid. -

We now have well-defined interfaces. We propose to study the solution near each interface.
The final goal is to pass to the limit in equation (3.1) around each interface. For this we will need
a very good approximation of the solution ¢, in H+*°, This section is devoted to obtaining this
approximation. The idea is to show that the asymptotic expansion is rigorous up to second order,
at least in a weak sense. We will show this using appropriate H!+? error estimates. However, we
will not prove an approximation of ¢, everywhere in § as in [S2]. Instead, with the use of a cut-off
function, we only consider the approximation of ¢, locally around the interfaces.

In this section, we restrict the discussion to the box B defined in Proposition 5.9. First we
introduce a stretched variable around the biggest interface r1(t) in the box B. Let .

2= '-'-':zi(‘l - (6.1)

such that z € (:.";:.(!).' ‘—"‘:-(9-) From now on, we shall use capital letters for functions defined in
the stretched variables and minuscule letters for functions written in the original variables, so that

for example
®.(2,1) := @(r,1). (6.2)

Moreover the index & will be dropped whenever it does not affect the clarity of the text. Then for
9 as in Proposition 5.9, the rescaling (6.1) maps the collection of points

e-g<a<r<.<r<r,<b<bty (6.3)
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-

onto

:..-¥<z.<::‘-<...<z}<:}(=0)<:+<z++¥. : (6.4)

(See Figure 3.)
Now motivated by the formal analysis of [RS], we make the ansats that &, is well approximated
near z = 0 by )

©°(s,1) 1= 8i(s,0) + £8{(s,) for 2€ (- = L4 4 J). (6:5)
The zero-th order expansion $§(z,t) is given by
&5(2,1) := f::-::(z, t) tanh((=1)"*[z - 2¢()] + m.), (6.6)
=1 . .:05(3,:)

where y, = tanh~la, and E; is a partition of unity. More precisely, for 2 < § < m, -1 the function
E; bas support in (“;’f-'i - 1,‘-*;"—' + 1), while E; has support in (';- - 1,00) and =, has
support in (—oo, ‘2*}:3: + 1). Moreover =/ has support in two disjoint intervals each of length
two given typically by (“—*{-‘2 -1, l‘-f# +1).

Remark 6.7. We later prove that |z; — 2| is uniformly bigger than 2 (cf Lemma 6.26), as
a consequence of the first approximation Proposition 3.9, so that the above partition of unity is
meaningful.

1 —t >
s » r
3
: - -+t "
% t' ] a,
The first order expansion is given by
f(5,0) = =52, 0)85(2,0), (6.8)
=0
where &;; = &{,(z,1) solves
{ =% + W"($0i)®1i = Ae(t) = 0 in (—00,2¢) U (2}, 00) 69)
& (':) =0, . )
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and W"(®) = 2(3%? — 1). We note that equation (6.9) is the equation satisfied by the first order
term in the asymptotic expansion of [RS])

Remark 6.10. We do not impose the differential equation for &;; to be satisfied at z = zi, in
order to ensure that the solution remains uniformly bounded over the entire real! axis (cf Lemma
6.25). We refer to the work of Niethammer [N}, who determines the expansion of the Lagrange
multiplier for the radial, stationary problem with the mass constraint by the condition that the
equation be satisfied in the whole of R.

Remark 6.11. The appro:nmat:on depends on the direction of the jump. Here we give the
definition for the case as selected in Proposition 5.9. If to the contrary the jump direction was
opposite, the tanh has to be substituted by —tanh.

Remark 6.12. In the formal inner expansion, one also expands A.(t) = Ao(t) + £A1(2) + ... (see
[RS]). Here we do not do this, since we are only interested in the zeroth order term. The lowest
order term will be determined later by the mass preservation property.

The rest of this section is devoted to proving that (6.5) is indeed a good approximation to &..
To this end let
¥e(z,t) := &,(2,t) - O%(2,t) forf) <t< 1y (6.13)

Proposition 6.14. (Second order approximation). Let §, be a cut-off function with

_ _f1, in(—€7%+27(),e7°)
G0 ={ g o met 5 o) (619)
Jor} <a<p <1 sothat
supp E('o t) c (2.7 - gs z + ':Z)'
Then for ¥ given as in (6.13), we have the following estimates
1
j ] (9] + |9P)e dzdt < Ce, (6.16)
Ilt =~00,35"¢ JU(0,00)
]‘ ’ /t (P +19P)dzdt 0. (6.17)

In order to prove this proposition, we first find the equation satisfied by ¥°. Using the definition
(6.1) for &, and equation (3.1), we find (if z < l—"h)
&" J - gl { 2 !
" 4+ W'(8) - e (t) = —€°Oyp(ez + re(t), 1) + PrneTO) t)’
=: F,(t,2). (6.18)
Define F.(t, £) by W'(ps(t,1)) - eAe(t) for z > 155,
The equation for ©°¢ is more complicated becam of the extra terms coming from the partition
of unity. To simplify the presentation, we let ©; := &o; + £&1;. Then we have
~0" + W'(0) — e (1) = H(2,1), (6.19)
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where

H ‘(Z, t) = t’ :2;5‘ (6’05.;; + 2"2‘)

m,=-1

+ Y [0i1 = 0 (S + 2541 {(1 + )8} + (54 - 2)0%41 + (1 - 25:)8:8441))
é=l

+2) [6i1-0]'E. _ (6.20)
=]

This formula comes fromi a linearization of W/(®) = —2&(1 — $2) around &. We note that this
sum is only taken over two integers at a time because of the definition of Z;. Also as we will see
later, the last two sums are of small order (cf (6.33) and (6.34) ).

Therefore combining (6.18) and (6.19) the equation for the difference is

-8" + W' (0)¥ = —2(30%° + 9%) + F,(2,1) - H,(s,1), (6.21)
and it holds in ~
(2= = 2,24 + D\ s, (6.22)
with boundary values
(,t)=0 fori=1,.,m,. (6.23)

- Next, as in [S2], we follow an idea of Berger and Fraenkel and we show that in some sense the
equation (6.21 ; for ¥ is uniformly strictly elliptic.

Proposition 6.24. (Ellipticity). There ezist (; > 0 and (3 > 0, such that for§; <t < #;
/ (-¢"+W'(O@)1)¥Ed: 2 G / |9'1¢? ds
+a [erga
-2 [iwrieres,
G
where intergration is either over (—£=7 4+ z™:,2™) or (0,£?) or (z™,0).

This proposition is very similar to the proof of Proposition 8 in [S2] and we include its proof
in the appendix.

We are now left with estimating all the terms in the right hand side of (6.21). For this we find
further estimates on ®, — § and on ®§. First we present a bound on ®§, which in particular gives

the estimate |[|©° — 8§ 100 (s -2 04 3)x(h 1) € CVe.

