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1 Introductory remarks

1.1 Setting of the problem:

In recent years damage and fracture have acquired a formidable status in
the battlefields of solid mechanics. Perniciously weakening the stiffest solid
samples damage has become the everpresent material tyrant, resisting all ra-
tionalizing attempts and defying an expanding taxonomy. Fracture, an older
sibling, still delivers deadly slashes to even the most respectable materials
and at the most unexpected angles.

At the same time the conceptual distance between them has been
steadily shrinking: many a damaging material observed at a fine scale ex-
hibits a vast array of tiny cracks while crack propagation strongly depends
on the distributed damage in the so-called "fracture-process zone" (see e.g.
[CHUDNOVSKY W U 90]).

A thorough understanding of the relationship between fracture and
damage should therefore encompass the entire range of the damaging pro-
cess, from its distributed onset to its climatic localization in the form of
a "crack". This will not be achieved in the present study which operates
under the simplistic premise of scale separation. Indeed it is assumed there-
after that the weakening micromechanisms that preside over the damaging
process are taking place at a scale which is far smaller than that at which
fracture takes place. It is also assumed that the configurational force needed
to break atomic bonds and to promote crack propagation is not affected by
the damaging process. Specifically, following [FRANCFORT MARIGO 93] our
study will focus on a material that experiences brutal partial damage: the
material is only allowed to brutally drop from its healthy state to its dam-
aged state, the latter retaining some positive definite stiffness (hence the
partial character of the damage). The mechanisms at the origin of that
specific pattern of damage are not part of this investigation. Of course we
readily concede that the presupposed independence of the configurational
force upon such mechanisms might be construed as a fatal flaw by a stern
observer of the lattice.

This material is further allowed to experience fracture, i.e., to develop
material discontinuities at a macroscopic level. The quasistatic evolution of
both damage and fracture is governed by a yield criterion, in accordance
with the presupposed brittleness of the material. Furthermore the criterion



is energetic: it compares the decrease in potential energy due to either
damage (in which case it is a local decrease) or fracture (in which case it is
a global decrease) to the resulting increment of energy dissipated through
either process. Such a criterion is well known in fracture mechanics after the
work of GRIFFITH (cf. e.g. [GDOUTOS 90], Chapter 4) and it may be shown
to be the only thermodynamically compatible criterion in brutal damage
(see [MARIGO 89]).

Both processes are further assumed to be irreversible. In other words,
self-healing is absent from both the damaged part of the material and the
cracks through that material.

The adopted model results in a time indexed sequence of partial mini-
mization problems; the Lagrangian density depends on the deformation field
and on the characteristic function of the damaged area and it must be such
that, at the solution(s), the resulting potential energy is separately minimal
at each time among all admissible field variations.

Unfortunately the search for stationary points of the potential energy
is a delicate one from the standpoint of the calculus of variations and may
lead to too many solutions in the absence of additional selection criteria (see
[FRANCFORT MARIGO 91], Subsection 2.3). We impose as selection criterion
the global stability of the solution(s). In other words we postulate that the
material will try to minimize its potential energy among all admissible field
variations. This is of course a drastic restriction and its impact on the
physical appropriateness of the proposed model could well be devastating.
The reader is kindly invited not too judge such a step too harshly; to reject
global stability is also to forfeit all hope for a detailed mathematical analysis
of the problem.

The potential energy to be minimized is generically of the form

/ W^dx + XH^iSiu))- I f-udx, (1.1)
•/body ./body

where u is the deformation field, W(0 is an "elastic type" energy density,
A is a dissipation rate and / represents the body loadings. Two distinctive
features lie at the crux of the mathematical difficulty: the functional space
where u should live, namely BV - a convenient space so as to lend a meaning
to S(u), the jump set of u - and the non quasiconvex character of W which
forces relaxation even in the absence of jumps of u. In other words the
mathematical stake is the relaxation in the strong topology of



Q is the domain occupied by the body - of a nonconvex functional of the
form (1.1) (with appropriate growth, coercivity and regularity properties)
over the space BV(Q\Rk).

Unfortunately the problem at hand is not well formulated because of
a troublesome pathology of the space BV. The distributional gradient of a
function u in BV(fl;Rk) - a finite Radon measure on Q - may be decom-
posed as

Du = Vudx + (u+ - tT) ® uuHN~l [S{u) + C(u),

where Vu(x) is a L1(fl;Rfc)-function (the density of the absolutely continu-
ous part of the measure Du), S(u), the jump set of u, is an N — 1 rectifiable
hypersurface with normal vector i/u, it

+ and u~, the traces of u on each side
of 5(w), are such that, for if^^-a.e. xo in S(u),

Km 4r / Mv) " u+(u~)(xo)\N/{N-l)dy = 0,
0+ €N J{yeB(xo^(y-xo)^0>«)0}

and C(u), the Cantor part of the measure Du satisfies, for any Borel subset
Bof f i ,

HN-X(B) < +oo => \C(u)\{B) = 0.

See e.g. [FEDERER 69], Thm. 4.5.9, [VOL'PERT 69], [FEDERER ZIMER 72],
[AMBROSIO 89b, 93 b].

The following result holds true (cf. [AMBROSIO 89b]):
Any u in /^(fi; Rfc) may be approximated in the strong topology of L1 (£2; Rfc)
by a sequence un in BV(Q,\ Rk) such that

= C(un),

and consequently such that

= 0 a.e. in fi,

Therefore, if the energy density W in (1.1) is such that W > 0, W(0) =
0, the relaxation of

/ rr ( VUjCLX "T" Axil (^)(2i

Jn



will be identically 0 for any u in BV(fyRk).

We are thus forced to restrict the relaxation to sequences Un in
BV{U\Rk) such that

i.e., to sequences Un in SBV(Q;Rk) for which such a pathology will not
occur. The space SBV(Cl;Rk) was firstly introduced in [DE GlORGl AM-
BROSIO 88].

1.2 Outl ine:

Section 2 is devoted to the mathematical analysis of the strong-L1 relaxation
of functionals of the form

L W(Vu)dx + \HN-l{S(u)), A > 0, (1.2)
n

where W has p-growth (p > 1) and satisfies a local Lipschitz condition (see
(2.3)). The result is that the relaxation of (1.2) is

/ W*(Vu)dx + XHN^(S{u)),
Jn

where W* is the quasiconvexification of W (see Theorem 2.1). The analysis
relies heavily on the blow-up method (see [FONSECA MULLER 92, 93]) and
on AMBROSIO'S lower semi-continuity result in SBV(Q;Rk) for quasiconvex
Caratheodory integrands with superlinear growth (see [AMBROSIO 93a]).

Section 3 addresses the problem of the evolution of damage and frac-
ture briefly described above. The quasistatic evolution is investigated at
discretized times and the resulting sequence of minimization problems is
obtained in Problem 3.4. A first subsection examines the first time step
ti and demonstrates the existence of a minimizing deformation field u\ for
the relaxed problem (Proposition 3.7). Prom a mechanical standpoint the
quasiconvexification of the energy density amounts to the formation of fine
mixtures of the healthy and damaged phases at each point of the uncracked
part Q\ of the body. To this pointwise mixture corresponds a local volume
fraction of the damaged phase 6\{x). Its existence is guaranteed through
Proposition 3.11.

A second subsection investigates the following time steps. Because
the relaxation at the first time step is only capable of producing a local



volume fraction 0\{x) of the damaged material the irreversibility constraint
at later time steps—namely the monotonically increasing character of the
characteristic function of the damaged material—has to be weakened: the
volume fraction 6{x) of damaged material is constrained to monotonically
increase from its value 8\{x) at subsequent time steps. We do not know
as of yet how to operate a bona fide relaxation of the problem over all
time steps and we thus postulate the form of the relaxed problem for the
subsequent time steps (Problem 3.13). This forces us to directly examine the
weak lower semicontinuity of the resulting functional at those time steps. In
fact it suffices to prove that the bulk energy density (that associated to the
density Vit(x)) is quasiconvex. This problem is shown to be equivalent to a
homogenization conjecture (see Conjecture 3.15) pertaining to the canonical
character of periodic homogenization as far as the energy density associated
to mixtures of two phases is concerned. If such a conjecture holds true - and
it is known to be in some useful cases ( see Remark 3.16)—then the time
indexed sequence of "relaxed" problems has solutions and the evolution of
the damage and fracture may proceed (Proposition 3.17).

