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Convergence of the Two—Phase Stefan Problem to the One-Phase Problem

Barbara E. Stoth*
, Department of Mathematics
Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract.

We study the limit of the one-dimensional Stefan problem as the diffusivity coefficient of the solid phase
appoaches zero. We derive a weak formulation of the equilibrium condition for the resulting one-phase
problem that allows jumps of the temperature accross the interface. The weak formulation consists of a
regularity condition that only enforces the usual equilibrium condition to hold from the liquid phase.

At the end we briefly discuss the radial problem in higher space dimensions.

The main tool in order to prove the convergence are uniform bounds on the total variation of the free
boundary that are derived using a regularized problem, where the equilibrium condition is substituted by a
dynamical condition.

Introduction.

The classical two—phase Stefan problem (in one space dimension) reads:
y—c-u'=0, if 0<z<s(t),
U —cpu’" =0, if s(()<z<a,
with no-flux conditions on the fixed boundary
v'(t,0) = v/(t,a) = 0,

and together with the latent heat equation (or Stefan condition)

(c+(u) = e-(u7)) (t,8(t)) = —1 &(2)

and the equilibrum condition
u(t,s(t)) = 0.

Here u is interpreted as the temperature deviation from the melting temperature, the set ' := {z = s(1)}
represents the interface separating the liquid (z > s(t)) and solid (z < s(t)) phases, (u*/~)’ are the limits of
o’ from the corresponding side of the interface, l is the (positive) latent heat and c_ and ¢, are the (positive)
heat diffusivity coefficients of the two phases (resp.). The system is completed by initial conditions ug for
the temperature and so for the location of the free boundary. We stress that we do not impose any sign
condition for the initial temperature, so that superheating and supercooling effects are included.

The objective of this paper is to study the behaviour of a particular class of solutions of the two—phase Stefan
problem as one of the diffusivity coefficients approaches zero.

* partially supported by the Army Research Office through the Center for Nonlinear Analysis



To this end we set c_ = é§ and ¢, = 1. Thus we are interested in the limit § — 0.

Formally we expect the one-phase problem

u =0, if 0<z<s(t),
u—u’' =0, if sf)<z<a,

with no-flux conditions on the fixed boundary
u'(t,0) = ¥'(t,a) = 0,
the latent heat condition

(W)t 5(t)) = ~laft)

and the equilibrum condition
u(t,8(t)) = 0.

But, in particular in the case of overheated initial data (so that the free boundary moves into the solid
region), the equilibrum condition contradicts the differential equation u; = 0 in the solid phase, if the initial
condition in the solid phase is different from = 0, resulting in a jump of the temperature u across the free
boundary.

In order to overcome this difficulty we will introduce a weak formulation of the one—phase Stefan problem
(see Definition 1.1 in section 1) where the equilibrum condition is substitued by a integrability condition:
We let

p(t,2) := H(z - (t),

given in terms of the Heavyside function H, be the characateristic function of the liquid phase. Then we ask
that '
up € L*(0,T; H*%(0,a)).

This replaces the equilibrum condition in the following sense: By definition of ¢

)69 = {0, ifos o)

Since this function has to be in H?(0, a) for almost all ¢, it has to be continuous and thus
u*(t,s(t)) = 0 for almost all t € (0,T).

Thus the original equilibrum condition is satisfied for the limit from the “liquid” phase. In the solid phase
the initial values.ot the temperature u are just transported, so that according to the initial condition there
might be a jump in the temperature across the interface.

In section 1 we will prove that a particular class of solutions of the two-phase problem converges to such a
solution of the one-phase problem, as the diffusivity coefficient § approaches zero (cf. Theorem 1.9).

We still have to make precise what we mean by ‘particular’ in the above. We only consider solutions of the
two-phase problem that can be obtained through a regularization process: we assume that they may be
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approximated by a sequence of solutions of a regularized Stefan problem, where the equilibrum condition is
substituted by a dynamical condition, namely

u(t,s(t)) = —as(t).

In section 1 we give the precise definitions of the two—phase Stefan and regularized Stefan problem, thereby
following the approach of Visintin (1987), as well as the definition of the one-phase problem. Then we
state the basic estimates (Proposition 1.5) and prove the main theorem (Theorem 1.9), that establishes the
connection between the two—phase and one-phase problems.