Lemma 6.25.
151 aree (s - 2 204 23t 13) S C 1Ae(2)]-

The proof follows the same line as the proof of Lemma 7 in [S2] but we include it for the sake
of completeness.
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Proof. Following Berger and Fraenkel [BF], the solution ®§; of (6.9) is given by

£(s+ 54 0) = A(2) /o " B(x)A(t)dz + B(s) /" A()A(t) dz

where A(s) := 1 — tanh’(z) and B(z) := - A(z) 3’ r. Therefore

w301 <0 (42) [ 181418031 [ 4)
@50l <ol (1 [ 1814187 [ 4).

Now since A is monotone decreazing, we have the bounds

1 tanhz
<
|B(2)l < /Asl tanhs’
*  tanh(.) tanh z 1
/'B'< T—tanh() - T-tanbz ~ 1—tashs’

80 that
A@) [ 181 1+ umbs 52
1B [ A< 1BG)-tashs) <1
Similarly, using that A'(z) = —24(z) tanh z and that B'(z) = -25(z)tanh z - 7y we have

14'(z)) / "|Bl < 2(1+ tashz) < 4

'}
B(z)l/w.4<2+1+m <s.

Putting this together, the lemma follows.

Finally, before proving the second order approximation Proposition 6.14, we need one more
Jemma. Most of the proof of this lemma is devoted to showing that & is close to &, in L*°. So as

yet another consequence of Proposition 3.9, we have

Lemma 6.26. For any &§ > 0 there ezists e(6) > 0 and M(5) > 0 such that
- )
-2 e0) end 13- 12702 )

H(®°0°)-lleo((s- =2 20+ 2)x(t1 12)) £ M(6),
with M(8) = 0 and e(§) — 00 as § — 0.
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Proof. Since ® = & — ($o + £8,) and ¢[|&;]lcc < lIAelloo € CVE by Lemma 6.25 and Corollary
2.7, we may substitute ¥ by & — & and © by &, in the claim, while only making a uniformly small
error. Next we show that @ is close to ® in L* by solving explicitly the ODE satisfied by &.

To start with, we note that the solution to the problem (with a, as chosen in section 5)

{ [8'(2)]? - 2W(&(z)) = 0
®(0) = a.,#' >0

is &(z) = tanh(z + ), where g, = tanh~1(a.). The first approximation Proposition 3.9 suggests
that for 2. < z < z4, we have to solve for & = &,

{ [Bnr - wiee ) = 2K ©27)
®(zf,t) = a,,

where [|K||Le(s = 2,044 3)x(h 1) € §2. We solve this ODE by direct integration. Indeed by the

definition of a, we know that W(®(zf,t)) = W(a,) 2 26, so that that there exist e* =ek(t)>0

such that for z € (—e!,e%), we have W(&(z + 2{,t)) > & and W(®(el, + zi,1)) = §. Propostion

3.9 implies that &’ has a fixed sign in this interval. From (6.27), it then follows that

lQ:(z + 2:9 ‘)l K(l, t)

vy ¥ T weEn)”

Therefore integrating this for z € (—e', ¢! ), we find

(2 + 2f,t) = (-1)* tazh ("'*/ J‘*WI((‘I(’(tZ)))

In consequence,

|8(z + £1,8) = (=1)"1 tanh(z + pc)] < |2] sup

14 X0 -il

—t,e) W(®(z,1))
gl 1
YD
< 8lsl, (6:28)

for z € (—e',e!). This implies in particular (because ®(el + 2¢,1) is given in terms of § only),
that uniformly in ¢
ei(5)=co asé—0.

The above argument generalizes as follows: for any 20 € {W(®) > 6}
19(2 + 20,) £ tanh(z + po)| < 6lsl, (6.29)

Ho = tanh™ (¥(2,1))
for 3 in the maximal connected component of {W (&) > §}, that contains 2.
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Now assume a, < ®(2,t) < \/1-76 < tanh(;h) Let z; be given by tanh(z; + ) =
a, — V&. Then by construction |z;| < ;k Thus (6.29) implies
®(21 + 20,1) < ﬁ"’ G — Vi= Ge.

Consequently there exists 2; with |z;| < ;}5, such that &(z; + 20,t) = a,, hence 23 + 20 = 2z} for
some §, and

-2l < .
Of course the same argument applies for — tanh (;b;) < =V1= V8 < &(z,1) < a,. Thus
either |z — z{| < J- and then ® is well approximated by a tanh as in (6.28) or || > V1~ v/
Now, if |z - 2| < -‘k, then |& — &| < 6, and thus |(& - &o)&o| < 26. :

M |z—z]| > J, then either & > V1~ V6 or & < —v/1— /6. We describe the first case only.
I @ > 1, then consequently ® > &, and &, > 0 by construction so that there is nothing to prove.

f12@é> \/l—vd,then @ is uniformly close to @, because both are uniformly close to 1.
Here uniformly means uniformly with respect to §, and the ‘uniform closeness’ is given by
M(6).
Putting all cases together proves the Lemma.

We are now ready for the proof of the second order approximation Proposition 6.14.

Proof of Proposition 6.14. Let S be (—£=# + z™¢,2™) or (0,£~?) or (z™,0). We multiply
equation (6.21) for ¥ by ¥, where £ is defined by (6.15), then we integrate in z and ¢ and use
Proposition 6.24 to obtain

G /:./SIW'I’{’ dzdt+ (3 /:/sli'lzfz dzdt
<2 /: [IRre 41808 dzat
+ (% + eicvo)-1i-) /: J1we aza
+ % /: /s [ORIE' dz dt. | (6.30)

Let M(6) be as defined in Lemma 6.26 and choose § small enough that 6M(6) < £2. Incorpo-
rating this in (6.25) yields

G /’ » /s I9'7¢ dzdt + E /s |U]Pe dz dt

2 fh 3 31¢3
< = (1Fe? + |B?)¢* dzdt
2 Jiy, Js

2 [h 21012
+z /r. /s [U11e? dz dt. (6.31)
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So we are left with estimating the right hand side of (6.31). Using the definition of F, given by
(6.18), we have (if Fo ¥ 1) _

s ald ¥y pe~?
/ f IR dzdt < / / 410, p(ez + £i(t), O dz dt
fy Jeg=lpsme fy J=g=B4a™e
5 g’ 42
— |2 dzdt
+/!; ¢/-¢"+t'a (5""'})2' |
s

1 1 2,.n~1
S Ty /“ [ ouetriypen=t ara

13 o1
+ (_R-o%;‘-*'_‘ ‘/‘ _/o e ee(r, t)lzrn-x drdt

<cel. (6.32)
Moreover, we have the estimate
A
/ / |81 dzdt < CE-° < Ce®, (6.33)
5 J(=e=Pdz™e 2= )U(0,c~7)

for B < 1. Indeed, the last two sums in the definition (6.20) of H, drop out since in (=£=P+2™¢,2™)
the function E,,, & 1 and =; & 0 for 1 < i < m, ~ 1, while in (0,£~7) the functions Z; = 0 for
2 < i < m, and =; = 1. Then (6.33) follows from the fact that ||®o|lcc < 1, the Lemma 6.25 and
the L? and L*° bounds on A.(t) (cf Proposition 4.1 and Corollary 2.7), since it yields

