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REMARKS ON OPTIMAL DESIGN PROBLEMS

Luc TARTAR
Department of Mathematics, Carnegie-Mellon University

Pittsburgh, PA 15213-3890, U.S.A.

Abstract: One discusses some problems of optimal design for a diffusion equation, when the functional to
minimize contains a term in |grad(t*)|2.

Introduction
A little more than 20 years ago, following the discovery by FYan$ois MURAT of some counterexamples

[la-lb], we set up the mathematical basis of a new method for solving some optimal design problems with
distributed parameters [2]. The lack of existence of solutions for some optimal design problems had actually
been discovered earlier by Konstantin LUR'E [3], but his own attempts for finding a solution were not so
successful, I was told, until he had read [2]. Our analysis relied on an extension of some earlier work of Sergio
SPAGNOLO [4a-4b], extension which became later described as homogenization, following the terminology
introduced by Ivo BABUSKA [5]. However, if many applications in Engineering that I. BABUSKA had in
mind did use periodic structures, it would not have been logical for us to impose any restriction of any kind
for the minimizing sequences trying to find the optimal designs that we were seeking and we had worked
in the same genera] framework that S. SPAGNOLO had considered, and called G-convergence as a reminder
that it was related to the convergence of GREEN functions. We actually developed a slightly more general
framework, that we called //-convergence [6], but the main difficulty that we had to overcome was to find
a characterization of the limits that we were considering. In discovering some work of Enrique SANCHEZ-
PALENCIA [7a-7b], we had understood that our problem was identical to that of describing effective properties
of mixtures, and that the first bounds that we had obtained were indeed the classical elementary ones derived
from variational principles.

In order to go further, I devised a method [8] using ideas from the theory of compensated compactness
that I had also developed with F. MURAT, but as the method required the use of some adapted functional
that had to be guessed, it was only a few years after that I found a good choice for characterizing the
isotropic conducting mixtures obtained by mixing in given proportions two isotropic conductors, a result
identical with the classical bounds derived by Zvi HASHIN & S. SHTRIKMAN [9]. Using the same functionals
that I had found, the characterization of an isotropic conducting mixtures using two isotropic conductors in
given proportions was then obtained with F. MURAT and presented at a meeting at NYU in June 1981, while
the detailed proof was only written two years after [10], even after we had finally written our first article
on our original method [11]; ironically, the technical characterization that we had obtained was not really
needed for concluding in usual cases, as one could succeed in using only the classical cruder bounds.

In brief, the prototype of problems that can be covered by our original method is to consider first a
diffusion equation in a bounded open subset Q of RN

-div(cgrad(t/)) = / in fi, u G H£(Q), (1)

with / € H "1(fl), the scalar coefficient, o satisfying

0 < a < a(x) < 0 < oo a.e. in Q. (2)

One considers then a control problem where the coefficient a is constrained and one wants to minimize a
functional J of the type

J(a) = J^F(x,a(*)M*))dx} (3)

with F satisfying suitable regularity and growth conditions. Interpreting o as a conductivity, a natural
situation is that one has at one's disposal finite amounts K\,..., /cm of isotropic conductors with conductivity



7i> • • • 17m &nd the constraints imposed on a are that o must only take some of the values 7; , i = 1, . . . ,m,
with

meas{x : a{x) = 7j} < *;, for j = 1 , . . . ,m, (4)
m

assuming of course that meos(f2) <

In the preceding situation, minimizing sequences an are such that a subsequence an> /^-converges to an
effective (symmetric) tensor Aejj, and (2) is replaced by

"Kl2 < (Aejf(x)U) < /?l£|2 a.e. x € fi, for all £ € i i " . (5)

In order to be more precise, one needs to use the local amounts of each of the materials, i.e. write

?(*)7;, (6)

where the functions \ " are characteristic functions of disjoint measurable subsets of £2, and assume that

xf - Oi in L°°(fi) weak *, (7)

and then (5) can be improved into the following simple variational bounds

«-<*Mla < (AtJ3(x)U) < «+(«)KI2 a.e. x € 0, for all * € RN, (8)

where a_ and a+ are the harmonic and arithmetic averages

Of course one has

m .
Q<9j, a.e. * G O , ; s l BI, ]•""> = 1, a.e. x € fi, / ^da: < K i (j = 1.. . . ,m, (10)

but, apart from the case m = 2, the characterization of the admissible set of (Ae/f, 0\,..., 9m) is not known.
For m = 2, let Aj(x) be the eigenvalues of Atjj(x)\ then the simple constraint (8) means

°-(*) < ^j(x) < G+OO a e - x € ^ i i = !»••• »«̂ i ( i i )

and for obtaining the characterization one must add two more inequalities, for which one assumes 71 < 72 :

7 T r T 7 7
[ >(x) - 71 <*-(*) - 7i a+ (*) - 7i

IT) ^ • JkJ m

< +ft 72 - Aj(i) ~ 72 - o-(x) 72 ~ » a e - * € fi.