It should be emphasized, at the close of this introduction, that the
proposed model is but a tentative step in the direction of a mathematical
theory of the quasistatic evolution of either damage or fracture, or both. As
far as damage is concerned, it permits to avoid too much phenomenology in
the choice of a damage variable: the damage variable, i.e., the local volume
fraction of damaged material, appears as a byproduct of the search for a
stable evolution (see [FRANCFORT MARIGO 93] for a more detailed insight
into the structure of the resulting model when each phase is linearly elastic).
As far as fracture is concerned, it avoids all reference to a particular crack
shape, and furthermore does not a priori require the classical notch-type
setting of fracture mechanics at the inception of the crack. It is however
plagued by at least two deficiencies that could prove fatal in the long run: it
operates, as already discussed, under the premise of global stability and it
may generate a continuum of bifurcating solutions in its time-undiscretized
version.

2 Relaxation in SBV versus relaxation in

Our goal in this section is to explore the connection between the Wl*p—
quasiconvexification of a functional of the gradient of a vector field and the



relaxation in SBV of that same functional, whenever the associated energy is
penalized through the introduction of a term of surface energy proportional
to the measure of the "jump set" of the trial functions.

Specifically, let IV(£), f € RN x R \ be a real-valued function. Its
quasiconvexification W*(f) is defined as

where Q is the unit cube centered at 0.
Define, for any open subset A of an open set Q of R^ and any u in BV(17; Rfc)

I(u, A) := inf (liminf f / W(Vun)dx + HN~l(S{un) D A)] I
{un} In—+00 [JA Jl

un e SBV(A;Rk),un -> u strongly in L^A-.R*) j , (2.1)

J(uA)-=i SAW*(Vu)dx + HN~i(S(u)nA) ifueSBV(A;Rk)
K ' } ' | + o o otherwise v " }

We propose to prove the following theorem:

Theorem 2.1 Assume that W(£) satisfies

< 0(6 + \Z\'), £€RNx Rk, (2.3a)

r 1 + icr1)!^ -v\ , t,* e RN X Rfc, (2.36)

where a, fi, 7 > 0, 6 > 0 and 1 < p < +00. Then

J(ti,n)<J(u,n). (2.4)

Further, under the following additional assumption:

6 = 0 if SI is unbounded, (2.3c)

Remark 2.2 In view of (2.3a), W*(Q also satisfies

aK|p<W(0</3($ + |£lp), (2.5)
and as W is continuous, W* is also continuous (see [DACOROGNA 89]).



Remark 2.3 If u € SJBV(ft; Rk)y then Theorem 2.1 is a statement about
the relaxation of

E(u, ft) := / W{Vu)dx + HN'l(S(u)) (2.6)
Jn

in SBV(n\Rk) for the L^ftjR^-topology. In particular,

J(u,ft) is /^(ftjR^-sequentially lower semi-continuous in SBV(Cl;Rk).
(2.7)

Note that, in the light of Remark 2.2, a direct application of Theorem
4.5 in [AMBROSlO 93a] to J{u, ft) would yield the latter result (2.7), at least
whenever ft is bounded.

Remark 2.4 As pointed out in Remark 4.7 of [AMBROSIO 93a], the exis-
tence of minimizers for J(u, ft), or J(u, ft), on SBV(Q,', Rk) is not guaranteed
through the direct method of the Calculus of Variations because of the ab-
sence of L1-compactness of the minimizing sequences. Note, however, that
if a uniform L°°-bound is assumed on the minimizing sequence (for exam-
ple if the infimum is taken over SBV(Q; K), where K is a compact subset
of Rfc), then the minimizing sequence is immediately seen to be bounded
in 23V(ft;Rfc) (hence compact in Lx(ft;Rfc)) because the singular part Dsu
of the measure Du of a function u in 5BV(ft;Rfc) has the following total
variation:

\Dsu\(Q)= f \u+-u~\(x)dHN-l(x),
JS(u)

hence
\Dsu\(Q) <2\\u\\L~{Q)H

N-1(S(u)).

Proof of Theorem 2.1. The proof is divided into two steps. The first step
proves that J(w, ft) > I(u, ft) while the second step proves that /(tx, ft) >

Step 1: J(u, ft) > I(u, ft) if /(it, ft) < +oo.

We may as well assume that J(u, ft) < +oo, otherwise there is nothing
to prove. But then J(u,ft) < +oo. Indeed u € SBV(fl;Rk) since J(u,ft) <
+oo and u is a test function for /(•, ft). By virtue of (2.5), Vu € I^(ft) and

N 1 ) < +oo and, in view of (2.3a), we conclude that

J(u,ft) < /
Ja < +oo.



Actually we will prove Lemma 2.5 below which only requires a weak-
ened form of hypothesis (2.3) (namely 1 < p < +oo if u € SBV(Q; ]

Lemma 2.5 / / (2.3a), (2.3b) are replaced by the following weakened hy-
potheses:

1 < p < +00 in (2.3a), (2.3b) when u € S£V(fi; Rfc),
1 < p < +oo otherwise, (2.3)w

and if (2.3c) holds true, then J(u, 17) < J(u, ft) whenever J(u, 17) < +oo.

Remark 2.6 It will be proved in Lemma 2.15 below that if u € BV(£l, Rk)
and J(u,17) < +oc, then u G SBV{Vt\Rk). Thus Lemma 2.5 actually states
that 7(u, 17) < J(w, Q) whenever I(u, Q) < +oc and 1 < p < +oo.

Proof of Lemma 2.5. The proof requires five substeps. The analysis
is restricted to any bounded, open subset A of 17 and the last substep (Step
1-5) breaks free from this limitation. The first substep (Step 1-1) reduces the
study to the case where u € BV(A\Rk) nL°°(-A;R*) with J(n,17) < +oo.
The second substep (Step 1-2) operates a reduction of J(u, A) to a more
easily handled Ioo{u,A) (see (2.1)oo in Proposition 2.8 below) and further
reduces u to be an element of SBV(A;Rk) n L°°(A,Rk) (see Remark 2.9
below). The third substep (Step 1-3) establishes that, for such w's, Ioo(u, •)
is a Borel measure on A which is absolutely continuous with respect to the
sum of the Lebesgue measure on A and of the restriction of HN~~l to S{u).
In other words Ioo(u, A) = JA hdx+Js^nA gdHN~l, where h and g are the
associated densities. In the fourth substep (Step 1-4), h and g are proved to
be less than or equal to W*(Vu) and 1, respectively, which establishes that
Ioo(v, A) < J(it, A), and the last substep permits to conclude.

Step 1-1: The following proposition holds true:

Proposition 2.7 If A is a bounded, open subset o/17 and if, for every u in
BV(A;Rk)nL°°(A;Rk) withI(u,A) < +oo, I(u,A) < J(u,A), then

I{u,A)<J{u,A)

whenever u € BV(A\Rk) and /(u, A) < +oo.



Proof of Proposition 2.7. We may assume that J(u,A) < +00, otherwise
there is nothing to prove. Since I(u,A) < +00, choose Un € SBV(A;Rk)
with

Un - • u strongly in L 1 ^ ; ^ ) ,

(2.8)
/ W(Vun)dx+HN l(S(un)C\ A) < +00.

JA

Note that the latter inequality, together with the first inequality in (2.3a),
implies that Vun G LP(A;Rfc).

Define (pq € Wd>C0(R* xR fc)as

, f x if \x\ < e«,

with \Vipg(x)\ < 1. Then, according to [VOL'PERT 69], <^g(un)(resp. <pq(u))
belong to SBV(resp. BV){A;Rk) nL°°(A;Rfe), and

5(^n))n>lc%)n>l, (2.9)

un))(x) = V^g(un(x)) o Vun(x), for a.e. x in ft.

Furthermore,
V?g(un) -+ <pq(u) strongly in L :(^;^ f c). (2.10)

But, according to (2.8), (2.9), and upon recalling the second inequality in
(2.3a),

/ |Vun|pdx) + HN-\S(un) DA)< +oo. (2.11)
A

By virtue of (2.9) and (2.10), {(pqiun)} is an admissible sequence in the
definition of I(yq{u)\A) and, in view of (2.11), I((pq(u);A) < +oo. Thus,
by hypothesis

7(^(u);A)<J(^(tx);A). (2.12)

Now, as q tends to oo,

<Pq(u) —• u strongly in Ll{A\Rk),

10



while, as we have already seen, <pq(u) belongs to BV(A;Rk) and
I(ipq(u);A) < +00. Since, by its very definition, I{-,A) is sequentially
I/1— lower semicontinuous on BV (see Remark 2.3 for a remark along these
lines), we conclude that

/(u, A) < liminf I(<pq(u)] A).