A t s
J e Pueic 0Nt + S Puesco 0l dr < e4~* [ ol de +5-2 [ putolta
f 3

1
1 1\ /*
e-pl  e-pl 3
s(e s+e e’)/;, [Ae(2)]° dt
< Ce*-*.
In addition, we claim that _
/ ’ / |H P dzdt — 0, (6.34)
‘] s%™e

as ¢ — 0. To prove this we need a better estimate on |z+! — z{| than the one we obtained in
Lemma 6.26. Indeed this estimate is not strong enough to show that in the set {Z;Z;41 # 0} we
have |©;41 — ©;] — 0 as ¢ — 0. However, if we go back to Proposition 3.6, formula (3.7), we can
easily obtain the following bound for almost all ¢ € ({;,7;) by using the energy estimate (2.4) and
(2.5) and Proposition 4.1 and spending a little factor eln(1/e)

=X (¢'())* + 2W(¢(-))llLe(re ) S C(t)eIn(1/e).
Therefore we have in fact for almost all ¢ € (;,1;)
|# =3|m0 ase=—0, (6.35)

and therefore
[8i41 = 6i| = 0 in {54, #0).
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Smoe ©; are uniformly bounded, we can now conclude that
jﬁ Jzz (21#0) [©i41 = ©i|*dzdt — 0 as £ — 0 and hence (6.34) follows.
Finally, since IE'(I)I € Co=yl== < CeP, the last term can be estimated as follows

2P
/ / IWI’IE'l’dzdts—ze // |¥)? dzdt
fi Jeemlts™e {€x0,1)

<c- / (18 - ®of? + €2|0: ) dzdt
(o)

< Cﬁng-!— (go(r, t)=-1)*r"~1drdt
Rﬂ (l %

ri(t)
£2p-1 1
+ CT / (p(r,t) +1)*r*~1 drdt

+CefH,

where we have used that in {(z, t)lf(z,t) # 0,1}, the function &, is exponentla.lly close to +1
depending if z > 0 or z < 2™, while ¢ llQ;Il,_..(,__. se+2)x(fds) < C€. Now using the energy
bound (2.5), we obtain for § < 1

"l i ? 22 p+1
/,‘ /‘_,w.lwl €' dzdt < Ce (/j(ﬂn) 1 drdt)-q-ce

< Ce?, (6.36)

The proof now follows from (6.31)-(6.36).
If fo = 1, all the above arguments are valid, only those leading to (6.32) and (6.36) have to be

changed. If in (6.32) we intergrate over (—¢=7 + z™ ‘—"‘-), the result is the same. For 2 > —/= ‘-."
we have F, = W'(p,(t,1))=€A(t). But with the help of the estimate preceding (6.35) and because
¢.(1,t) = 0, we find F? < C(t)eln(1/¢), and the rema.lmng integral in (6.32) still converges to zero
by Lebesgue’s convergence theorem. The same reasoning holds for (6.36).

Finally we conclude with some H** bounds from this H!* bound.

Corollary 6.87. Let J = Jgood(t) i= (=% 4 2™, 2™ ) U(0,67) if Fo # 1 and J = Jgooa(2) :=
(=£=% 4+ 2™« ,2™) if fo = 1. Then

/ LA -t < Ce*?,

J 1m0,

/,' [85(-+2) = B5(-+)3a.s(mgme 4xme o=a) 6t = 0,
/,t 185+ 1) = 8§(+)lI}r.msy dt < C,

/,' I85(1) = 8E(:+)ll3rs.em(0,me) 42 — O-
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Proof. The first two results follow from Proposition 6.14 by the Sobolev imbedding theorem in
R, since ¥ satisfies the differential equation (6.21) and thus ¥” satisfies the same bounds as ¥ and
N N
The last three results follow either from Proposition 6.14 or from the two first results of this
Corollary using the by now “familiar” estimates

h e 2 1 t 2
/!’ “EQI(" ‘)"H‘.’(-‘-..’.‘+‘-.) dt s t’z /{l IA,(‘)‘ d‘ S C‘,

" H 2 2 h H t’
/!’ "861(0’ t)"Hl,Q(_‘-."-. +‘-.) dt S € /!’ 'A‘(t)l dt S C o

Section 7: The limit equation

In this section, we first restrict the discussion to baxes B as defined in Proposition 5.9 and we
derive the differential equation of the limiting interface (true or “phantom”) given by r.= .

So once again we assume (3.1) - (3.5) for ¢, and hence the analysis of the preceding sections
applies.

We first consider the case y # 1 and later point out the differences in the other case.

In the 2-variable the nonlocal equation (3.1) becomes

n-1
ez4+ 1!

0,8 — 19’ — %o" - ¥+ %W'(Q) —A(t) = 0. (.1)

Let ( be 2 smooth time dependent test function with compact support in (2;,%3). First, we multiply
equation (7.1) by /¢ and integrate over (=£=% + z™,£~°) x (#1, %),

i3 pe=* 1, pe=° )
‘/ / (%' dzdt -/ / CF @' dzdt
{y Jeg=tfg™: ) J=g=e 3™
- l /fz /c" c((Q')’)’dZdt - _l 6'2 dzdt
2% iy J=e=ops™: Ty Jeg=ogs™e El + f‘

1 i3 pe=* i3 pe~*
2 / L (O,W(8)dsdt~ / / (Ad'dzdt = 0.
fy J=e=o43™: )y J=g=ogs™:

This can be rewritten as follows

/ / (8,8 dzdt — / / ¢Pe dzrdt
1y J=g~o43™s fy J=g=gs™e

-1 c(‘(o')' W(o))l

-,-.*,-.

: /-c—- (n-1) 210" dzdt + / /_ . (A D' dzadt. (7.2)

e-aqpsme EZ 4 fl
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The main part of this section is to evaluate the limit of each term in (7.2) as £ — 0. This will yield
equation (7.14) for #.
We start with the third term in (7.2).

Third term. We cla.un that
™

/:% (%(Q')z - w(o))l ¢dat=20. | (7.3)

-—g=a g™,

Indeed the endpoints -e“' + 2™ and £ are in Jgoo4, 80 that we can apply Corollary 6.37 and
replace ® by o, since f, 18 = &oll31. () dt < Ce® and 26~ 1 > 0. The claim (7.3) now follows
since $o(~e~ + 2™¢,1) = tanh(te~* + y‘) and &o(e~2,t) = tanh(e~* + p*).

Next, we study the convergence of the fourth term in (7.2).