In the case where all the A; are equal, (12)o-(12)t correspond to the classical HASHIN-SHTIUKMAN's bounds.
Independently of finding the unknown characterization in the general case, the sequence un' converges

in HQ(Q) weak to the solution u of

-div(.4 e / /grad(«)) = / in fi, « € H^(n), (13)
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and
lim J(an>) = T I ^(x)F(^7;,t/(x))dx, (14)

if each function F(x,7 ; , t i) is a CARATH£0D0RY function satisfying a suitable growth condition (in order
to discover the best possible growth condition one must of course use SOBOLEV's imbedding theorem, but
one must also have a good understanding of how the critical exponent in MEYERS's regularity theorem
depends upon the regularity of / and the smoothness of the boundary of fl, and that matter is far from
being completely understood).

One has obtained then a relaxed problem of the original one: the control is (-Ae//» ̂ i> • • • î m)» the state
u is defined by (13), the cost function J* is given by the formula

) , (15)

but there is a difficulty: although 0 i , . . . ,0 m satisfy (10) and Aejj satisfies (8)-(9), there are some additional
but yet unknown extra conditions on -A*//, and therefore the precise set of controls is not known, although
there are some partial results, for example those obtained by Robert KOHN and Graeme MILTON [12].

The miracle is that it does not matter here because a solution will be obtained by considering the
larger set of controls satisfying (8)-(9)-(10) and observing that a solution of that problem will be given by
a symmetric tensor Atjj having a_(x) and a+(x), or only one of these numbers, as eigenvalues; as such a
tensor can be obtained by a simple layering, one finds then that an optimal control of the enlarged class
actually belongs to the otherwise unknown admissible set of controls, and the precise knowledge of what this
admissible set is appears then to be irrelevant.

In the same visit at the COURANT Institute where I had found a way to use my earlier method - which
Graeme MILTON popularized a few years later as the "translation method" - and where I had learned from
George PAPANICOLAOU about the classical HASHIN-SHTRIKMAN bounds for isotropic mixtures, I had also
mentioned to Robert KOHN our approach to optimal design using homogenization, as he was planning to
work on similar questions. In the interesting work he did then with Gilbert STRANG [13a-13b-13C], the
approach was necessarily different from ours because homogenization questions in linearized elasticity are
much harder than for a diffusion equation, and because the analogous problem would not have been to
consider a functional like (3) where only ti occurs, but a functional where grad(u) occurs and very little is
known in that case; they succeeded by cleverly changing a realistic problem of elasticity into a manageable
one, in order to benefit from another type of miracle than the one I have described. As R. KOHN justly
pointed out to me later, the miracle in our situation would usually not occur if one considered a functional
of the type

= E / A (z,o(*), **(*))«**, (16)

where u* is the solution of
-div(agrad(t/*)) = /* in S2, uk € Hl(Q), (17)

for some linearly independent /* £ H"l(Q)i k = 1,. . . ,p, and p > 1.

A new problem
As a step towards considering more realistic problems of optimal design, one considers now the problem

(l)-(2) with the purpose of minimizing the cost function

A » = jf (lgrad(u)|2 + (grad(ti).6)dx + F(x,a(x),ti(x)) W



with b E (L2(Q))N, or equivalently

K(a) = j[(lgr«l(ii - *)|2 + F(x,a(x),u(x)))cfx, (18)

for some v € H$(Q).

For the case of (18) with F = 0, we had already discussed the question twenty years ago in connection
with an abstract result of Michael EDELSTEIN [14], which I had improved then; I want to describe that
improvement here, as I believe it has only appeared in print in the way Marie-Fran$oise BlDAUT mentioned
it in her thesis [15].