In view of (2.12), it remains to show that

liminf J(<pq(u);A) < J{u,A). (2.13)
q—++oo

But
HN-l{S(<pq{u))nA) < H^iS^nA), (2.14)

and, appealing to (2.3) and to Remark 2.2

W*(Vipq{u))dx = / W*{Vu)dx + I W*{V<pJu))dx
</|u(x)|<e* J\u{x)\>e*

< f W*{Vu)dx + 0 f (6+ IVu\p)dx. (2.15)
JA J\u(x)\>e<i

Since Vu belongs to LV(A] Rk) (J(u, A) < +00) and u belongs to Ll(A\ Rfc),

im / (6 + I Vu
*+oo7|u(x)|>eq

lim / (6 + I Vu|p)dx = 0,
+ o o 7 )

which, in view of (2.14), (2.15), proves (2.13) and completes the proof of
Proposition 2.7. •

Proposition 2.7 enables us to limit our investigation to the case where
u belongs to BV(A;Rk) D L°°(A]Rk) with I(u,A) < +00. For such u's a
convenient reduction of J(u, A) may be performed. This is the object of
Step 1-2.

Step 1-2. The following proposition holds true:

Proposition 2.8 If u e BV(A;Rk) D L°°(A;Rfc) and if I(u,A) < +00,
where A is a bounded, open subset ofCl, then

/(u, A) = Ioo(u, A)

11



with

Ioo(u,A) := inf (liminf [ / W{Vun)dx + ifAr-1(5(un) n A)] I
{un} In—+00 [JA Jl

Un e SBV(A\Rk) n L°°(A] Rfc), un-+u

strongly in Ll{A\Rk),sup\\un\\Loo(A) < C <

Proof of Proposition 2.8. Obviously Joo(u,>l) > I{u,A). The proof
that I(u,A) > Ioo(u,A) follows that of a related result in [CELADA DAL

MASO 93] or [BARROSO BOUCHITTE BUTTAZZO FONSECA 93]; see Lemma
3.7 of the latter reference. It essentially consists in truncating a minimizing
sequence {un} for J(u, A) at a given distance from the origin. Specifically,
introduce the following radial truncations <pi 6 Co(Rfc x Rk) defined as

( \ ._ J x if kl < e\

and |V<£i(x)| < 1. Note that <pi is a Lipschitz function with Lipschitz
constant 1. For a fixed c > 0, consider a sequence un in SBV(Q,, Rk) such
that

un —• u strongly in Ll(A',Rk),

I(u, A) + ^> lim f / W(Vun)dx + HN~l(S(un) n A)]. (2.16)

Define
wx

n(x) := ^i(un(x)).

Then, according to [VOL'PERT 69], ti;̂  is in 5BV(^4;Rfc) and

Vwl
n(x) = V<pi(un(x)) o Viin(x), for a.e. x in £1

If i is large enough, then HuH ôô ) < e*, thus u = <pi(u). Then

I K - u l l n M ) = \\<Pi{wn) - <Pi(u)\\LHA)

(2.18)

12



The sequence {<pi} is rearranged so that the above inequality holds true for
every i > 1. Furthermore, in view of (2.17),

W(Vwl.)dx = f W(Vun)dx + f
./|un(*)|<e< J#<\vn(x)\<ti+

+ f W(0)dx.
J\Un(x)\>e+l

But, by virtue of the second inequality in (2.3a),

/ WCV<pioVun)dx+ f W(0)dx
ye<<|un(i)|<e<+i J\un(x)\><*+*

< /?<5meas{|un(z)| > e*} + /? / \Vun\
pdx

Jei<\un(x)\<ei+l

\Vun\*>dx.

The above inequalities, together with (2.17), imply that, for any integer
M > 0 ,

£ [ / w(Vw*n)dx + HN~HS(wi
n)nA)\ < M\J W(Vun)dx

1 M 1 r
+HN-1(S(un)nA)\+(36\\un\\mA)Y,-l + P |Vun|p^. (2.19)

Note that, since un converges (strongly) to u in L1(A;Rfe),

IKIILMA) ^ C < + 0 0 -

while the first inequality in (2.3a) and (2.16) yield that, for n large enough,

I |Vttn|pdx < C < +oo.
JA

Consequently (2.19) reads as

jj E \jA

13



Upon choosing M = M(e) large enough (independently of n) we conclude
that

J W(VUn)dx + HN~l(S(Un) H A) + 1.

Thus there exists i(n) € {1, ...,M} such that

/ W(V<(n))dz + HN-\S(w^) r\A)<
J A

J W(Vun)dx + H^HSiun) n A) + | . (2.20)

Set tin := tun(n) and recall (2.16), (2.17), (2.18) and (2.20); the sequence un

satisfies

tin —• u strongly in L1(A;Rk),

p /
n—•H-oo J A

which was the sought result. The proof of Proposition 2.8 is complete. •

Now, by virtue of Proposition 2.8, if it is an element of
BV(A] Rk) n L°°(A\ Rk) and I(u, A) < +00, there exists a sequence {un} in
SBV(A;Rk) nL°°{A;Rk) such that

SUp ||Un||L~(i4) < C < +OC,
n

Un —• u strongly in Ll(A\Rk),

supHN-l{S{un) DA)<C< +00,
n

sup||Vun||LP(i4)<C<+oo.

(2.21)

Thiis, if p > 1, a direct application of Theorem 2.1 in [AMBROSIO
implies that u € SBV(A;Rk), while, if p = 1, u € SBV(A;Rk) in view of
hypothesis (2.3) ,̂.

14



Remark 2.9 In conclusion of this step, we have thus established that, if A
is a bounded, open subset of fi, if it G BV(A; Rk) with /(it, A) < +00 and if
(2.3a)ty holds true, then 7(u, A) < J(u, A), provided that /oo(̂ > -A) < J(v, A)
whenever v € SBV(A;Rk) nL°°(A;Rfc)(with I{v, A) < +00).

Step 1-3. The following proposition holds true:

Proposition 2.10 Assume that u € SBV(A\Rk) n L°°(A;Rk) and that
E(u,A) < +oc, where A is a bounded, open subset of Q (recall (2.6) for a
definition of E). Then Joo(u, •) extends to a nonnegative Radon measure on
A which is absolutely continuous with respect to CN + H1*"1^^), where
CN stands for the Lebesgue measure on A and HN~l[S(u) denotes the re-
striction of the (N — \)—Hausdorff measure to S(u).

Remark 2.11 In the context of Proposition 2.10, if E(u,A) < +00, (2.3a)
implies that J(u,A) < +00 and, because u € SBV(A]Rk), I(u,A) < +00.
For the present purpose, we could have as well assumed that J(u, A) < +00.

Proof of Proposition 2.10. Note that, in view of the second inequality
in (2.3) (or rather in (2.3)^), for every open subset B of -A,

/«>(*, B)<(3 [ (6+ \Vu\*>)dx + H"-1 [S
JB

We now propose to prove that Ioo(̂ > •) is the trace on A := {B open \B C
A} of a Borel regular measure on A. To this effect, D E GIORGI-LETTA'S

criterion [DE GIORGI LETTA 77] is applied; four conditions must be fulfilled
for any elements £, C of A, namely,

a) Joo(u, B) < 7oo(u, C), if B C C,

b) Joo(u,BUC) = Joo(u,B) + Joo(u,C), if BnC = 0,

c) Joo(u, B U C) < Joo(ti, B) + Joo(u, C),

d) Joo(u, B) = sup{/oo(tx, C)|C CC B}.

Conditions a) and b) are trivially satisfied by J(u, •). To establish c) and d),
we follow the method indicated in [AMBROSIO MORTOLA TORTORELLI 91].

First note that if C € A, then for any fixed e > 0, there exists Ce CC C
such that

/«(*, C\Ce) < E{u, C\Ce) < e. (2.22)

15



Indeed we choose C€ such that

= /
JcJc\c<

which is always possible since W(Vu) € L^CjE*) and HN"l(S(u) nC)<
+oc; (2.22) follows immediately by taking un = u in the definition of
/oo(u,C\C£) and recalling that u € SBV(A;Rk). If c) holds true, then
d) holds true because, by virtue of (2.22), for any e > 0, we are at liberty to
choose Bc CC Ce CC B such that

Joo(ufB\5e)<€.

Then, since

condition c) implies that

/«(«, B) < Ioo{B\Bt) + Ioo(u, Ce) < Joo(u, Ct) + e.