Fourth term. We claim that

To prove this we first replace ® by ®;. We can do this since ld?l(,!:mddncebythe

approximation Proposition 6.14, @' is well approximated by &;.
Therefore we only have to consxder the limit of the integral

/t ./-c---n-. ez 47} 185 dz dt. (7.5)

To find this limit, we divide the interval of mtegratxon in subintervals each of them containing one
interface as follows

" b‘-l 1
2 "2
/’ /‘-...,g-. x4+, 1 lQOI dzdt = Z/‘ " cEZ + f} ‘§0| dz dt’ (7-6)

where 80 = €2, ™ = —£=% 4 2™ and b = 1—111- for 1 <t < m,;— 1. Then we make the
change of variable 2’ = z — z! and let again 2’ = 2 so that

.‘ -
/I /-e--+.-. ez 41! @0l dzdt = 2 /, / (- + ———(®5(z + 2%))? dzdt
!’ .‘-‘ "
= / 1“%:...“ gg + r ——(®o(z + 3‘))’ d:dt

+ e st

/{z-:uto 1) €2 + (7.7)

The last term in the nght hand side of (7.7) goes to 0 with £. Indeed the set {E; a;é 0,1} is of
length 4, we have the estimate || < k and we know that ||¢’o(‘)||L~((s‘¢o.1}) £=2 0 almost

everywhere since by (6.35) |z — 2| == eo.
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So, to prove the claim (7.4), we are left with calculating the first term in the right hand side of
(7.7). For that we note that by the definition (6.6) of ®o, we have &o(z+2') = tanh((=1)"*1z44,)

for 5 € (22572 + 1, 25572 — 1), therefore we claim that the first term in the right hand side of
(7.7) converges to
$=3 ¢

M : 29 l._’_l....g
3 s, s w4 g s
=190 [

My I oo
::.°§ /“ : [ (- o)y dsar

4 11

“3), ¢ ;."1 R - "
Indeed,
ol
(@ st P (5 - ) 110 - ks w PR
< |(1 - tanh®(2z + u.))’l"‘—;';'—:'

€lz|
R
Since |28+ — 21| £=2 oo almost everywhere in (f;,7;) (see (6.35)), |(1 - tanh?(-))?| € L'(R) and
|7 = r$| =2 0 uniformly in (1,%;) (cf Proposition 5.9), the integral over the first term in the right
hand side of (7.9) converges to 0 with ¢. For the second term, using that |z| < 1, we have

- g9

+1(1 = tanh’(2z + 1))’ (7.9)

et YL R
PR ¢ B tanh?(£z + p,))’e|z]dz < / (1 - tanh?(%z + p))%¢|2| d2
e g -R
+ (1 - tank? (22 + g, ))%e|z| d=z
isis>R
<CeR+ (1 - tanh®(£z + p,))? dz,
isi>R

80 the claim (7.8) follows by choosing R = Jz. Therefore (7.4) follows by (7.7) and (7.8).
Next we consider the last term in (7.2).

Last term. We claim that

/: /_ :w. CA®'dzdt =20 /: Crodt, (7.10)

where » has been introduced in Proposition 5.9 and Ag in Remark 4.10. Indeed integrating by parts
yields

I3 pe=°* , t A o~
JA S Ly A = n
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But .
®(c™%,1); ®(—c*+2™,1) — *1 (7.12)

uniformly as a consequence of the approximation Proposition (6.14), and since A, — Ao in L2,
such that (7.10) is immediate. Note that we allow for » = {-1,0,1}.

Finally, we study the limit of the first and second term in (7.2).

First and second term. We claim that
i3 pe~* I3 pe~* Y Mo
ef ) . waa- [T pertaasto M55 ara (113)
)y J=e=C4z™e iy Jeg=oqps™ f 3 =1

This proof is similar to the convergence of the fourth term. We make use again of the change of
variable 2’ = z — 2 (and letting again ' = 3):

i3 pe~* LI O
! - #19’ = ' s ¥ Y
j,, /_ oy, (BB = P ; L L C®'(cB; - P18') dzdt

m, Iﬂ ‘C-l_“ .
=3 /, / u C®'(z 4 2, t)(e®s(z + &', 1) - #9'(z + 2, 1)) d2dt
i=1 7% - :

=3¢

M f. '—,—'—
= E / ’ / eC®'(z 4 2°,1)8,(z + 2, t) dz dt
= " l‘#l-.‘

m, !’ .l-l-l‘
- A / e CF(@'(z+2,0) dzdt. (7.14)
i=17% L=

We study the limit of each sum in (7.14). We start with the second sum. We claim that

i*3_ ¢

M, 2 ‘—,—'— S Mo . .
3 / ’ / CF(®'(z + £,1)) dr dt =3 / 3> arFd. (7.15)
=1 Jaeed w35

‘We know from Proposition 5.9 that 8§;r' — 8,7 weakly in L3(;,%;). So (7.15) is true if we show
that

f=3 0

(®'(z + 2, 1))} dz — % strongly in L*(f;, %3). (7.16)

[£ 2 P}
l—.’_l-

This amounts to showing that we can replace ® by & in (7.16) since
J2 (84)2 dz = [ (1~ tanh?(z))?dz = §. But going back to the original variable z, we have

< ( /u "-‘@' -8 dz)} ( L @) dz)

- $
_<_c(/_ o 8 dz) ,
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since &) € L?(R) and since by the energy estimate (2.4), we bave [(#')?dz < ¢ [ |Vy|*dz < C.
This proves (7.16), and hence (7.15), since by Corollary 6.37,

t
( / (¢' - &) 41) — 0 strongly in L*(%,3%)-
-8 gy

Fmally we study the limit of the first sum in (7.14). We claim that

29 ‘—,—l— .
/ / [T CCQ'(: +2 9‘)’((3 +z ’t) dz df 0 (7.17)
=]

This is the most intricate estimate because of the many time dependent functions in (7.17).
First, as usual, we replace &' by ®{. This time this is possible because

¢ ( / (&) dz .:u)i <c, (1.18)
while
/ (#' - 8,) dzdt — 0, (7.19)

(with space integration over (~£~% +2™¢,£~°)). Indeed, (7.19) is part of Corollary (6.37). In order
to show estimate (7.18), we proceed as in [S1] and prove the following a-priori estimate on §;®,

a1
/ 8|2 dzdt < 2 / T %Q'I’ dzdt

2 ..
+5 / [P P8P dzdt

2 ([T 2
< 8up(z,1)|? dz dt /v t ’dz/ #12 dt
< ) [lovtordat o o [ vpte e [
C
S?. (7.20)

Therefore, using (7.18)(7.19), we may substitute &' by &; and only have to show that

‘0) é

/ / i3 COB(z + 2°,1)dzdt =2 0, (7.21)
631

in order to prove (7.17). We first divide the interval of integration as we did while studying the
limit of the fourth term (cf (7.7)).

m, l-‘i-‘,:-li l-n ‘.
Cg /fl /l"""l‘ CQ;Q'Q(Z <+ 2‘,‘) dzdt = /!‘ /‘-’- (0‘60(2 + z‘,t) dz dt
‘-I (]

;.1 /k /"' i (6&0(3‘?8 yt)dzdt

‘#! i

{ Y
/ /u: “’t%(l + 2, t)dzdt.
" Jen S (1.22)
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Since ¢ ( f:" J(®:)?dz dt) t < C by (7.18) and &} (z+1°)) <=2 0 pointwise for € (£5=L, oy
1), we have
(L2 P |

‘/:: ;:—:—44

80 that the last sum in the right hand side of (7.22) converge to 0 with ¢. Similarly, the second
sum converges to 0 with e.