In section 2 we prove Proposition 1.5, which contains the basic mathematics of our problem.

In section 3 we briefly discuss the radial problem. It turns out that an equivalent of Proposition 1.5 holds
true, such that basically the same method as in the one-dimensional problem applies.

Section 1. The one dimensional problem
We start giving the precise notion of a solution of the one-phase Stefan problem.

Definition 1.1. (One-phase Stefan problem)
A pair of functions u € L*(0,T; L*(0,a)) and s € BV (0, T) with values in [0, a] is a solution of the one-phase
Stefan problem with initial condition uo € L*(0,a) and so € [0, a], if for the order parameter

p(t,2) := H(z—s(1)), wole) = H(z—s0)

given in lerms of the Heavyside funciion H, and the ltemperature u the equation

- /o T/O "W + Q)udzdt - /o " (40 + po)(2)0(0, 2) dz — /o T/O “(ou)'v' dzdt = 0

holds for all v € L%(0,T; H*%(0,a)) N H:3(0,T; L%(0, a)) with v(T,-) =0,
and the regularity condition
up € L*(0,T; HV%(0,a))

is valid.

Remark 1.2.

1) Since (up)’ € L2*(0,T;L%(0,a)) the differential equation implies, that the distributional derivative
8(u+ ¢) € L2(0, T; H-1%(0,a)) and thus (u + ¢) € C%¥([0, T); H~1(0, a)).

2) We only impose an initial condition for the energy e = u + ¢.

3) The regualrity condition substitutes the equilibrium condition as pointed out in the introduction.

4) We still remark that in the solid phase the temperature is ambigious, if the half line connecting the point
(t,z) in the solid phase and its corresponding initial point (0, z) does not entirely lie in the solid phase.

The main tool in order to prove the convergence of the two—phase to the one-phase problem is an estimate of
the total variation of the free boundary of the two—phase problem, which does not depend on the diffusivity
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coefficients. This estimate in general might not be true for any solution of the two-phase problem, but it is
valid for any solution obtained by the time-regularization process as described in the introduction.

Definition 1.3. (Regularized two-phase Stefan problem)
A pair of functions u € L?(0,T; H*(0,a)) N L*(0,T;L?(0,a)) and s € HV2(0,T) is a solution of the
regularized two-phase Stefan problem with initial data uo € L?(0,a) and s € [0, d), if

- /OT/; uv dzdt — /oa uo(z)v(0,z) dz + /:/:{6(1 - ¢) + plu'v' dzdt - /‘)‘ng(t)v(t,s(i)) dt =0

fJor all v € L*(0, T; H%(0,a)) N H%(0,T; L*(0, a)) with v(T,-) =0
and where p(t,z) := H(z — 8(t));

0 < 8(t) < a for almost all t;
forall§ € R and almost allt € (0,T): (asi(t) + u(t,s(t)))-(€ — s(t)) > 0;
8(0) = §¢.

Remark 1.4.

1) The differential equation together with the regularity of u and s imply that the distributional time
derivative d,u is a continuous linear functional on L?(0,T; Hy'%(0, a)), and thus 8,u € L2(0, T; H~12(0, a)).
Hence u has a trace u(0,) in H~12(0, a) at time ¢t = 0.

2) By choosing vo(z) (1 - ;"-) as a test function and letting n — 0 we obtain u(0,-) = uo.

3) Still note that through the differential equation

T pa 4’
[18:(u + @)llL2(0,1:1-13(0,8)) < ( /0 /0 {6(1-¢)+¢}u"dzdt) .

4) The dynamic free boundary condition is formulated in a variational setting in order to take care of the
fact, that the free boundary may hit the fixed boundary.

The existence of such solutions can be shown following the proof given by Visintin (1987) for the case of
equal diffusivity coefficients. Existence of a smooth solution was obtained by Xie (1990) in case of smooth
initial data.

The regularized Stefan problem has a Ljapunov functional which implies natural bounds for the temperature
and the free boundary. In addition to this the total variation of the free boundary s(t) of this regularized
two—phase problem satisfies a bound, which is uniform in both the regularization parameter o and the heat
diffusivity coefficient 8.

Proposition 1.5.
Any solution (u, 8) of the regularized two-phase Stefan problem satisfies
the energy estimate

a T pa T a
sw [,z + [ [160-9) + o dzae + o [Cnore < [ ugas
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and the BV -bound
T a
[t < [ fuola.
0 0

We will give the proof of this central proposition in section 2.