Letting c tend to 0 yields condition d).
It remains to establish c). To this effect, B U C is decomposed, for any
t € (0,1), into

Bt := {x € B U C\ t dist(x, B\C) < (1 -1) dist(x, C\B)},

Ct := {x€BuC|td is t (x ,B\C)>( l - t )d is t (a: ,C\B)} ,

Since Ut€(0,i)5t c B U C a n d /(u, B U C ) < +oo, we have

U 5t) + ^rJV-1(5(«)n( U St))<+oo. (2.23)

The sets St are pairwise disjoint; thus (2.23) implies that

t€(0,l)

from which we infer the existence of to € (0,1) such that

+ HN-\S(u) D Sto) = 0. (2.24)
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For a given e > 0, (2.22) permits to consider B£ CC B^ CC Bto and Ce CC
C't CCCto such that

E(u,Bt0\Bc) < | f £(ttfCio\Cc) < | .

Then, by virtue of (2.24), and also because Bto D Cto = 0, we obtain

W(Vu)dx + ^ - ^ ^ ( u ) H

from which we conclude that

Joo(u, (B U C)\(B€ U Ce)) < 6. (2.25)

Assume that
/oo(u, C) < Joo(u, JD) + 7oo(u, C\£) , (2.26)

whenever C,D,E are elements of A such that E CC D CC C. Then

Since B'€DC'€ = 0, conditions a), b) together with (2.25) yield

J<x>(u, B U C ) < 7oo(u, B) + loofa, C) + 6

and c) is obtained upon letting e tend to zero.

It remains to prove (2.26). Note that J(u, A) < +oo because E(u, A) <
+oc and u € SBV(A\ Rfc), thus is a valid test function in (2.1)oo. For a
given e > 0 there exists, according to Proposition 2.8, a sequence {un} in
SBV(C\E; Rk) D L°°(C\E] Rk) satisfying

Un —nt strongly in

sup I K H L ~ ( C \ £ ) < C < +00,

Um
n-»+oo

17



as well as a sequence {vn} in SBV(D;Rk) 0 L°°(D;Rk) such that

vn-*u strongly in L1(£>;Rfe),

Joo(u, £>) + «> Um f / W(Vun)dx + H^^Sivn) D
Tl—•+OO J£)

The L1— convergence and the uniform L°°- estimate on both un and vn

actually imply that

un - vn -+ 0 strongly in If(D\E; Rk). (2.27)

We propose to construct a sequence wn over the whole domain C by con-
necting un to vn across D\E. To this end, fix p > 0 and Dp C D open
such that meas(Dp \E) < p and the set -Dp\i£ is partitioned into two layers

Si°, t = 1,2, defined as

0 < dist(x,5JS) < idist(aE,RN \

5{2) := {x 6 i?p\£| |dist(d£,RN \ Dp) < dist(x,5i5) < dist(a£,RN \

Then, for every n, either 5i = s[1] or 5i = S^2) is such that

where

+00 > M = sup f / {W{Vun) + W(Vvn))dx + HN^(S(un) 0 1
n IJD\E

This is obvious by contradiction. Consequently one of the layers, denoted
by Si, must satisty (2.28) for a subsequence {iin\vn } of {un,vn}. Fur-
thermore, by virtue of (2.27), {un

l\vn^} may be chosen such that

18



This procedure is repeated recursively and it yields a sequence of layers

Sj := {x e DP\E\ 0<ctj< dist(i, dE) < ffj)

with |/3j — ctj\ \ 0 and

/ W(Vv^)dx + H^iSivW) n Si) < -
JSi J

(2.29)

\JJ) _ -,0)

Take <pj e Cg°(C) with 0 < tpj < 1, ||V^||Loc(Dp\Je) <

^•(x) = 1 if x e E or dist(x, 5E) <

^•(x) = 0 if x $ E and dist(x,

and set

Certainly

thus,

Furthermore,

and

- u\\LHC.Rk) < f _ \uf - u\dx + f \vf - u\dx,
JC\E JD

Wj -* w strongly in Lx(C,Rfc). (2.30)

y ^ , (2.31)

while, since

Vti;, = Vuf (1 - W ) + Vvftpj + (^0) - u f ) ® VW l

we obtain, upon recalling the second inequality in (2.3a) (or rather (2.3a)u;)

f W(Vwj)dx < f _W{Vu{j))dx+ I W{Vvf)dx
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for some /?' > 0. Thus, using (2.29) and appealing this time to the first
inequality in (2.3a)t4;,

j)dx < I W(Vu(f))dx+ f W{Vv\j

JC\E J JDC\E

} (232)

J-+OC

Collecting (2.30), (2.31), (2.32) and passing to the limit in j yields

J + 1

and (2.26) is obtained upon letting p and c tend to 0. Thus I<x>{v>, *) extends
to a nonnegative finite Radon measure on A.

Since E(u,A) < +cx) then if7V~1(5(w) n A) is finite. Thus
HN"l[S(u) is a Radon measure on A. Taking u as a test function for
Ioc{u,A), we have I^u^A) < E(u,A) which implies that /oo(^, •) is abso-
lutely continuous with respect to CN + HAr~1L5(u). The Lebesgue decom-
position theorem guarantees the existence of two densities h and g which
are, respectively, Lebesgue measurable on A and if;v~1[5(u)—measurable
on A, such that

N ^ . (2.33)

Furthermore h and g are the Radon-Nikodym derivative of /oo(*v) with
respect to CN and HN~l[S(u), respectively, i.e., if Q(xo,e) denotes, for a
given XQ in A, the cube of side € centered at so, then

h(xQ) = ^ ^fogfro ,*)^ for £N_&e

for HN~l-fL.e. XQ in S(u)DA

and the proof of Proposition 2.10 is complete. (See e.g. [EVANS GARIEPY
92] Subsection 1.6.2., Theorem 2.3. Note that in that reference the results
are expressed in terms of small balls instead of small cubes.) •
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We assume now that u € SBV(A;Rk)nL°°(A;Rk) and that J(u,A) < +00,
otherwise there is nothing to prove. Then, according to Remark 2.11, Propo-
sition 2.10 still holds true. We propose to show in the next substep that

h(x) < W*(Vu(z)), CN - a.e. in A,

g{x) < 1, HN~x - a.e. inA,

from which it will be immediately concluded that

Ioc(u,A)<J{u,A).

Step 1-4. The proof that g{x) < 1, tf^^-a.e. in S(u) H A is straightfor-
ward. Indeed, since u G SBV(A;Rk) nL°°{A;Rk),

/
JB

where B is an arbitrary open subset of A, and consequently for all Borel
subsets B. It suffices to consider B to be an arbitrary Borel subset of S(u)
to conclude that g(x) < 1 HN~l — a.e. inA

Remark 2,12 The mutually singular character of CN and HN~l [S{u) also
implies that

^ f c ' " = 0,C» - a.e. in A. (2.36)

This relation will be used thereafter.

It remains to show that h(x) < W*(Vu(x)), £^—a.e. in A. Since J(w, A) <
+oc, Vu e i7(A;Rfc) and for CN-a.e. x0 in A, (2.34), (2.36) hold true
together with

lim 4f / |Vu(x) - Vu(xo)\
pdx = 0 (2.37)

e->0+ €" jQ(xo,e)

Note that (2.37) is merely a statement about the Lebesgue points of Vu. The
argument uses a blow up technique similar to that in [FONSECA MULLER

92]. Fix a suitable x0 in A, satisfying (2.34), (2.36) and (2.37). For any
positive integer n, there exists, by the very definition of W*, an element
¥>n € CffiQ, Rk) such that

W*(Vu{x0)) + - > / W(Vu(x0)n JQ
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Remark that, by virtue of the first inequality in (2.3) (or rather (2.3)^)

C <+OC.

Extend <pn by Q-periodicity to C°°{RN;Rk) and set

u™(x) := Vu(xo)x + — <pn{mx).