We note that in the first sum in (7.22), the essential fact is that ®o(z + 2f) = tanh((-1)"*+1z 4+
Be)s ;o t.g:at in particular 8;®; = 0. Therefore integrating the first sum in (7.22) by parts in time,
we o

bl ] fz ﬁ;i-l , ;
€ - (De® t)dzdt
§[!, _/"_.;___d“(to("l'z’)‘

(®)* o,

Mg 2 l‘—t’,:-li-] .
= - 8,(0d) i t)dzdt
5"21/1’ /,_,_ » k(DDo(z + 2°,t)dz

#H1 ¢

Me 1 7Y ,
- tg’/h (QQOII""il‘..,l ——25———41

'-.i-l -t

M of,
+s§ /ﬁ (O8] pmagnt_, —

Since ®§(- + 2*) € L'(R) and since & is bounded, the first sum in (7.23) converges to 0 with e.
For the second and third term, we use the fact that #' converge weakly in L? and the fact that
Oy (2522 — 1) £=20 0 pointwise and thus in L3, This finishes the proof of (7.21) and hence of
(7.17). Combining (7.15) and (7.17) in (7.14), yields (7.13).

I fo = 1, the only difference in strategy is, that we integrate (7.1) over
(e“" + zm-,min(e-c,‘—;'i)). Then everything remains the same, only (7.3) has to be changed
into

(7.23)

hy N min(e=*,254)
lm [ = (-(o')’ - wm)' Cdt<0.
e=0 i € 2 el S e

In summary, we have evaluated the limit of each term in (7.2). Therefore, using equation (7.2)
and the limit of each term given by (7.3), (7.4), (7.10) and (7.13), we have shown that in the limit
as £ — 0, we obtain the equation

by &, n-1 h
- [ 5D = J o, (7.24)

or the inequality with >, if fo was in the fixed boundary of the domain. This limit was obtained
in the box B defined in Proposition 5.9. We have thus proven the following

Proposition 7.25. Let Ag, be as in (5.2) and Cr, be compact in AR,. Then for all (o, 7o) € T
as in (5.7) there ezists a boz B = (#1,13) X (a,b) as in Proposition 5.9, such that (¥o,%) € B and
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such that T N B consists of mg = mg(Fo, %) Holder-} graphs ¥ : (§,7;) — (a,d) with F(L) = F,.
Moreover, if fo # 1

"1
2 II, ‘f’o 1’

The constant mo(¥o,%) can be understood as the “multiplicity” of I'. We shall prove that
mo = 1 almost everywhere in {v # 0}. For that we show first that mo(¥o,%) # 1 in B is equivalent
to ¥(Fo, %) Ao(fo) = 0. Then, using the fact that the mass is preserved in time, we calculate explicitly
Ao, and show that Ag(%) # 0.

To show the first part of this approach, we need the following result.

Lemma 7.27. Assume the statements of Proposition 7.25. Then if v(%,¥%o) # 0 and fo # 1

n-1

-(+23) 2 minez - (4 55Y) mEA. 02
and if Fg = 1, then the second of the above inegualities holds.

Proof. Without loss of generality assume ¥ = 1. Now, instead of integrating (7.2) over (—£=® 4+
2™ ,£=%), we integrate only over the last branch of . More precisely, let ¢,(t) be the first negative
point where &'(-,) vanishes. We note that in the same way as we proved that |2/+! — 2/| <= o0 (f
6.35), we can show that c.(t) ¢ —oo pointwise. We integrate (7.2) over (c.,£~%) and we use the
same arguments as before to obtain the limit as ¢ — 0. This will give an inequality for , similar to
(7.26). We only point out the main differences with the previous case. The claim (7.3) is replaced
by

i = * 2
tm [ "G G@r-wey|  d= ["om W,

and the proof is the same as before since ®'(c.(t),t) = 0.
The claim (7.4) is replaced by

fa pe 1 " 0 4 U]
(n-l)/ﬁ /_‘_.cu+f,|9| dzdt-os(n-l)/‘, Cx,

and the proof is similar as above since ¢, =0 .
The claim (7.10) is replaced by

| /: /:_. AP drdt ';.‘2/:(;.,4:.

The proof must be slightly modified since we only know that &(c,,t) — —1 pointwise and thus in
Z2. But this is enough to pass to the Limit.
The claim (7.13) is replaced by

1 e~ * {. =  /
e/’/ co,o'dzd:-/’/ cf‘«»"dzaz':?-/’gco.r‘ dt,
‘; Il

fy Jeo (N
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and the proof is the same.

So in the limit we find
LW 1 1 L
- 5 /, C lim TW(8(c.))dt = 2 [ Chodt. (7.29)

Similarly, we can integrate (7.2) over (—£=% 4 2™ d,), where d, is the ﬁrst point to the right
of 2™+ for which &' vanishes. Since l’o(—c“' 4+2™)0 1 and ®o(d) <=2 1, this yields in the

limit
-/‘ 4

Since W > 0 we conclude for C 2 0, that

- "‘ j o,

!34
- c(#"‘ +——)dt<2/ $Ao dt.

-W(o(d.))d: 2 / Codt. - (7.30)

This proves the Lemma.

‘We now come back to the global situation and the interfaces as defined by (5.6).

Proposition 7.31. '
Let Ag, and CRr, be as in Proposition 7.25. Then the interfaces ¥ = ¥ as defined in (5.6)
evolve in their domain of ezistenze I“% according to

- (;.,. 2 1) = .g,,(.,r),\o, (7.32)

In addition for almost all (fp,7o) €T

either (I, Fo)do(lo) =0 or mo(lo,Fo)=1. (7.33)
and if 7o = 1, then v(fp,Fo) # 0.
Proof. Define for any Mp > k > 5 2 1 the set (formally putting #° = 400 and FMo+! = —o0)

Ii={lo€Chr |F1>F=..=F >t atf).
There exists only finitely many j and k as above, and any ¢ has to be in one of the corresponding
I’s. So, if we prove the claim in I, this proves the Proposition.

For any o € I and ¥ := F()
mo(fo,Fo)=k—-j+1 and y(lo,Fo)= %1, if mo is odd.

Note that almost everywhere in J . ]
. Fiz..=F
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and thus Proposition 7.26 implies that tlmoct everywhere in I (if & < 1)
a
—mo (714252) == 3 (4 252) = 3t Fe. (7.34)
=j

If mg is even, then v = 0 almost everywhere in J and thus the differential equation (7.32) is
immediate.
If mg is odd, then Lemma 7.27 applies, giving

- (f’i + 1',—',-1-) 2 év(.,ﬁ)x., 2- (f'* + 1;',,-1—) inI

But since both sides have to agree, the differential equation (7.32) is satisfied.
Finally subtracting the differential equation (7.32) from (7.34) implies

(1-m)(fi+l'-§l)=o.