Let us now come back to the two—phase Stefan problem. The definition for a solution is very similar to that
of the regularized problem. The basic changes are due to the fact that the free boundary no longer will be
of class H':2 and thus the initial condition for the free boundary has to be formulated within the differential
equation.

Definition 1.6. (Two-phase Stefan problem)
A pair of functions u € L*(0,T; L?(0,a)) and s € BV(0,T) is a solution of the two-phase Stefan problem
with initial data uo € L?(0,a) and s € [0,a), if for the order parameter

p(t,z) = H(z-s(t)) and ¢o(z) :==H(z - s)

and the temperature u the differential equation

T pa a T pa
- /0 /o (v + Qv dedt — /0 (uo + @o)(2)0(0, 2) dz + /O /0 {(6(1 = ¢) + pJu'v'dzdt = 0
holds for all v € L2(0, T; H*(0, a)) N H3(0, T; L*(0, a)) with v(T,-) = 0;
0<st) <a foramostallt;
for all € € R and almost allt € (0,T): u(t, s(t))- (€ — s(t)) > O.

Now, for any § > 0 there exists a solution of the two—phase problem that can be obtained as the limit of
a sequence of solutions of the regularized problem. This result has been shown by Visintin for the case of
equal heat diffusivity coefficients (1987), and still holds true here. One important feature of this solution is,
that the bound on the total variation of the free boundary as obtained in Proposition 1.5, is independend of
both a and é. This is the content of

Proposition 1.7.

For any 6 > 0 and any initial data uso € L?(0,a) and ss0 € [0,a] there ezists a solution (us,ss) of the
two-phase Stefan problem, which can be approzimated by a sequence (Usq,85q) of solutions of the regularized
Stefan problem in the following sense

b5a —— & in the weak-»-topology of [C°(0,T))*,
80 — 8 strongly in LP(0,T) for any 1< p< oo,
Usa, Uj, —  us, uj weakly in L2((0,T) x (0, a)),
&psa —— Oups in the weak-x-topology of [C°((0,T) x (0, a))]*,
Péa — ¥s strongly in L?((0,T) x (0, a)).
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In addition we have the estimates

a T ra a
sup / wl(t,z)dz + / / {601 - g8) + pa}(us)? dzdt < / ul, dz
0 0J0 0

and

T a
./o I(s6):(2)] dt S/o |uso| dz.

Remark 1.8.
Proposition 1.5 implies that for u = us as above

/a u’(t,z)dz < /4 ud(z) dz.

0 0

for almost all ¢t > 0.
Assume that there is an initial jump of the interface but that apart from that the solution nice:

tlin(l’s(t) =: 84 < $sp.
Since u + ¢ has to be continuous in time, the temperature has to compensate for the jump in ¢:

. _. _ Juo(z) = 1,if z € (84, 80),
i u(t,2) =: uy(z) = {uo(z), else
Using the monotonicity of the L?~norm, we find

/n ui(z) - ui(z)dz = /‘o (—2uo(z) + 1) dz < 0,
0 [ e

implying
s
8 — 84 < 2/ uo(z) dz.
"t

We conclude, that in order to have an initial jump, a ‘sufficient’ amount of overheating is necessary. For
more detailed discussions of these questions we refer to Gurtin (1992) and G6tz and Zaltzman (1992).

Proof of Proposition 1.7.

We denote by (usq, 85«) & solution of the regularized problem with initial conditions uso and s50. Note, that
any solution of the regularized Stefan problem satisfies as well the differential equation as imposed for the
non-regularized problem.

Then the bounds of Proposition 1.5 allow to substract a subsequence that converges as claimed. This
convergence then immediately implies that the differential equation is satisfied for the limit.