Then,

/
mQ

n
Further, as rn tends to +00,

uj? — Vu(xo)x strongly in Ll{Q;Rk),

and a straightforward diagonalization process yields a sequence vn (=
of smooth functions such that

U

vn - • Vit(xo)x strongly in LX(Q; -Rfc)̂
(2.38)

For a given 6 > 0, set

<(x) :- u(x) + e[Vn(

Then, because u belongs to L°°(A;Rk) and by virtue of (2.38),

< -» « strongly in

N-)«)) = HN-\S(u) n Q(xo, 6)).
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The sequence u^ is a valid sequence of test function for /oo(tt, Q(xo)€)) i
(2.1)oo and we obtain

< Hminf{-L/ W(Vu<n)dx + *HN-l(S(u) DQ(xo,e))}

= liminf / W{Vu(x0 + ex) - Vu(x0) + Vvn{x))dx
n—H-DO J n

~7V

The limit (2.36) in Remark (2.12) is recalled and we obtain

1

< limsupliminf / W{Vu(x0 + ex) - Vu(x0) + Vvn(x))dx.(2.39)
€—0+ "—+°° JQ

We now appeal, for the first time in the proof of Lemma 2.5, to (2.3b) (or
rather (2.3b)^). Then

lim -T7/oo(u,Q(xo,e)) < limsupliminf / W(Vvn)dx +
€-•0+ e" c_o+ n -*+ 0 0 L JQ

7 / (1 + \Vvn(x)\p~l + \Vu(x0 + ex) - Vu(xo)\
p )\Vu(x0 + ex) - Vu(xo)\dx\

JQ J

< limsupliminf | / W(Vvn)dx + C[ f \Vu{x0 + ex) - Vu(xo)\
pdx)

€_>o+ n-4+°° UQ \JQ J

We have used Holder's inequality to pass from the second to the third in-
equality. Recalling (2.38), we conclude that

lua+ py/ooCf, Q(x0, e)) <

UP
W*(VU(XQ)) + C lim sup ( f |Vu(x0 + «x) - Vu(xQ)\pdx] <

e _ 0 + V JQ /

( l r \ 1 / p

W*(Vu(x0)) + Climsup (-T7 / \Vu(x) - Vu(xo)\
pdx )

e-»0+ \ c JQ(xo,e) /
which, in view of (2.34), (2.37), finally yields

h(x0) < W*(Vu(xQ)),
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which was the desired result. We have thus proved that

for all u's in SBV(A;Rk) D L°°(A;Rk) (if J(u,A) = +00 there is nothing
to prove ) and, according to Remark 2.9, this implies that, for any v in
BV(A;Rk), I(v,A) < J(y,A) whenever (2.3)w holds true, and I(v,A) <
+00.
Step 1-5. If £2 is bounded, then we can take A = fi and Lemma 2.5 is proved.
If not we assume firstly that u belongs to 27(0; Rk) with 7(ix, Q) < +00 and
J(u, Q) < +00. Consider a sequence Cln of compactly embedded bounded
open sets with Uftn = ft, and an associated sequence <pn of elements of
Cg°(ft;Rfc) with <pn = 1 on ftn, 0 < y>n < 1 and \V<pn(x)\ < 1. Set

un := y?nu.

Further supp{un} C An bounded open subset of £2. Thus, obviously,

Note that J(un,ft) is easily checked to be finite since u € 1^(0;Rfc). Then,
according to the previous step,

hence

But, on the other hand, Vu € L^fyR*) in view of (2.3a)u;, so that, by
virtue of (2.3c),

< J(u,Q)+C

Since <pn converges to 1 a.e. in Q as n tends to +00, the dominated conver-
gence theorem yields

Urn sup J(un, Q) < J(u,n). (2.40)
n—•-foo
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On the other hand, the dominated convergence theorem also implies that

un —• u strongly in Ll(Q\Rk)

as n —» +00. Thus the very definition of /(-, VI) as a relaxed functional, in
the strong L1(f2;Rfc)-topology, of E(-,Q) implies that

7(u,fl) <liminf J(un,n),
n—»-l-oo

which, together with (2.40), yields the desired inequality.
If u does not belong to LP(£l\Rk) but J(u, Q) < +00, it is approximated
by ipq(u), with y>q as in the proof of Proposition 2.7. The proof that
J(u, fi) < J(u, Q) is then identical to that of Proposition 2.7 upon replacing
A by Q and dropping the term (36 measA in (2.11) and (3 fnurx\>q\ 6dx in
(2.15), because 6 = 0 when ft is unbounded.
The proof of Lemma 2.5 is complete. •

Step 2. We will prove the following

Lemma 2.13 Under the only hypothesis (2.3), for any u € BV(A;Rk)

Proof of Lemma 2.13. We are at liberty to assume that J(u, Q) < +00
otherwise there is nothing to prove.

Let un € SBV(Q; Rk) be such that, as n tends to +00,

un —• u strongly in L1(f);Rfc),

E(un, Q) = / W(Wn)dz + HN-\S(un) DQ)<C< +oc,

/ := lim E(un,Sl).
n—^+00

> J(u,n).

n

Our goal is to prove that

The result announced in Lemma 2.13 is a direct consequence of Lemma
2.14 below and of a lower semi-continuity result of Ambrosio [AMBROSIO
93a].

Lemma 2.14 // J(u,ft) < +00 then u € SBV(Cl]Rk).
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Proof. Consider the family of cut-off functions (pi introduced in the proof
of Proposition 2.8. By (2.17) and (2.3a) we have

sup / \V(<pi(un))\dx + HN-l(S(<pi(un)) n < +oo

and using the compactness theorem in SBV (see [AMBROSIO 89a]) we ex-
tract a subsequence

where v € SBV(Q\Rk). On the other hand, as u^. —> u strongly in
Ll(Sl,Rk), we have

v = v?i(tx) G SBV(Sl\Rk) for all positive integer i.

Using the chain rule for distributional derivatives (see [AMBROSIO DAL
MASO 90])

0 = C{<pi{u)) = V<pi(u)C(u) infi \ S{u), (2.41)

where, for x £ 5(u), the approximate limit u(x) of u at x is the common
value of u+(z),ir(z). As u(x) is a Borel function (see [EVANS GARIEPY
92], Lemma 1, Section 5.9), the sets

Em := {x € Q\\u{x)\ < m}

are Borel sets and |C(u)| = 0 if and only if

\C(u)\(Em) = 0 for all positive integer m.

Fix an integer number m and let i > m. By (2.42)

o = iv^fiWuHf^)!
= \lC(u)(Em)\

= \C(u)\(Em),

where I is the identity matrix in Rfc x Rfc. •

Finally, since u £ SBV(£2;Rfc), Ambrosio's lower semicontinuity theo-
rem (see [AMBROSIO 93a]) yields

/ = lim [ WiV^dx + H^iSi^nQ)
n->+oo JQ

> liminf / W\Vun)dx + HN~\S(un) n fl)

n n)
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which completes the proof of Lemma 2.13.

Lemma 2.5 and 2.13 coalesce into Theorem 2.1.

3 Stable damage and fracture evolution in a brit-
tle elastic continuum

This section is devoted to the investigation of a model of evolution for a
continuum that undergoes both damage and fracture. The proposed model
results in a time indexed sequence of minimization problems, the energy
functionals of which fit squarely within the class of functional addressed in
the previous section.

Specifically the model is a generalization of that introduced in [FRANO
FORT MARIGO 93]. An elastic body occupying the open connected domain f2
of R^, 1 < N < 3, is considered, and its evolution is monitored for discrete
times

0 = to < ti < • • • < tj = t.

At time to = 0 the body is assumed to be undamaged and crack free and
a loading process is imposed upon it over the time interval [0, t]. For the sake
of simplicity we assume that the loading is a body loading, in other words
the entire loading process is characterized by a sequence {/i; 1 < i < 1} of
body forces whose precise regularity will be given below.

In the absence of self-healing the cracks will grow with time; thus the
crack free part of the body is assumed to be a decreasing sequence {f̂ ; 0 <
i < 1} of bounded, open subsets of ft with Qo = fi- The body forces fi will
be assumed to belong to L°°(fii_i; RN). At each (discretized) time U, i > 1,
and at each point x in Hj, the elastic energy density can take two values
W t t(0, or Wd(0, with

a|£f, £ € RN\ (3.1a)

Wu and Wd are quasiconvex, (3.16)

with 1 < p < +oo and 0 < a < (3 < +oc. In view of (3.1b), Wu and Wd

are continuous ([DACOROGNA 89, FONSECA 88]). Moreover, it was proven
in [MARCELLINI 85] that (3.1a) and (3.1c) imply that

0 - Wd(V)\) < m .
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The density Wu is that of the undamaged material while Wd is that of
the damaged material. In other words, if Xi(x) denotes the characteristic
function of the damaged part of ty-i, the elastic energy density of the
material occupying Q|_i is

() O (3.2)

at the time U.