Thus either mg = 1 or £/ + 851 = 0, the latter in turn implying that Ao = 0.

If 7 = 1 and thus j = 1, we have 2 in (7.34) and #/ = 0. Thus —mo(n — 1) 2 $u(,F)Xo. If
my is even, then v = 0, which leads to a contradiction. If my is odd, then by Lemma 7.27 we find
$v(-,F)2o 2 —(n — 1). This first implies mo=1 and then §1(:,F)A = —(n - 1) = ~(Fi + 231),
This finishes the proof.

Now we have to identify the limit Lagrange multiplier Ag. To determine Ag in terms of the
interfaces of v, we use the mass conservation property of the nonlocal flow, namely

[ ) /o ¢«(z,t)dz = 0, and hence §; /0 v(z,t)dz = 0.

Since these are nonlocal quantities, we have to get rid of the constraint Ry > 0.

We recall that Ag, is open and its complement has only finitely many points (cf (5.2)). For
each Cr, compact in Ag, we defined interfaces # : Iy C Cr, — [Ro,1) for i = 1,..., Mo. Putting
this together we generalize the notation, so that we have interfaces

¥ :Ii CAp, — (Ro,1) fori=1,..,M (7.35)

with the property that ¥ > #i+! and # = Ry on 8I% NAR,. These interfaces are locally Holder-1.
Let us extend the definition of ' by R to the whole of Ag,. This extension is of class H‘s.
Formally we set in addition # = Ry for ¢ > M.

We then define for a sequence Rop — 0

A= ) Ar,.- (7.36)
Ro—0

Then, since this is a countable intersection, the complement of A has at most countably many
points. In addition we define R(t) := F(t), if t € If, and (with a slight abuse of notation)

R=Rj,:A—[01 fori=1,... ‘ (7.37)
A
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Then in particular I}, = {R' > Ro}. This definition is reasonable, since the AR, are included in
each other with decreasing Ry. Moreover for any Ry the # were constructed (see section 5) by
selecting subsequences, and, making the appropriate choices of subsequences, we may assume that

the subsequence does not depend on Ry. In addition it is possible to choose a, independently of
Ro. Thus the limits # coincide on intersections of the sets Ar, x (Ro,1].

Proposition 7.38. In the set A the limit Lagrange multiplier is given by

 2(a= 1) TuR)ER) ,
Y= - L EET (7.39)

where summation is over all interfaces of radii less than 1. If the space dimension is strictly bigger
than 2, then Ap # 0. If the space dimension is egual to 2, then Ao # 0 in case of an odd number of
interfaces, and identically zero in case of an even number of interfaces.

Proof. Since ¢, — vin L! and v = %1 almost everywhere, the same is true for

oz Pe =G
Xe * lpe = a¢l

By construction x, has interfaces r! for i = 1,..., Mg in Ag, X (Ro,1). Thus fort € Ag, and ¢ = 0

/|=|>ao " fepr X
=42 {2:2:;(-1)‘“«2)" + (1M (Ro)" - 1}
— 4l {2 fi(-l)"""("")' + (=1)Me+1 (Ro)* - 1} .
2l =
Differentiating the resulting identity yields

Mo
) / vdz = £2 2(--1)‘*“(#)"-1:?i fort € Ag,. (7.38)
lsl>Ro i=l

This can be rewritten as

Mo
- —1)i+1 s \n=-15
') /lrbﬁo vdz = {:1:2 ‘.2 1( 1)*+1(F) f‘} X+ bR, (7.39)

where x is the characteristic function of A and pg, is & measure with support in (0, T)\A.
’ Since 8y € BV((0,T) x ), we know that &, [, 5, vdz € BV(0,T) uniformly bounded with
respect to R and thus, since ]M>&vdz = [Jovdz
8, / vdz - 0=8 / vdz in [C°0,T)). (7.40)
=I>Ro a
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‘We now use the differential equation (7.32) to calculate the limit of the sum in (7.39):

Mo

S -yt =
=l
3 Ms(1) 1 1 M(t) (41(ptyn-2
=3% Y (CDMWE)FT = (n=1) 3 (-D)HE),
t=M;(t) t=My(t)

where Mj(t) := #{i | #(t) > Ro} and M;(t) the first index, such that the corresponding interface
is less than 1. :

We assume without loss of generality, that v is positive near 8Q2. Then we remark that if
¥(F') # 0, then (—1)"* = —y(F'), because for any i with ¥(¥') = 0 an even number of interfaces
collides. In the second sum, we may substitute (=1)"*! by —y(F), because, either they agree, or
(F)*~2 is added up an even number of times with alternating signs. Thus

Mo
z(__l)aﬂ(,«).-x,;s =
iml
3 My(t) M;(t)
=3% X MEOIE -(-1) 3 ur)F).

i=M;(1) i=My(t)

We now want to pass to the limit Rp — 0. This is possible due to the following bounds. Since
the jumps of v are exactly given by the interfaces R', with ¥(R’) # 0, we have the formula

00
su Vo| = supw, v(R)|(R)*? < C.
zip [ 1701 = sspn 3 W(ROI(R)

For the second sum we apply Proposition 4.11. By lower semicontinuity the estimate (4.12) carries
over to the limit g(v) = §v and thus

T p o
[ [ eas [ Swaimr-rasc.

So we know that all the sums converge absolutely as Ry — 0 and by the monotone convergence
Theorem this convergence (after multiplication with x as in (7.39)) is in L!(0,T’)

{ﬁ(_l)ﬂ-l(fl)u-l"{} X
=l

Roz {-;a., Y WMENEY T -(a-1) 3 vuz‘)(n‘)*-’} x (141
s=M;(t) f=M(t)
This, together with (7.39) and (7.40), implies
bR, — p=0
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and

X Y, WEHNE)+(n-1) ¥ w(R)R)*2=0 almost everywhere in A.
é=M;y(t) i=M)(t)

Nl

‘We now summarize the results of this section in

Corollary 7.42.

Let A be given by (7.96) and R' by (7.87). Then for any 0 < Ry < 1 the evolution of the
interfaces is governed by

i n=1 (v = )2, v, RIYRIY?
(4 25) =5 B AT (743)
Furthermore
Rig<o inli. (7.44)

The Lagrange multiplier Ay is uniformly bounded and changes sign at most at finitely many points.
If the space dimension is strictly bigger than 2 or if the space dimension is 2 and there is an odd
number of interfaces, then

v(t,R'(t)) #0 implies mo(t,Ri(t)) =1 inIk,. (7.45)

Locally in Ar, % (Ro,1) the free boundary 8{v = -1} of v either is a gmph or consists of ezactly
two graphs which meet or nucleate. In the ﬁrat case the free boundary of v is locally given by one of
the graphs R’ and the corresponding v(R7) is constant and nonzero while none of the other graphs
R* are close. In the second and third cases the free boundary is given by ezactly two true interfaces
R’ and R* that either meet and then form a single “phantom” interface or that nucleate from a
single “phantom?® interface.