To show the convergence of the free boundary equation, we first observe that a(s;); converges to zero
in L'(0,T), due to the bound for (ss); of Proposition 1.5. So we only have to prove, that usq(t,s5q(t))
converges to us(t, 85(t)). By Proposition 1.5 (use)’ is in L? uniformly in a and according to Remark 1.4 (3)
the time derivative 8 (usq + @sq) is bounded in L?(0,T; H~1%(0,a)) uniformly in a, and by construction
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¢sa € L=(0,T; BV(0, a)) with values in {0,1}. Thus a Lemma of Luckhaus applies [Luckhaus 1990, Lemma
2], giving a bound on fractional time—derivatives of u;o and @sa:

T pa T ra
/ / lpsalt,z) — oalt —7,2)| dz dt + / / lusalt, 2) — Usalt — 7,2)| dz dt < C(§)r,
r JO r JO

with a constant independent of o (but depending on & through the L?-norm of the temperature gradient).
This implies that we can select a further subsequence such that

U5 — U5 in Ll((O,T) X (O,a)).

Now we estimate

‘/o‘ ’ [usa(t, 8sa(t)) — us(t, 85(2))| a

T a Y2 ¢ op V2 ptpe)te
< // (uza)zdzdt) (/ |8sa — s;ldt) + —// |usa — us| dz dt
0Jo 0 P 0 l(‘)
T ra 1/2
4 2272 ( / / (u',a)wzdt)
0Jo

T 1/2 1 T pa
< C(5) (/0 ssa — o5 dt + ,N’) + ;/0/0 usa — us|dz dt.

Since p can be chosen arbitrary small this implies that
Usol-, 85a) — us(+,85) in L*(0,T).
Thus we find for all £ € R and almost all t € (0,T) :

us(t,85()) - (€ — 5(1)) 2 0.

This proposition enables us now to show that, as § — 0, a solution of the one-phase problem is obtained.

Theorem 1.9.
Assume that uso — ug weakly in L2(0,a) and s50 — s0. Then a subsequences of the solutions of the two-phase
problem as constructed in Prop. 1.7 converges to a solution of the one-phase Stefan problem.

Proof. By Proposition 1.7 we may select a subsequence § — 0, such that
45 — & in the weak-+-topology of [C°(0,T)]*,
8 — 8 strongly in L?(0,T) for any 1 < p < oo,
us — u  weaklyin L?((0,T) x (0,q)),

and
Bps = 6 in the weak-s-topology of [C°((0,T) x (0, a))}*,

ws — strongly in L?((0,T) x (0, a)).
7



Since u;(t,-) = 0 on supp ¢}, we have
(psus) = psuj.

This implies that

T pa T pa T pa
[ [ emirpaza = [ [ eisipacar < [ [ 60~ g0+ piduiPazar < ¢
0Jo 0Jo o Jo
with a constant independent of §. Thus for some further subsequence
(psus)) — w  weakly in L%((0,7) x (0, a)).

In addition we now that
psus — pu  weakly in L2((0,T) x (0, a)).

This implies that
(pu)’ € L*((0,T) x (0,a))

and
(psus) — (pu) weakly in L?((0,T) x (0, a)).

This allows to pass to the limit in the differential equation of the two—phase problem. In particular
T fpa T ra T ra
// {6(1 — ps) + ps}usv' dz dt = 6// (1 - ps)usv' dzdt + // (psus)v’' dz dt
0 Jo 0Jo o Jo
T pa
—0 + / / (pu')v' dz dt
o Jo

1/2 1/2
because 8 o[y (1 = pe)us’ dzdt] < 642 ([f7 (1 - ps)uy? dz dt) ! (Jofs v'2 dz dt) " < csv2. This
proves the Theorem. '
We still note that (pu)’ € L?((0,T) x (0, a)) implies that

u(t,z) — 0 as z approaches s(t) from above.
In addition v’ € L2({(t,z) : = > s(t)}) and

(pu) = v’

Section 2: Proof of Proposition 1.5.

This section deals with the essential mathematics of our problem, the proof of the a priori estimates of
Proposition 1.5. The first claim of the proposition my be seen as a consequence of the existence of a natural
Ljapunov functional. Indeed it may formally be obtained by just choosing u as a test function. To obtain
the second estimate the best choice is sgn(u) as a test function. But of course in particular the second test
function has by no means the required regularity, such that we have to construct suitable approximations,
thereby recovering the structure of the desired test functions and taking care of the initial and terminal
values. We want to treat both estimates at the same time. So let

J:R— R
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be a Lipschitz function (later either the identity or an approximation of the sign-function) and extend u by
its initial values to negative values of ¢t. Then set

ve := f((nu)*¥e),

where ¥, is a symmetric, smooth Dirac sequence with compact support, only depending on ¢, and n is a
cut-off function in time

ﬂ(t) =1, ifOStSto;
() =0, ft<—qyorte+7<Y;
n’(i)=$, if —y <t<O;

() = -%, it <t<to+7.