Theorem 1: Let C be a nonempty (strongly) closed subset of a HlLBERT space H. Then there exists a dense
Gs subset A'o of H such that for any x 6 A'o, the minimizing sequences cn € C of the function c •—• ||x — c\\
are CAUCHY sequences. In particular the subset of points of H with a unique projection on C contains a
dense Gs subset, as it contains A'o.
Proof: Recall that a Gs subset of a topological space is a countable intersection of open subsets of this

6pace. BAIRE's theorem asserts that a countable intersection of dense open subsets of a complete metric
space is dense, so that a countable intersection of dense Gs subsets of a complete metric space is still a dense
Gs subset. As a corollary, one sees that for a countable number of closed subsets C, of a HlLBERT space
H, there does exist a dense Gs subset A'o of H having for each one of the C% the property mentioned in the
Theorem.

For x € H let d{x;C) denote the distance of x to C and for a bounded subset Z of H let diam(Z)
denote its diameter. For e > 0, let

C{x,s) = {c€C:\\x-c\\<d(x;C) + e), (19)

and for a > 0 let
A'a = | x € H : diam\C(x,e)j < a for some e > Oj, (20)

and finally let
(21)

By definition, if x 6 A'o and cn is a minimizing sequence of ||x — c\\ on C, then for any e > 0, Cn enters
C(x,e) for large n and therefore limsupn ^ ^ ^ \\cn - cm\\ < a. By construction of A'o, if x € Ko and c« is
a minimizing sequence of ||x - c\\ on C, limsupnttnmmOO \\cn - cm\\ < a for any a > 0, i.e. cn is a CAUCHY
sequence. Theorem 1 will follow from the fact that each KQ is open and dense: A'o is indeed a Gs subset of
H as the intersection is the same if one restricts the intersection to a sequence of a tending to 0, and it is
dense by BAIRE's theorem.

That each KQ is open follows from the simple remark that if ||x - y|| < - , then d(yyC) < d(x,C) + -

and C(j/ , | ) C C(x}e): indeed if \\y - z\\ < d(y,C)+ ^ then | | x - z\\ < d(y,C)+ ^ < d(x,C) + e. If then

x € Ka and e > 0 is such that diam(C(x,e)) < a, then for ||x — y|| < — one finds that diam(C(y, - ) ) < a,

so that y € Ko.
For proving the density of KQ1 one follows the first step of M. EDELSTEIN's proof (valid for uniformly

convex spaces). Taking an arbitrary point of H that one may assume to be 0 by translation, one must find
arbitrarily near 0 some points of A'o. If 0 € C, then 0 € A'o C KQ for any a > 0, so one may assume that 6 =
c/(0; C) > 0. For any 0 such that 0 < 0 < 26, one chooses z € C such that 6 < \\z\\ < 6+/?, and one defines e as

the unit vector rr-rr; the claim is then that for x = 17c with — < 17 < 6 one has x € K\ with X2 = ——, so that
IPII * *?

by choosing /? = -— and rj = — one obtains a sequence of points xn converging to 0 with values An tending to

0 and therefore xn € A'o for n large enough. As d(x;C) < ||x—z|| = ||̂ ||—rj < 6-h/?—17, one looks at the points
c € Csuch that | | x - c | | < 6-f 0-rj and this corresponds to looking at C(x,e) with e = 6+/3-T)-d(x\C) > 0;



one wants to show that these c satisfy \\6e - c||2 < , giving the desired upper bound A for the diameter

of C(x,e); one has (6 + 0 - 17)2 > \\r)e - c||2 = \\\6t - c||2 + (1 - 2) | |c | |2 + f,2 - V6, and using ||c||2 > 62,
v 0

one deduces that %\\6e - c||2 < 206 + 02 - 20r] < 206, which is the desired inequality.
o

If one takes F = 0 in the functional (18), then the minimization of K consists in projecting v onto the
subset of u € Hl(Q) obtained when a runs through the set of admissible controls, and Theorem 1 will apply
and give the existence and uniqueness of the projection of v for v belonging to a Gt dense subset of HQ(Q)
if one can show that when a varies the subset of the corresponding u is closed in / /Q(Q) ; this is indeed the
case in dimension 1.

Theorem 2: Let fi = (0,1), i.e. N = 1, and let a run through an admissible set of controls A satisfying (2)
and having the following property: if a sequence an £ A converges to 6 in Ll{u) strong for a measurable
subset w of (0, L), then there exists a £ A such that a = b on w. Then for v belonging to a dense Gs subset
of //o((0,L)), the function A' given by (18) with F = 0 attains its minimum on A and all the optimal a
correspond to the same u.
Proof: One shows that the hypothesis implies that the subset of u £ #o ((0, L)) satisfying (1) is closed when
a spans A.