Remark 3.1 A mechanically inclined reader might challenge the form of
the (un)damaged elastic energies, and most notably the growth condition
which excludes energies that would blow up as det£ goes to 0+, a nonlinear
elastic must. As is usual in the literature pertaining to equilibrium problems
for multiple integrals, we firstly address the case where the energy densities
are finite. The results for finite quasiconvex integrands are often not trivial
to obtain and so we must deal with these first, in the hope that the analysis
will give us some insight into the more general problem.

We remark that our hypotheses on the form of the elastic energies also
exclude the case of linearized elasticity because pointwise coercivity in the
sense of (3.1a) is never satisfied by even the most innocuous linearly elastic
materials. Our framework is not to be construed as extending to the case
where the energies are functions of the symmetrized gradient e = ^(£ + £T)
because the correct functional space is not BV anymore, nor its offspring
SBV, but BD - the space of bounded deformation - for which very little is
known at this juncture.

In conclusion a mechanically rigid reader will most certainly be dis-
satisfied with the model as it stands while a more lenient one will merely
interject that it is indeed a weak generalization of the model proposed in
[FRANCFORT MARIGO 93] since it does not even encompass the original
model. We are fairly confident that a better understanding of spaces like
BD would provide the missing ingredient, although such a statement is a
mathematical syllogism which in plainer language should be labelled a leap
of faith.

The evolution of the damage process is described through the evolution of
Xi{x)- Because damage is irreversible, Xj(x) = 1 whenever x%(x) = 1? 3' > *
and x € fij-i. Furthermore the following yield criterion governs the process:
for x € fii-i> Xi(x) = 0 provided that the gradient of the transformation at
that part and up to that time—namely {Vu^(x), k < i} where Uk(x) is the
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deformation field on fifc-i at time £*—has never wandered outside an open
subset U of R^2 defined as

n := {i e RN2\ wu(t) - wd(t) < K}. (3.3)

In (3.3), K is a characteristic constant of the material and it represents
the rate of released energy when passing from an undamaged to a damaged
configuration.

The evolution law for Xi(x) becomes, for x G fti-i,

{ 0 if Xi-i(z) = 0 and VUJ(X) G Tl,
(3.4)

2 < i < / , which is meaningful because the monotone character of the
sequence Qi implies that if x G flt-i, then x G fii_2-

The globally dissipated energy D{ from the start up time to the time
U is given by

Di := / KXi+i(x)dx.
Jn

The modeling of the fracturing process is conceptually similar to that
of the damage process. The crack free domain Q{ is the set complement in
fit_i of the closure of the set on which the deformation solution field Uj(x)
experiences jump discontinuities (the "crack" at the time U). Specifically,

i;RN), (3.5)

while
Qi = fii-i\S(ui). (3.6)

Note that (3.6) does define a monotonically decreasing sequence of domains
Q = fto D fli D • • • D Cljj which is a natural way of imposing the irre-
versibility of the fracturing process.

Remark 3.2 In the light of (3.5), Vu»(x) in (3.4) is density of the absolutely
continuous part of the weak derivative Du{{x).

The crack evolution is governed by the usual GRIFFITH criterion (see e.g.
[GDOUTOS 90], Ch. IV): for the crack to propagate the energy released
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through an infinitesimal virtual "extension" must exceed a critical threshold,
A > 0, the critical energy release rate. Put otherwise a crack will not prop-
agate if, for any possible "extension" of that crack, the resulting decrease
(if any) in potential energy cannot offset the energy dissipated through that
"extension". Define, for any v € SBV(Qi-i\RN), the potential energy Vi{v)
to be

/ i(x, Vv)dx - / fi • vdx.

Then the evolution law for the crack becomes

Vi{v) - Viiui) + \[HN~l(S(v) n f2i_i) - HN-l(S(ui) n ft-i)] > 0 (3.7)

for any admissible v's.

The evolution of damage and fracture as described above may be re-
formulated as a two field partial minimization problem. Specifically we set

+ K f Xdx + XHN'l(S(u) H fii_i) -

where fit-i is defined in (3.6).

In view of (3.4) we also define

Si := SBV(ni-i;RN) (3.9)

Xi := {X e L°°(a-i;{0,l})|x(x) > Xi-i(x) a.e. onf t - i } . (3.10)

Then xu ^i satisfy (3.4), (3.7) if and only if

(3.11)

In the setting of pure damage it was observed in [FRANCFORT MARIGO

91] that a principle of the kind (3.11) generates too many solutions and
that an additional selection criterion is desirable. A natural candidate is a
global stability principle, which forces (ui,Xi) to be a global minimizer of
C{ defined in (3.8) over all admissible pairs (u, x) in S x Xi. In other words
the (discretized) evolution of the interaction between damage and fracture
is described through the following
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Problem 3.3 For i € {1,..., / } , find (u», Xi) that minimizes d over Si x Xi
with f2_i = n0 = 17, xo = O,uo = id, and fij_i = fii_2 \ S(ui-i), 1 < i <
J + l.

In a min-min problem the order in which the minimization is car-
ried out is unimportant. Minimizing in x then in u, we define, for i €
{ 1 , . . . , / } , z e a - " 2

f
{
{ (3.12)
{ min{Wu{Z),Wd(t) + K} ifXi_i(x) = 0,

and, for u in Si,

$i(u) := / tl>i(x, Vu)dx

+\HN-l(S{u) H ty-i) - / fi • ̂ dx. (3.13)

Then, Problem 3.3 is easily seen to be equivalent to the following single field
minimization problem:

Problem 3.4 For i € {1,...,/}, find Ui that minimizes $i over Si.

Remark 3.5 Although x% has seemingly disappeared from the formulation
of Problem 3.4, its presence is felt through the expression (3.12) for fa.

Remark 3.6 The energy density tpi(x^) is a Caratheodory function be-
cause Wu and Wd are continuous. In view of (3.1a), it satisfies

<*\W<1>i{x,i)<0(\ + \W). (3.14)

Furthermore

«(O - Wu(r,)\t \Wd(0 - Wd(r,)\},

so that, by virtue of estimate (3.1c), we obtain

Let us focus for the time being on the first time step t\.
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3.1 The first time step:

Since xo = 0, the energy density ^1 does not depend upon x, i.e. rpi =
min{Wu, Wd + K}. In view of (3.14) and (3.15), it satisfies hypotheses
(2.3a) and (2.3b) and we conclude that Theorem 2.1 applies. Denote by t/>{
the W1>p—quasiconvexification of ̂ i , i-e.

nf „ f
(Q;R'V<?

(3.16)

where Q is a unit cube centered at 0, and set

\HN~l(S(u)) - / /i • udx. (3.17)

Then Theorem 2.1 implies that $ | is the lower semi-continuous envelope of
$ i defined in (3.13) for the strong topology of L^ftjR*).

The above result is not entirely satisfactory because it fails to guarantee
the existence of a minimizer for (3.17) over S\ = BV(Q-,RN). Of course,
if such a minimizer exists, the resulting value of $J is the infimum of $i
over S\. The missing ingredient is the compactness in S\ of a minimizing
sequence for Problem 3.4. Indeed the functional $J (or $i) is not coercive
over BV(Q;HlN). At the present time we do not know how to remove this
obstacle without additional assumptions on the admissible test fields . The
simplest such assumption is to impose on the fields to take their values in a
compact set M of RN. Such a restriction is physically reasonable because
the model certainly implicitly precludes very large displacement other than
rigid body ones, since those would provoke the onset of e.g. plasticity which
is beyond the framework of this study; it is however an admittedly unusual
restriction in a problem of elasticity.

We thus assume that Si defined in (3.9) is replaced by

(3.18)

Then Problem 3.4 at time t\ becomes

Problem 3.4oo Find u\ that minimizes $1 over 5f°.

The first inequality in (3.14) together with the definition (3.18) of 5f° imply
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that a minimizing sequence un for $1 satisfies

sup ||nn||Loo(n) < C < +00,
n

riV-1sap HN-l(S(un) ntl)<C< +00, (3.19)
n

k ||Vun | |Lp (n)<C<+CX),

from which it is deduced that {un} is uniformly boimded in SBV(Cl\RN)
hence that, at the possible expense of extracting a subsequence still labelled
un,

un-*u strongly in Ll(Q\ RN). (3.20)

By virtue of (3.18), (3.19) and because p > 1 a direct application of Theorem
2.1 in [AMBROSIO 89a] implies that u € SBV(Q',RN) while the previous
consideration permit to assert that u minimizes $ j o v e r ^i°-

We have thus proved the following

Proposition 3.7 The infimum o /$i , defined in (3.13), over 5f°, defined
in (3.18), is the value o/$J, defined in (3.17), at any of its minimizers over
5f°. Such minimizers exist.