Proof. By Proposition 7.31 we know that in I‘Ro the evolution equation is satisfied, and by
Proposition 7.38 we have a formula for the Lagrange multiplier. Combining both Propositions we

see
Ri <0 Y v(RW(RHR(RI)? < Y W(R)|(R),
J J
where summation is over all interfaces of radii less than 1. But, if k is the smallest index such that
the corresponding interface has radius less than 1 and has nonzero v, then

2"(3’)V(R‘)R‘(R’)"" < {L"(g)m*)“’ ik

< (RM™1 < Y w(RY)|(RA)2.
J
ThsprovesthatR‘(Oml‘ for any Ro > 0.
Since mass is preserved there exists an Rmia, given in terms of the initial mass, such that

R' > Rpia. Thus by the above B! < 0in Ik . = Ag_,, and R' jumps at most at finitely many
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points. This implies that the denominator in the formula for Ao is bounded below, and since the
nominator is an alternzting sum, A is uniformly bounded.

In An_,, N{R! = 1} the differential equation for R! is —(n—1) = §¥(R))o. Substituting the
formula (7.39) for Ag into this yields

W(BY) _U(RINR) = Y (R,
] ]

where summation is again over all interfaces whose radii are less than 1. But we observe that
the Jeft hand side of this equality is non positive because the first non vanishing coefficient is
negative. Since the right hand side is strictly positive, the set Ag_,, N{R! = 1} must have measure
gero. Since R! is monotone decreasing and continuous in Ag_,., this implies that R! < 1 in
ARp,,,, and thus the sign of the limit order parameter v is fixed in any connected component of
{(t,r) |t € Ar_,, and r > R'(?)}. As a consequence we first obtain an improved formula for Ao

T, (R )R
Z; PEDE)T

where summation now ranges from 1 to co. Furthermore, since the sign of Ao is given by the first
nonzero v in the above sum, the sign of g is constant in any connected part of Ag_,,.

Now suppose t € Ar, for some Ry. Fix R/(1) and R*(t) with § < k and assume that there exists
for both (R¥(t),t) and (R*(t),t) a neighborhood, such that in these neighborhoods ¥(&R’) = »; and
v(R*) = v, are constant and nonzero. Thus by the differential equation

do==3(n=1)

Bi-Rt= l'i'-',‘-l - %l + Jo(vs = ) (7.46)
> Ao(va = ¥j),

and hence the distance between R’ and R* increases if Ao(vx — ¥;) 2 0. This is in particular true
if vy =v;.

In tiile case that the dimension of the space n > 3, we know from (7.33) and Proposition 7.38
that for almost every t € ARg,, the condition s(1, R‘(t)} # 0 implies mg = 1. By the definition of
mo, this implies that for almost all ¢ and all points (R’(t),t) with R(f) > Ro and (¢, R¥(t)) # 0
there exists a box B such that the set I' N B consists exactly of the corresponding R’. Thus the
observation (7.46) implies that the distance between all interfaces R* and R7 increases if they have
the same normal, and hence such interfaces can never meet. As a consequence we find that if two
R/ and R* with nonvanishing normal meet at some point 2, then ¥; — v, is either in the set {2,0}
or in the set {0,~2} in a whole neighborhood of the meeting point and consequently does not
change sign. Thus (7.46) shows that either R ~ R* 2 0 or 2/ - R* < 0 in the whole neighborhood
of the meeting point, because the sign of Ao is fixed and 85! — 221 js Lipschitz continuous in
the neighborhood. Meeting is only possible in the second case. Integrating the inequality yields
(R’ - R*)(7) < O for 7 bigger than the meeting time. On the other hand by the ordering we
know (Rf = R*)(r) 2 0, thus equality follows after the meeting point. A similar result holds for
nucleation. Thus at most two true interfaces can nucleate from a “phantom” interface and then
stay apart or at most two true interfaces can meet and then form a single “phantom” interface.
These are the only possibilities of geometric singularities in Ag,.

Of course “phantom” interfaces cannot meet each other, because they move by mean curvature.
Moreover they can only meet any of the true interfaces at one of the above meeting points because
otherwise the density mqo would be bigger than 1 on a true interface. :
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] Similar u'g:umentl apply for n = 2. Indeed in that case the Lagrange multiplier has locally
either a fixed sign, or is identically zero. In the first case, the same analysis as above applies
because the density mg of interfaces with non vanishing normal is 1 again. In the second case, all

the interfaces move by mean curvature and cannot meet anyway. Thus the proof of Corollary 7.42
is complete.

Remark 7.47. The evolution equation is the radial version of the expected limiting nonlocal
geometric problem

1
Vimki = = k;ds
‘ ‘= Ejlrﬂ; Iy 3

where V; is the normal velocity and k; is the sum of the principal curvatures of the interface I';.
Note that in the right hand side of (7.43), we sum only over interfaces R’ such that ¥(R’) # 0.
These interfaces represent exactly the free boundary of v. If »(Rf) = 0, these “phantom” interfaces
are not seen by the limit v and they correspond to collapsing e-interfaces. They do not have an
impact on the evolution of the other interfaces. :

Remark 7.48. The limit v satisfies the weak Hdlder continuity estimate in Remark 2.11. For true
interfaces it implies that at the points of N(Ry) (see (2.17) and Proposition 3.9 for the definition)
only one of the following behaviours of the graphs R’ is possible.
, As seen in the proof of Corollary 7.42 at most two true interfaces can meet or nucleate at a point
t € N(Rp). Two meeting true interfaces can only continue as true interfaces accross t € N(Rp) if

Ao changes sign at this time point, and this can only happens if a true interface nucleates from the
fixed boundary. :

Any true interface that does not meet with another one at times in N(Rp) continues as a single
true interface across this time point.

When there exists a continuation, it has to be of class Holder-} and thus the differential
equation is satisfied across that point. .

Example 7.49. Colliding interfaces are generic to the nonlocal flow. Indeed if two interfaces
are sufficiently close to each other initially, sufficiently close with respect to their distance to the
others and to their own size, then they have to meet before the smaller of them has time to shrink
to zero.

Let n = 3 and assume that there are three initial interfaces. Then their evolution, as long as
they all exist, is governed by

~(F + 220 = ~(-1)*m -
Where __R-R+P
ko = T 3 BV + (P
Therefore

and thus (R®)3(t) 2 —2(n — 1)t + (R%)*(0). Thus R® cannot dissapear at the origin, as long as
2 < tmax = ey (£°)(0).
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Since mass is preserved the biggest interface is bounded below by some number Rpmin, Which
is such that the mass of a ball of radius R equals the initial mass:

(Baia)® = ((B')® - (R*) + (R°)°) (0).
Since all interfaces are decreasing, this implies the following bound for po:

Rnln - Rz(o)
o 2 T+ (R + @R

Subtracting the equation for the second and third interface results in
R-B= 2:-1-"—1-2(71 1)po € =2(n = 1)po.