Let a sequence an £ A be such that the corresponding solutions un converge strongly to Uoo in

HQ((0,L)). One extracts a subsequence am such that cm —* a+ in L°°(0,L) weak • and — —* — in

/ ^ ( O , ! ) weak • , so that one has om—r^- —> O + - T ^ - in I2(0, L) weak, but in dimension 1 one always have

du du
aejj = a_ and Qm--r- — a - ~ 7 ^ *n L'(0,L) strong. One deduces then that on the subset w of (0,L)

where —^2. ± 0 one has a . = a+ and that implies that am —• a+ in Ll(u) strong (or equivalently in Iflu;)
ax

strong for any p < oo); the hypothesis implies then that there exists a £ A such that a = a+ on a;, and
duoQ dtiou du^Q

as —— = 0 outside u> one has a—— = a+—-— a.e. in (0,L) and n©© is then associated to that a, so the
ax ax ax

subset of u £ Hi ((0, Lj) is closed.

Proposition 3: The set A of measurable functions taking only some of the values 7j , i = l , . . . ,m and
satisfying (4) does satisfy the condition of Theorem 2.
Proof: Indeed let an £ A converge to 6 in Ll(u>) strong. First one notices that on u the function b only takes
some of the values 7,, j = 1, . . . , m and that

meas{x £ u : an(x) = 7^} —• meas{x £ u> : b(x) = 7,} for j = 1, . . . ,m. (22)

171

As in (6)-(7), writing o n = ^ \"(X)T, and extracting a subsequence such that \f —»• tf, in L°° ((0, L) \ J)

weak • , one finds that

meas{x £ (0 , I ) \u ; : an (x) = 7,} —» / S;(x)cfx for j = 1, . . . ,m, (23)
J(0,L)\u>

so that (22)-(23) implies

rneas{x £ u : b(x) = 7,} -f / $j(x)dx < Kj for i = 1, . . . ,m, (24)

as each an € A. One decomposes then (0, i ) \u; as the union of m disjoint measurable subsets as follows

(0,1) \w = Ui<i<mui; with mea8{u>j)= f 6j(x)dx for j = 1, . . . ,m, (25)
J(0,L)\u>
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and this is indeed possible as ^ # j = 1- The function a* given by the formula
i=i

a*(x) =r b(x) when x £ <*>, a*(*) = 7j when x € u>j, for j = 1 , . . . , in, (26)

satisfies the desired properties as it belongs to A because of (24) and it does coincide with b on w.

Remark 4: As Theorem 2 gives uniqueness of u when v is chosen in a suitable dense G* subset of H$(Q,L)
(depending upon / ) , it is natural to wonder if this implies uniqueness for o. If there are two functions a\y

a2 satisfying (2) such that - — (aj(x)-^) = / in (0,1) for j = 1,2, one deduces that a , (x) -^ = F(x) + C,
ax \ ax/ ax

in (0,1), where F £ I2(0,L) satisfies — = / in (0,1) and Ci are constants, and / j dx = 0 for
dx Jo aj

j = 1,2. If — = 0 on a subset of (0, L) of positive measure, then one can change ax in any way one likes on
ax

this subset and one obtains a different solution a2, but this cannot happen if

meas{x £ (0, L): F(x) = C) = 0 for every C £ R. (27)

Assuming (27), nonuniqueness of a might still occur in the case where F is discontinuous, but is impossible
if one assumes F to be continuous. Indeed as C\ = C2 implies a\ = o2 because of (27), one may assume that

Ci ? Ci and one deduces from (a2 - a i ) - j ^ = C2 - Ci in (0,L), that ( /? - a) 1-^1 > |C2 - Ci\ in (0,1), so
ax I ax I

that «— avoids an interval around 0 on the entire interval (0, L), but this is impossible if F is continuous as
dx

the function F + C\ must change sign because / -dx = 0 and therefore there must exist XQ € (0, L)
Jo <*i

where F(xo) + C\ = 0 and that forces ai (x)— to be small near XQ.