The specific form of W\—see (3.2)—permits to be somewhat more pre-
cise in the description of %p\. To this end we recall another expression for
tpl which holds true because of (3.1a) (cf. [BALL MURAT 84], Theorem 3.1,
Corollary 3.2 and Conjecture 3.7 (2); cf. also [KOHN 91], equation (2.12) and
Lemma 2.2 in the case of an energy that depends on the linearized strain).
Specifically we define, for any x € L°°(Q\ {0,1}) (Q a unit cube),

is Q - periodic}, (3.21)

€ L°°(Q; {0,1}), / xdx = 6}. (3.22)
A. JQ

Then
4>U£)= inf \W*(O,Z) + K0\. (3.23)
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Remark 3.8 If Wu and Wj are convex in £, then (3.21) may be identi-
fied with the energy density associated to the T-limit I® of the following
functional defined on 1 ^

where Wx(-,f) has been Q—periodically extended to the whole of RN (see
e.g. [MARCELLINI 78]) and an interpretation (and/or alternative derivation)
of the quasiconvexification of ip\ may be proposed using homogenization
techniques (see [FRANCFORT MARIGO 93]).

When Wu or Wd are not convex the F— limit /£ of J£ does not admit
£ as energy density but W® defined as

:= inf infj-L

(pis kQ- periodic i, (3.24)

and W® can be shown not to necessarily coincide with W£ ([MULLER 87]),
although certainly W® < W£. It is however worth pointing out that, defining

W°(e,0 := inf {wJ(O| X € L°°(Q; {0,1}), / X(x)dx = *} , (3.25)

the following result holds true

= W ( ^ 0 , (3.26)

as easily checked upon performing, for a fixed x> k and (/?, the change of
variables x = ky, setting

Xk(y) == (fc) ( )

and noting that, for any kQ— periodic

P^ LQ Wxii + V ^( x » d x = jQLQ xii ^ ( » jQ x>
Note that the resulting <pk is Q-periodic, while

/ Xk{y)dy = T77 /
JQ K Jk
/ X k { y ) y T 7 7 / X ( ) / x ( ) = 6.
Q K JkQ
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Thus, by (3.23), ip\ may reexpressed as

This remark, which seems to be new, states in essence that optimal energy
bounds on the periodic mixtures at fixed volume fraction of two arbitrary
energies can be obtained by consideration of a single period notwithstanding
convexity.

The following lemma whose proof follows that of a similar result for
the quadratic case ([ALLAIRE KOHN 93], Proposition 8.1) holds true:

Lemma 3.9 W* is locally Holder continuous over [0,1] x R N \ It further
satisfies, for any 0 < 6 < 1,

a|£|p < W(0,£) < 0(1 + |£f), £ € RN\ (3.27a)

|W(*,fl - W{0,r,)\ < C{\ + \l\*-l + iT/r1)^ - Vl (3.27b)

with £,r)€ R^2, 0 < C < +cx).

Proof of Lemma 3.9. By virtue of (3.1a) and of Jensen's inequality applied
to |£|p, it is immediately seen that (3.27a) holds true.

The locally Lipschitz character of W* in £ is straightforward. For any
1 > c > 0, there exists an admissible pair (x^^c) °^ t e s t functions such
that

[(1 - XtWutf + V^) + xeWd(t + V^)]dx < W(0,t) + e. (3.28)

Because of (3.1a) inequality (3.28) implies in turn that

or still that

But, for any r) in R" , we obtain, by virtue of (3.1c),

W*(0,r,) < j[

< I l
JQ

+c f (i+Kr1

JQ
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Thus (3.28), together with the estimate on ||V<^||/,P(Q) yield

Letting e tend to zero and exchanging the role of £ and rj permits to conclude
and to establish (3.27b).

The locally Holder continuous character of W* in 6 is more involved
because it requires application of a MEYER' type regularity result. Specif-
ically, for any e > 0 choose x$> && admissible test function in (3.22), such
that

At this point we use for the first time the hypothesis (3.1c) that Wu and
Wd are quasiconvex, hence that WXi{x, •) is too. Then, by virtue of (3.1a)
the infimum value W*c(f) is attained for a Q-periodic y>€ in Wlj>(Q\RN)
in (3.21) (see e.g. [ACERBI Fusco 86], Theorem II.4 ). Thus

L (3.29)

Then according to Theorem 3.1 in Section V of [GlAQUINTA 83], ^ €
Wfo™(Q\RN) for some m > p and the following estimate holds true, for
Q' cc Q,

||V^||Lm(Q/) < CQ/, (3.30)

where CQI denotes throughout a constant that depends upon Qr, a, /?, Q and
^ only. Note that (3.1a) and (3.27a) have been implicitly used in deriving
inequality (3.30). Choose x' € L0C(Q; {0,1}) with Q' := supp(x'-Xf) CC Q
and such that, setting

/ x'dx = 0',
JQ

then

[ M - x\ix)dx = \tf - e\.
JQ

We obtain
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+ ff (x! -

where xp € CQ°(Q) with xp = 1 on Qf and where we have used (3.1a). In-
equality (3.29) is recalled and Holder's inequality is applied to the last term
of the last inequality in the above string of inequalities. We obtain

JQ
/
Q

or still, upon invoking (3.30),

w*(e!, o < w*(e, o + cQ> \e' - 0|(™-p)/™ + 6.

Letting e tend to zero permits once again to conclude. Note that, provided
that Q1 is close enough to 6, there will always exist a x' with supp(x'—Xf) CC

Q', / x'dx = tf and / \X' - x\(x)dx = \6' - 0\.
JQ JQ

Remark 3.10 We denote by 6(£) the minimum of all minimizers of
K6,0<6< 1}. By virtue of (3.23)

If £(x), x € ft, is a simple function then 0(£(z)), x G ft, is also simple, hence
measurable.

Let Hi € S°° be a minimizer for $J, the existence of which is guaranteed
by Proposition 3.7. Choose a sequence {£n(x)} of simple functions that
converges pointwise to Vui(x) and set

n—»-foo

Then 6\ is a measurable function, and because W*(0,£) is continuous over
[0,1] x R^2 we have for all 0 € [0,1], a.e. x G fi and after extracting a
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suitable subsequence

= lim

< lim W*(9,tn
n—•+oo

= W*(0,Vui{x))

and so
0 < 6 < 1}.

(3.31)
The function 6\ (x) should be thought of as the local volume fraction of the
damaged material at the first time step. We have thus proved the following

Proposition 3.11 To each minimizer u\{x) of $1 over S00, there corre-
sponds a measurable volume fraction 6\(x) such that

inf *i(u) = ( W*{ei{x),Vui{x))dx + K I 9i{x)dx

+\HN-1(S(u1))- [ h i ,

with W* defined in (3.22).

Remark 3.12 Note that the pair {u\,6\) € 5°° x X\ may not be unique.
The subsequent history of the evolution of the damage/fracture process will
depend upon the solution (ui,0i) at time step t\. The reader may find it
convenient to think of the evolution as possibly exhibiting bifurcations at
each time step.

3.2 The subsequent time steps

We assume that (ui(x),0i(x)) has been determined and recall Problem 3.3.
At the second time step £2, we must set, according to (3.6) and Problem 3.3,

which is the uncracked part of Q after time t\. Thus the new domain is
unambiguously assigned once u\ is known. The irreversibility constraint,
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namely x(x) ^ Xi(x) a e - in ^ is n o t s o easily handled because the re-
laxation at time t\ has merely produced a local volume fraction 6\{x) of
damaged material.

We define, for 1 < i < / and for a.e. x in fii_i,

tf(x,0 := min [W(0,£) + K6], ZeRN\ (3.32)

where W* has been defined in (3.22) and 0o(x) := 0.

In the spirit of the relaxation performed at the first time step in Subsec-
tion 3.1 we propose the following relaxed formulation for the subsequent
time steps:

Problem 3,13 For i € {1,...,/}, find (ui(x),0i(x)) such that Ui minimizes

- / fi • udx (3.33)

over 5f°, where ip* is defined in (3.31) and S?° in (3.18). The local volume
fraction 0i(x) is such that, for a.e. x in Ht-i;

x)) + K6i(x),
(3.34)

0i(x) > Oi-^x).