In order to keep the structure we choose
(Ve * '/’e) /]

as a test function. If tg < T this is an admissible test function, satisfying the regularity requirements in
the variable z by the definition of u and in the variable ¢ by smoothening through ¢., and the vanishing
condition at T through the cut-off. Thus

- /07'/00 u[(ve * ¥¢) - n)edz dt — /oa uo(ve * ¥)(0,2) dz

T pa T
+ / / {601 @) + P} [(ve s Yo) - ) dz dt — / 84(O)(ve s %) -1, 8(1)) dt = 0. *)

Let us calculate the first term:

_ /OT/oau[(u,w‘).,,],dzdt
= - /07'/04 un(ve)t * Yedz dt — AT/oau(v,t¢,)mdzdt

< r 0 o 1 ftotv e
= - /-b/o un(ve)e * Y dz dt + [l uon(ve * Y ) dz dt + pv /‘o /0 u(ve * ¢) dz dt
o0 a 1 0 a
- /:p/ [(ur)) * ¢‘](v‘)' dz dt - -/J uo(ve * Y¢) dz dt
- 0 7 -wJo

a to+7 pa
+ ./0 uon(ve * ¥ )(0,z) dz dt + .‘1;‘/&, T/o u(ve * ¢ ) dz dt

[_ :/o. O:F((un) * ¥¢) dz dt — % /. OJ: uo(ve * ¥¢) dz dt + /o ) uon(ve * ¥)(0, z) dz

to+7

a
+ 1 / u(v, * ¢) dz dt.
T 0

(]

Here F is a primitive of f with F(0) = 0, and since v, vanishes at 200 the F~term is 0. We thus arrive at
the following formula for the first two terms of (x):

1 0 pra 1 to+Y pa
(1#) + (2%) = - 7/-7/«: wo(ve » %) dz dt + ;/‘o /o u(ve s %.) dz dt.
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By construction we know that
(un)*¥e =3 wn in L*((0,T) x (0,a)),
and since f is Lipschitz, both
veand vexp 8 v := f(un) in L2((0,T) x (0,a))

as well. So we conclude

(1#) + (2+) =8 -~ -/j vovdz dt + — /‘°+‘i/ uv dz dt.

We next observe that (ve * ¥)’ is uniformly bounded in L%((0,T) x (0, a)), such that
(vexve) =2 o in L2((0,T) x (0, a)),

and

(ve* ¥e)(,8) =8 o(,s) in L%0,T).
Thus the third and the forth term in (*) converge to the respective terms where v, * ¢, is substituted by v.

Alltogether we find
1 0 pa 1 to+y pa
——/J uovdxdt+-—/ /nvdzdt
7 J-+Jo T Jio 0

T ra T
+/0/; {6(1 — @) + p}u'v'ndzdt — -/o s:(t)v(t,s(t))n(t) dt = 0. (»*)

Now choose f(A) = A, so that v = un. Then, as y — 0

1 0 pa 1 toty 1 1 a
- —/J uov dz dt + / uv dz dt——»-—-—/ uidr + / u(tp,z)dz
v J- 0 2 0 2

for almost every to and
T pa T
[ [a-o+awvndza - [ st sme o
0Jo

to pa to
-—-./ {6(1 - o)+ p}u'?dz dt ~ / 8:(t)v(t, s(t)) dt.
o Jo 0
But almost everywhere in {s # 0, a} the dynamic free boundary condition implies u(t, 5(t)) = —as;(t), and

almost everywhere in {s = 0,a} the time derivative vanishes, such that —s;(t)u(t, s(t)) = as?(t) and thus
the first estimate of the Proposition is shown.

In order to prove the second we take

-1, if Ag-%,
FQ) = fa(d) ==}, if “l<agy,
1, if 1<)



which is a standard Lipschitz approximation of the sign-function. In this case v = f,(un). Since f;, is sign

preserving we have
1 tot+ pa
- / / uvdzdt > 0
v to 0

0 pa a
l/j yvdzdt < / Juo| dz.
Y J-vJo 0

Using the monotonicity of f, gives u’v’ positive, such that (++) implies

and, since f,, is bounded by 1

T
—/o 8cfn (u(-,8)n)ndt < /o |uol dz.