In dimension N > 2, the set of w € HQ(&) corresponding to an admissible control a € A might not be
(strongly) closed in HQ(Q), and a natural question then is that of characterizing the strong closure of that
subset. Obviously if an € A with the corresponding sequence of solutions un converging strongly to u°° in
HQ{Q), one can extract a subsequence an converging to a+ in L°°(Q) weak • and as angrad(un) converges
to a+grad^00) in (L2(Q)) weak, one deduces that u°° satisfies the equation —div(a+grad(ti°°)) = / in
fl. CJonversely if a sequence an £ A converges to a+ in L°°(Q) weak * and if w € HQ(Q) is the solution of
—div(a+grad(u>)) = / in fi, can one deduce that it; belongs to the (strong) closure of the subset of u £ HQ(Q)
corresponding to some a £ A? The following result gives an answer to this question.

Theorem 5: Let N > 2. Assume that ft has a smooth boundary so that MEYERS's regularity theorem holds
and let / £ W'ltP(Q) for some p > 2. Let A be the set of measurable functions taking only some of the
values fjj = l , . . . , m and satisfying (4), and let Z be the subset of Hl(Q) of solutions ti of (1) when a £ A.
Then the (strong) closure of Z in HQ(Q) is the set of solutions w £ H&(Q) of

-div(a+grad(ti;)) = / in ft, (28)

with a+ described by (9)-(10).
Proof: The proof will make use of some strong convergence results valid in the case of locally layered media.

Let w be an open subset of ft, and consider a sequence an £ A which is of the form an(xi) on w, and

assume that an -^ a+ and — —• — in L°°(u)) weak •; then if an //-converges on ft (which depends upon

what an does outside w), the sequence un £ HQ(Q) of solutions of —div(angrad(t/n)) = / in ft converges to
dun

u°° in HQ(Q) weak, and in u> some strong convergence hold, namely an«^— converges strongly in L2(u) to

6



a^~— and - ^ converges strongly in I2(w) to - r—, for j = 2 , . . . , N\ if one happens to have - 5 — = 0
UXi OXj OXj OX 1

in u> one deduces that grad(un) converges strongly to grad(u°°) in (£3(u>)) . As the usual argument of
strong convergence holds in tfoc(u>) [16], one uses MEYERS's regularity theorem for deducing that the strong
convergence actually holds in L2(u).

Let a+ satisfy (9)-(10) and let w be the solution of (28); as one may assume that p < pc, the critical ex-
ponent for MEYERS's regularity theorem, one has w € WQ*(Q). Let e > 0 and let wt € WQ'P(Q) be piecewise
affine with ||t0-t0c||nri.»(n) < e, so that -div(a+grad(u;f)) = ft in ft with ||/C -/||iv->.>(n) < Ce. One wiU
construct a sequence a? € A such that the sequence ti? € Wo1|P(ft) of solutions of -div(a?grad(t£)) = ft in
ft converges in #d(ft) strong to wt, so that for n > n(e) one will have ||ti? — ^c||ivj*»(n) — e- ^ n ^ e ° ^ c r

hand the sequence un € H^o>P(^) of solutions of -div(a?grad(tin)) = / in ft satisfies ||t<? — un||nr».*(n) < Ce

(where as usual C denotes various constants); by using the subsequence a ? , one sees that the corresponding
solutions un(') will converge to w in HQ(Q) strong as e goes to 0.

As wt is piecewise affine, ft is the finite union of open sets u>t- on which grad(iuc) is a constant vector e,
plus a region near the boundary where wt is identically 0, plus a set of measure 0. On each w,*, one constructs
the sequence a" by imposing three conditions: that it depends only upon (x.cj) with t\ perpendicular to c,
so that (grad(u;£).cj) = 0 on WJ, that it uses an amount of material with conductivity 7* equal to Jw O^dx,
and that it converges in L°°(a;») weak • to a+ , which is indeed possible because of (4). After having done so
on each w, and after having extracted a subsequence which //-converges on ft, the first part of the argument
shows that ti" converges strongly to we in HQ(Q).

As minimizing the distance to v on a set Z £ HQ(Q) or on its (strong) closure in HQ(Q) is the same,
one deduces the

Corollary 6: If N > 2, if / € W~ l p(ft) and if ft is smooth enough for MEYERS's regularity theorem to
hold, then for v belonging to a G* dense subset of //o(ft), the function K given by (18) with F = 0
is such that minimizing sequences an correspond to strongly convergent sequences un in //^(ft), and the
original minimization problem is equivalent to minimizing the same functional on the larger set of controls
a+ satisfying (9)-(10).