Now suppose the interfaces R? and R® do not meet before R® vanishes. Then we can integrate the
above inequality, use the bound for ;o and evaluate the result at 5,4 to find

Ruin = R2(0)
0.5 (B = B)tme) S ~ [y i s + (B = R(O).

I (R? - R%)*(0) is small, then Ry, is approximately R!(0) and it is clearly possible to choose
initial data for R? that contradicts the above inequality. Thus R? and R® have to meet before the
smaller one had time to dissapear. After the meeting point the evolution becomes statxonuy and

R' = Renia.
Remark 7.50. Our estimates of section 6 are strong enough to prove that

Eo(t) = § X malt, RONRI)™.

Thus jumps in the energy correspond to either jumps in interfaces or jumps in density. I we
impose that initially no interfaces with vanishing normal exist and that there are only finitely many
interfaces initially, then by the maximum principle for the e~equation, no interfaces can nucleate
from the origin as long as the smallest of the initial interfaces has not disappeared. Thus up to
that time all interfaces have nonvanishing normal and consequently density 1 and are continuous.

Section 8: The viscous Cahn-Hilliard equation

Here we consider the viscous Cahn-Hilliard equation in Q7 := 2 x (0,T) as introduced by
Novick-Cohen [NC]
abip - Au = 0, (8.1)

s = -ty + W'(:p) + vBp. ) (8.2)

Imposing Neumann—zero boundary conditions for both v and ¢ and applying the usual techniques
one obtains the equations

2 f1ve éz + 0Ee) + v [ 1o ez = 0 (83)
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and 1
/n dpdz = 0 and ]ﬁaa -1 faW'(cp) ds. (8.4)

We want briefly show, how this equation relates both to the Cahn-Hilliard and the nonlocal
Allen-Cahn equation.

Let us first consider the limit ¥ — 0, keeping all the other parameters fixed. Formally the
. limit problem is the standard Cahn-Hilliard equation. If the initial energy is uniformly bounded
in v, this can be shown rigorously. First we note that the estimate (8.3) immediately gives weak
compactness in L?(Qr) for Vi and a bound of ¢ in L¢(R7). But since the equation is nonlinear
it is important to have strong compactness in L!(Q7) for ¢. To this end we note that the first
equation (8.1) implies : '

a |l 8ep llLam-19) = || Ve llL2ar) < Ee(¥)(0) (8.5)
and thus (with E,(¢)(0) < C) |
a|lp(-s: = b) = ¢ llLan-19) < C-h. (8.6)
Now interpolating between L?(H ~12) and L?(H??) yields
Il 9(re+B) = ¢ llrar) < ChY. (8.7)

This implies strong compactness for ¢ in L!(Qr).

Of course the estimate for Vu of (8.3) together with the bound of its mean value by (8.4) imply
weak compactness in L?(Q2r) for both u and Vu. This convergence is strong enough to pass to the
limit ¥ — 0 in the viscous Cahn-Hilliard equation (8.1) and (8.2).

If the limit a — 0 is considered, the limit problem will be the non-local equation. To see this,
once again asssume that the energy is uniformly bounded in @. Then the estimate (8.3) yields the
L'-compactness of the order parameter ¢ immediately, and the weak L3(27)-compactness of u
and Vu is again obtained from (8.3) and the mean value condition (8.4). This compactness allows
to pass to the limit in (8.1) and (8.2). The limit of (8.1) gives Au = 0 for the limit, and thus u is
a constant. But then (8.4) yields the correct formula for 4 and we find the non-local equation in
the limit.

So we see that both the non-local equation and the Cahn-Hilliard equation occur as special
degenerate limits of the viscous Cahn-Hilliard equation.
Appendix: Ellipticity of the linearized Allen-Cahn equation

Here we give the proof of the ellipticity Proposition (6.24).

Proof of Proposition 6.24. Let S be one of the sets of integration as in Proposition 6.24. We
start integrating the left hand side of the claimed estimate by parts. This results in

(LAS) = /s (-9" + W"(@)¥)¥¢? ds
' L] 2) 22 13 ¢!
| =L(I0|’+W(9)t){ dz+2/s!'i'€fdz (A1)
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Here we should point out that ¥ is not necessarily smooth at s = 2{. But sind ¥ vanishes at these
points, the integration by parts is nevertheless valid. Now we note that W"(6) = 2(36% — 1), and
__ in the set where this function is strictly positive nothing is to prove. Careful study of © will show,
that the measure of the set where W is not strictly positive is small enough, such that the integral

of ©2 over this set can still be controled by the integral of /2.
So we introduce for any a > 0 the set

e = {W"(0) < 28} N (~c~P 4 3™ ,c7P).

(A2)

We want to estimate the diameter of any connected component of I,. By definition (6.5) and (6.6)

6(z) = ) _Ei(z)tanh((-1)(z - ) + pc) + £#1(2)
]

with
C . .
| @1 lleee(e=s4sme o-2) S Cll Al <€ 7 uniformly in time

by Corollary 2.7 and Lemaa 6.25.

Since W"(0) <22 & 0| < \/‘-}1 we thus find

L c{ Y= [ tanh((-1)( - ) + o) | < {232 + Ce)
i
{ $ a4+ 1
c U {ltanh((-1)'(z = z) + ) | < /=5~ + Ce}
- .

cUtle-4 < umh-‘( S +c:) + I}
$ :

=T
‘
We return to (A.1). We continue to estimate as follows
(LES) 2 / |¥7€ ds + 2a /s ¥’¢ dz
s

- (2+2a) /I 2 d: 4+ 2 /s 'Ve'e d.

But, using ¥(z!) = 0, gives
¢t d / 192 ds
/I. Cée= 2‘: l‘\l‘"e

" 3
= 3 !
Sl (fr) «
al '
S5 L
< (tanh" ( ¢-;l +C£) + tcnh"Q) / |9']2€2 d=
S
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by (A.3) and since |u, = [tanh~la,| < tanh~1Q. Note in addition that by construction JI' C
{€ = 1}. We put this into (A.4) and continue to estimate

(ZES) 2 .

(1 - (2+2a) (umh‘,‘ (‘/%1-;0:) + umh"Q)) /s ¥Pe dz

[ i )

-:;(u)

222 ’
+2a/stf dz+2/s'!€'€dz. (A.6)

The number ¢o turns out to be positive if ¢ = 0 and @ = 0 by the choice of Q in (5.1), and thus
there exist positive £y and ag such that

0 < co(€0,a0) < co(e,00)

for all £ < ¢p.

This proves the proposition with {; = }co(¢0,80) and (3 = 2ao, if we still use the Holder
estimate for [ ¥'¥E'E .
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