But as above either s; = 0 or u(t, 8(t)) = —as:(t). Substituting this and letting first n, then 7 converge to
zero establishes the second estimate of Proposition 1.5. The proof is thus complete.

Section 3: The radial probleﬁa.

In the first two sections we focussed on the one dimensional problem, and thus neclected the effects of
curvature. Here we will briefly outline that the same method as presented in the first two sections works
for the radial problem in higher dimensions. The basic changes are to be made concerning the regularized
two—phase problem. The curvature term will be incorporated in the dynamical free boundary condition,
which is known as the Gibbs-Thomson relation. We follow again the approach of Visitin by defining the
spaces:

W := { measurable v: (0,a) = R : / lo(z)|?zV-! dz < oo}
0
Vi={veW : v eW}, Z = v ncC(o,a).
Let uo € W and s € [0,a].

Definition and Proposition 3.1.  (Radial two-phase Stefan problem with dynamical Gibbs—-Thomson
relation)

There ezists a u € L2(0,T; V)N L=(0,T; W) N HY2(0,T; Z') and a free boundary s € L=(0,T) such that
sN € HY2(0,T), which are solutions of the free boundary value problem

u(t, () - s()¥ = € L*(0, T);
T fa T pa T
—-/o:/o uozV-ldzdt + -/o-/c; {1 - )+ bp}u'v'zN"1dzdt + %‘/o %[s(t)”]v(t,s(t))dt =0

Jor all v € L*(0,T; Z) N H (0, T; W) such that v(0,-) = v(T,-) = 0;

0 < s(t) < a almost everywhere in (0,T);
{" GT%[’(""] + ‘(‘)"") ~ u(t, (1)) -s(t)”'l}'ls - o(t)] > O;
u(0,-) = up in Z';

8(0) = §g.
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The cruical step now is to obtain again the bounds as in Proposition 1.5, in particular the estimate on
the total variation of the free boundary. The first estimate of Propostition 1.5 still holds true in the radial
setting, since it was a consequence of the existence of a Ljapunov functional.

Proposition 3.2.
Any solution of the two-phase Stefan problem as in Definition 3.1 satisfies

[
o N

Proof. Following the same strategy as in section 2 we find

a
%s”(t)l dt < 2a¥°°T 4+ / [uo(z)|zN ! dz.
0

T a
iis"(t)sgn u(t,s(t)) dt < / |uo(z)|zV ! dz.
N A

Now we observe that either sgn u(t, s(t)) = sgn §(t) or () is bounded:
If u(t, s(t)) # 0 and s(t) # 0 or a, then the free boundary condition implies

o (}—t,-‘%s’v(t) + sN"z(t)) = u(t,s(t))sV(t)
and thus
sgnu(t,s(t)) = sgn (%%s"(t) + sN'z(t)) .

If either § £V (t) > 0 or 5V (t) < —sV=2(t), then clearly
- 1d N N-2n) = 1d N
sgn (Nas @t + s (t)) = sgn (ths ®

and otherwise

1d y N-2
lﬁ—dis (t)l S 8 (t).

The last inequality holds as well in the case when u(t, s(t)) = 0, and in the set {s(t) = a} and {s(t) = 0}
the time derivative vanishes almost everywhere.
Putting all this together we conclude, that

T 11d T a N
/ = |=sV(t)| dt < 2 / sN-3(t) dt + / [uol(z)zN~1dz
o N |dt o o
a
< 24V +/ [uol(z)zN ~dz.
0
This estimate does neither depend on the parameter a nor on §.

Once this Proposition is obtained we procede as in section 1. Thus we first obtain a solution of the two—
phase Stefan problem through the regularization process, and then a solution of the one-phase problem. In
particular Proposition 3.2 ensures that the order parameter

psa(t,z) = H(z — 85q(t))
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converges pointwise almost everywhere as first the time regualrization parameter a and then the diffusivity
coefficient § converge to sero. The limit then has the same structure and is given by some

e(t,z) = H(z - s(t)),

where s defines the free boundary of the limit one-phase Stefan problem.
The definitions of the two-phase and the one-phase Stefan problem follow the same spirit as those for the
one dimensional case and we do not give them explicitly. Once again the equilibrium condition for the
one-phase problem will be given by

uyp € L*(0,T; V).
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