Optimality conditions
As for N > 2 the new minimization problem corresponds to a convex set of controls, one can then

deduce some simple necessary conditions of optimality. The mapping a »-• u is analytic from L°°(ft) into
HQ(Q) and its derivative is the mapping 6a «-+ 6u given implicitly by

-div(agrad^ti) + (6a)grad(u)) = 0 in fi, 6u € H^(Q)y (29)

and the derivative of the functional A" with respect to a is the mapping 6a i-> 6K defined by

6K = 2 / (grad(u - v).grad(6ti))cfx. (30)

In order to eliminate 6u and only use 60, one introduces the "adjoint state" p given by the equation

-div(agrad(p) + grad(u - t;)) = 0 in $2, p € H^Sl), (31)

and one obtains

6K = - 2 / (agrad(p).grad(6ti))dx = 2 / ((6a)grad(p).grad(u))cf*. (32)

If ao is an optimal solution one must have 6K > 0 for all admissible variations 6a, and because a belongs
to a convex set it means that

*•""*/ *(grad(p)-grad(t/)Jds attains its minimum on A* at ao, (33)



where A* denotes the set of measurable functions which are weak • limits in L°°(Q) of a sequence an € A,
i.e. the set of functions a+ described by (9)-(10).

Remark 7: The necessary condition of optimality (33) imposes some constraints on ao which can be described
using the level sets of the function G defined by

C = (grad(p).grad(ti)), (34)

and for describing them, one assumes that 71 < 72 < . . . < 7m, and one denotes Q-,Qo*&+ the subsets of
Q where G < 0, G = 0, G > 0.

On f!_, ao must use first the material of conductivity ym on the part of fi_ where G is the most negative,
and if meas(Q_) > «m , a0 must then use the material of conductivity 7m_i on the remaining part of fi_
where G is the most negative, and so on.

On fi+, ao must use first the material of conductivity 71 on the part of fl+ where G is the most positive,
and if mea$(Q+) > *i , ao must then use the material of conductivity 72 on the remaining part of J2+ where
G is the most positive, and so on.

On Ho* <*o c a n u s e whatever materials are left after the attributions to f2_ and to ft+.

Of course, as in our original method [2], one hopes to derive stronger necessary conditions of optimality
by comparing the candidate for optimality to some more general homogenized materials. The difficulty here
is that if a sequence an H-converges to j4e / / , so that un converges weakly in HQ(Q) to the solution it of (13),
one must be able to compute the weak limit of |grad(un)|2 in order to compute the limit of J(an), and that
limit cannot be determined from the knowledge of u and Aejf, but it can be determined from the knowledge
of correctors Pn as grad(wn) — Pngrad(t/) converges strongly to 0.

In proving Theorem 5, one has actually considered a case where the correctors can be computed easily,
the case of locally layered materials. In the particular case of an open subset u; of Q where an only depends
upon *i , and using MEYERS's regularity theorem for showing that nothing wrong happens near the boundary
of u/, one can use on w the correctors Pn defined by

In the situation considered in Theorem 5, one always had Pngrad(u) = grad(u), although Pn was different
from I.

Remark 8: In order to obtain more stringent necessary conditions of optimality, one needs to identify more
situations where Aejj and limn J(an) can both be computed. As before, let A be the set of measurable
functions taking only some of the values jjyj = 1 , . . . ,m and satisfying (4) and A* the set of measurable
functions which are weak * limits in L°°(Q) of a sequence an £ A, i.e. the set of functions a+ described by
(9)-(10). One will consider now a sequence of functions an € A* corresponding to a locally layered medium.

If Q is decomposed into a finite union of open subsets u>; plus a subset of measure 0, and if e7 is a unit
vector, one considers a sequence an € A* such that an only depends upon (x.e*) on wK If the sequence an

satisfies 2

an — a+, " — , , ~ 0 — A in L°°(Q) weak • , (36)
an a . (an)2 ' v '

then a+ , a . and A only depend upon (x.e7) and A > 1 on u^, and an //-converges to Atff such that

Atjj(x).e' = a^{x)e?\ Aejj(x).e' = a+(z)e' for every vector c' orthogonal to cJ, a.e. in u^\ (37)

Moreover one can compute correctors Pn on u^ by a formula similar to (35), so that (grad(un).ef) —•
(grad(u).ef) in L7(u>*) strong if c' is orthogonal to cJ, and an(grad(un).e*) —• a.(^rad(t/).c;) in L2(u>*)
strong; one deduces that

f f / _ . \
lim / \grad(un - v)\~dx = / I \grad(u - t;)|2 -f (A - l)\(grad(u).e3 )[* \dx. (38)



The next step is to identify the possible values of (a+,a_ tA) corresponding to all possible sequences
m

an € A*. As cn = y^^Tt* o n e m u s t understand the constraints on the functions 0", for i = 1 , . . . ,m: there
m

are pointwise constraints on 0?, i.e. 0? > 0 for t = 1 , . . . ,m and ^ 0 * = 1, as well as integral constraints,
t=i

*-c# /n^T^* S ** f°r * = 1»... ,fn.
In order to characterize all the possible weak • limits in L°°(fi), one must identify the closed convex

hull K* of the subset K of / T + 3 defined by

f 7 n *m+2 =

(39)
Then the desired limits (a+,a_,A) are obtained by considering a function k with values in K* such that

/n*»dar < *, for t = 1 , . . . ,m, and by writing a+ = ftm+lf — = 4 m + 2 and ^ - = *m+3 .

In such a general framework, it is not clear yet how to carry on all the necessary computations, so in
order to simplify the computations, one restricts now the analysis to the very simple case where one mixes
two materials with no volume constraints, i.e. yi = a, 70 = 0 and K\ = *2 = meas(fi). In that case, the
simple necessary conditions of optimality that were described in Remark 7 express that ao = a when G > 0
and oo = 0 when G < 0.

In this simpler setting, one use 6 = 6\ as variable and #2 = 1 — #> &nd the constraints are 0 < 0 < 1.
Instead of K one may consider the curve K* of /Z3 defined by

=*€ [0,1], *2 = J - ^ _ t 3 = ( ^ _ ^ . a ) ) 2 } , (40)

and the preceding complete analysis requires the identification of its closed convex hull K*'. In order to avoid
some tedious calculations, it is worth noticing now that what one actually wants from this computation is
the smallest possible value of A in terms of a+ and a . defined by (36), and that will only be necessary near
the curve where a . = a+, the characterization of the pairs (a+>a~) being easy and given by

a0
* < < * < 0 / < a < <* a.e. x € fi. (41)cr 4- p — a+

Remark 9: Because one wants to test the optimality of an element a € .4*, one wants to compare it to a
case where o + and a . are near a. One chooses b € A*, and for 0 < e < 1 and e tending to 0 one considers

,, v . 1 1 — e £ A 1-e e .
<*+ = (1 — c)a + £6, — = (- 7, -Tr = —T" + To» ie- wter some easy computations

a . 0 t a i a2 62 K

^ + O(f2), A - 1 = e ^ ^ + O(*2), (42)

so that the respective derivatives computed at e = 0 are

df i r r 5 r n F (43)

The computation of the derivative of the functional with respect to t will start like (29), but with

^ = ( i _ a ) / - L l f L e J g ) ) J o n w J ) (44)
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SK
which will be used for computing a term analog to (32) in the derivative -=—, but there is another term

v£
corresponding to the terms with the coefficient (A - 1) in (38). The new necessary conditions of optimality
will then be that for any 6 € A* one has -r— > 0 where

6s

Remark 10: Of course taking 6 near a makes (6 - a)2 negligible compared to (6 - a), and one finds then the
necessary conditions of Remark 7, expressed in terms of G = (grad(u).grad(p)), i.e. G > 0 where a = a,
G = 0 where a < a < 0 and G < 0 where a = 0. Now one learns more from (45) because by varying the
decomposition of Q into open subsets LJ as well as the vectors e*, a more stringent necessary condition of
optimaiity is that for any b £ A* and every measurable function e taking values on unit vectors one has

jf (2(6- o)(grad(p).grad(u)) - 2^l!(grad(p).c)(grad(«).c)+ ^l!|(grad(u).e)|2)dx > 0. (46)

If a < a < 0 on a subset u> of Q with positive measure, one already knows that one must have G = 0
a.e. on u>, but the new necessary conditions of optimality assert that one must actually have

|grad(ti)|.|grad(p)| = 0 a.e. where a < a < 0. (47)

Indeed as G = 0 on u; one must have |(grad(w).c)|2 > 26(grad(p).e)(grad(ti).e) a.e. on u; for every unit
vector e, and this implies that on the subset of u where grad(u) ^ 0 one has grad(p) = /jgrad(u) for some

measurable function \i which must then satisfy /i < —, and as G = 0 this can only happen if /i = 0.

If a = a on a subset vQ of Q with positive measure, one already knows that one must have G > 0 a.e.
on u><>, but the new necessary conditions of optimality assert that one must also have

262G - 26(6 - a)(grad(p).c)(grad(u).e) + (6 - a)|(grad(tz).e)|2 > 0

a.e. on uQ for every unit vector c. On the subset of u;o where U = |grad(ti)| ^ 0 and P = |grad(p)| ^ 0,
minimizing in e gives a solution in the plane spanned by grad(u) and grad(p); if 17 is the angle between
grad(u) and grad(p) and 0 the angle between grad(ti) and e, then one has

2b2UPcos(t]) - 26(6 - a)UPcos(6) cos(0 - 17) + (6 - a)U2 cos2(6) > 0.

This inequality has the form A + 5 i ± i 2 ! i ^ l + Csin(20) > 0 with A = 2b2UPcos(r1)1 B = (6 - a)t/2 -

B I B
26(6-o)I/Pcos(»;) ) C = -6(&-a)t/Psin(i?); minimizing in 0 gives A + — > U ^ ) + ^ 2 . »-e- 2 4 + B > 0

and A2 + AB > C2 , the first inequality being a consequence of cos(»j) > 0 and the second inequality is
262£/Pcos(.7)((6 - a)U2 + 2baUPcos(i})) > b*(b - of U2P2 sin2(TJ), equivalent to

2cos(i?)((6 - a)U2 + 26ot/Pcos(»?)) > (b - a)2 UP sin2 (TJ),

which is true for 6 € [a, 0] if it is true for b = a and for b = 0, which finally gives G > 0 and

P ((/? - o) 2 sin2(i7) - A0oc cos2(ij)) < 2 cos(tj)(/? - a)U,

and, adding the possibility that U — 0 or P = 0, this can be written as

(0 - a)2|grad(«)|2|grad(p)|2 -(0 + a)2 (grad(u).grad(p))2 < 2(0 - a)(grad(u).grad(p)) |grad(u)|2 on w..

(48)
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Notice that the condition is automatically satisfied if ( 0 - a)2 sin2(tj) < 40a cos2(»j), i.e. if the angle between
grad(u) and grad(p) is small enough.

If a = /? on a subset u>p of fi with positive measure, one already knows that one must have G < 0 a.e.
on up, but the new necessary conditions of optimality assert that one must also have

262G - 26(6 - /?)(grad(ti).c)(grad(p).c) + (6 - 0)|(grad(ti).e)|2 < 0

a.e. on up for every unit vector c. On the subset of up where U = |grad(ti)| ^ 0 and P = |grad(p)| ^ 0,
maximizing in e gives a solution in the plane spanned by grad(ti) and grad(p); if t) is the angle between
grad(u) and grad(p) and 6 is the angle between grad(tt) and e, then one has

2b2UPcos(rj) - 26(6 - 0)UPcos(0) cos(0 - rj) + (6 - 0)U2 cos2(0) < 0.

This inequality has the form A + j 1 * ^ 2 * ) + C s i n ( 2 ^ < Q w i t h A _ 26
2C/PCOS(TJ), B = (6 - 0)t/2 -

2b(b-0)UPcos(r))1 C = -6(6-/?){/Psin(7j); maximizing in tf gives ̂  + y + y ( f ) 2 + C 2 ^ °» i e- 2 i 4 + B ^
0 and A2 -f AB > C2 , the first inequality being a consequence of COS(IJ) < 0 and the second inequality is
262t/Pcos(7j)((6 - 0)U2 + 2b0UPcos{t])) > 62(6 - 0)2(/2P2sin2(t/), equivalent to

2cos(r?)((6 - 0)U2 + 26/?I/Pcos(»7)) > (6 - 0fUPs\n2{ri),

which is true for 6 6 [a,/?] if it is true for 6 = a and for 6 = 0, which finally gives G < 0 and

- a)t7,

and, adding the possibility that U = 0 or P = 0, this can be written as

(0- a)2|grad(ti)l2|grad(p)|2 - (/?+ o)2(grad(ti).grad(p))2 < - 2 ( / J - a)(grad(u).grad(p)) |grad(u)|2 on « , .

(49)
Notice that the condition is automatically satisfied if (0-a)2 sin2(?;) < 40QCOS2(T])> i.e. if the angle between
grad(u) and grad(p) is near enough to it.

Remark 11: Although one had first focused attention on the special case of the functional K given by (18)
with F = 0, for which Theorem 1 could be used, it is important to notice that Theorem 5 characterizes a
strong closure of u and is therefore independent of any functional that one wants to minimize, and that what
has been said for optimality conditions applies then to many other functional.
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