That Problem 3.13 admits a solution at time t\ has been established in
Proposition 3.7 and also because (3.34) follows from (3.31). At subsequent
time steps U, $* admits a minimizer if the density ip*(xy£) defined in (3.32)
is shown to be a quasiconvex Caratheodory function with p growth, i.e.,
such that, for some ff < +oo, and for a.e. x in fii_i,

In such a case the energy density ^*(x,f) will meet all the requirements
that permit application of Theorem 4.3 in [AMBROSIO 93a]. Since, as al-
ready seen in Section 2, HN^1(S(u) flQi_i) is a jump integral, we conclude
that $*(u) defined in (3.33) is strong-L1(f2i-i;RN)-lower semicontinuous in
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SBV(Qi~i; RN). Furthermore, the minimizing sequences for $* are bounded
in BV(Qi-\; RN) hence compact in Ll(Qi-i\ RN), which permits to conclude
to the existence of a minimizer U{ for $* in Problem 3.13. The following
lemma holds true:

Lemma 3.14 Assume that 2 < i < I. If there exists (ui_i(x),0i_i(z))
such that Ui-i minimizes $*_x over S^0, then the density ip*(x,£) defined in
(3.32) is a Caratheodory function satisfyingf for some /?' < +oo, and a.e. x
inSli-i,

|£f), £ € RN\ (3.35a)

r-1)^ - K̂ tveRN\ (3.356)
Furthermore, if U{ is a minimizer for $* over Sf°, then there exists a local

volume function 6i satisfying (3.34)-

Proof of Lemma 3.14 It has been proved in Lemma 3.9 that W* is in
particular continuous over [0,1] x R . Thus assume that 0i~\(x) exists and
is measurable. Then, \£* defined as

#*(0,O := min [W*(0,£) + KB), I € R^2, 0 < § < 1, (3.36)
e<e<\

is continuous on [0,1] x R^ because W* is continuous. We conclude that

is a Caratheodory function over fti_i x RN .

We now prove that, upon assuming the existence of a minimizer u% to
$* defined in (3.33), a local volume fraction 0i(x) satisfying (3.34) may be
defined. To this effect we denote by 0(0,f) the minimum of all minimizers
in (3.36). If (0(a;),£(x)), x € ft, is a simple function then the associated
0(0(x),£(x)), x € ft, is also simple, hence measurable. If (0(x),£(x)), x € ft
is a measurable pair, then we consider a sequence {(6n(x),€n(x))} of simple
functions that converges pointwise to (0(x), £(x)). We set, for a.e. x in fti-i,

6(0,O(x) := limsup0(0n(x),|n(x)).
n-»oo

The function ©(0,^)(x) is measurable. Furthermore, for almost every x in
ft*_i and for every 0 > 0n(x),

x),£n(x))) + K0(en(xUn(x)) < w*(e,u*)) + Kd,
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thus, by virtue of the continuous character of W*

w*(e{e,o(xU(x)) + KQ(e,i)(x) < wp.ftz)) + KO, (3.37)

for every 6 > 0(x), and hence for every 6 > 6(x). But, for a.e. x in Qi_i,

0(6n(x),Ux))>en{x), .

thus

We have thus exhibited a measurable function ©(#,£) such that, for
a.e. x in fti_i,

while by virtue of (3.37)

friU S . (3.38)
e>o(x)

It now suffices to set, for a.e. x in fii_i,

The proof of (3.35a) is immediate by virtue of (3.27a) in Lemma 3.9. That
(3.35b) is also satisfied follows from an argument identical to that led to
(3.27b). The proof of Lemma 3.14 is complete. •

At this point the only missing ingredient is the quasiconvexity of xp*
from which the existence of a minimizer U{ follows. In view of (3.1a), (3.1c),
(3.22), (3.26), (3.32), the question is immediately reduced to that of the
possible quasiconvex character of a functional defined on U x RN by

u;(x, 0 := . inf \W°{0,0 + fc0], (3.39)
o(x)<e<i

for a.e. x in Q and every f in R , where 6 is some element of L°°(ft; [0,1]).
In (3.39) W° is the energy defined in (3.25) of Remark 3.8.

Appealing to e.g. Theorem II.2 in [ACERBI Fusco 84] the problem
of the quasiconvex character of u defined in (3.39) may be rephrased in
terms of lower semicontinuity. Specifically, the density u> is shown to be
Caratheodory and to satisfy, for a.e. x in Ct and every £ in RN ,
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through an argument which is identical to that used for the tp*'s. Then
quasiconvexity will be established if the functional

v —> / u;(x, Vv)dx
Jn

is proved to be sequentially weak-* lower semi-continuous on WliOO(Cl; RN).

We thus consider a sequence {t;n} in WltOO(Q\RN) such that

Vn — v weak- * in ^ ^ ( f i ; ^ ) ,

and an associated sequence {6n} such that, for a.e. x in ft,

> en(x) > o(x),

° x)) + K6n(x).

Such a sequence exists by an argument identical to that used for the existence
of 9i{x) satisfying (3.34) in Lemma 3.14; furthermore, at the possible expense
of extracting a subsequence still labelled 0n, we may assume that, as n tends
to oo,

6n —> 0 weak- * in L°°(D; [0,1]),

with 0{x) > 0(z), a.e. in ft.

We now assume that the following result holds true:

Conjecture 3.15 Let Wu and Wd be defined as in (3.1) and W® as in
(3.24). For any sequence {xq} in L°°(ft; {0,1}), define

J*« ( v ) ~ J n [ ( 1 " X<(X»W"<?VW + Xg(x)Wd(Vv(x)))dx. (3.40)

(Cl) Assume that

Xg —- 0 weak - * in £°°(fl; [0,1]),
(3.41)

(which is always possible after extraction of a suitable subsequence). Denote
by W{Xq}(xiQ the energy density associated to tf y (such a density exists
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according to [BUTTAZZO DAL MASO 85]. Then, for a.e. x in Q, there exists
a sequence Xr(x] •) € L°°{Q\ {0,1}) such that

= / Xr{^y)dy,
JQ

TV2

€ R

where W° (x € L°°(Q; {0,1}) has been defined in (3.24).

(C2) Conversely, ifW(x,£) is a Caratheodory function such that, for a.e.
x in Q, there exists a sequence Xr(%] •) satisfying

= / Xr{x;y)dy,
JQ

then there exists a sequence Xq € L°°(Q,] {0,1}) such that

Xq —
fc 6 weak - * in L°°{Q\ [0,1]),

JL / W(x, in

Remark 3.16 Conjecture 3.15 says in essence that the energy density as-
sociated to the F—limit of any functional of the form (3.40) "coincides"
pointwise with that of the F— limit of a functional of the form (3.40) spe-
cialized to sequence {xq} of the form

where x is a characteristic function defined on Q and extended by periodicity
to the whole of RN. For such sequences the F—limit is known to admit W°
as energy density (see Remark 3.8). In other words it asserts the canonical
character of periodic homogenization as far as effective energy densities are
concerned. That conjecture is true in the quadratic case ([DAL MASO KOHN

94] ) and it may be shown to be true in the case where Wu and Wd are
convex and satisfy (3.1a) ([FRANCFORT MURAT 94]). Whether it is true in
the general case where Wu and Wd are arbitrary, or even quasiconvex, is an
open question.
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We thus assume that Conjecture 3.15 holds true. Then, upon setting

and

Xg — 0n weak- * in L°°(f); [0,1])}, (3.42)

for n = 1,2,..., oo. Indeed, if xq —
k #n weak-* in L°°(Q; [0,1]) and IXq -£•*

7^x }, then by (Cl) there exists a sequence \r(x, •) G L°°(Q; {0,1}) such that

with
/

JQ

for a.e. x in J7 and every £ in R^ ; thus

> f W°($n(x),Vvn(x))dx. (3.43)

The last inequality in (3.43) above holds true by virtue of (3.25). On the
other hand the continuous character of W* - see Lemma 3.9 - together with
(3.26) permit to find a sequence {vns(x)},x € fi, of simple functions on Q
such that

W°(en(x),vns(x))8^? W°(en(x),Vvn(x)), a.e. x in ft.

On a measurable subset Qj of Q (1 < j < j(n, 5)) where vns is constant there
exists a sequence of functions {x?5J(x, •)} € L°°{Q\ {0,1}) such that

W°(On(x),vns(x)) =

for a.e. x in £2j. Through a diagonalization process we conclude to the
existence of a sequence {x?(x, •)} € L°°(Q\ {0,1}) such that

I
JQ
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W°(6n{x), Vtv,(x)) = Hm W ^ (3.44)

Note that the continuous character of W£ in £ and the compactness of
{Vvn(x)\x € £1} in RN has been implicitly used in deriving (3.44). Define,
for a.e. x in £2 and every f in R^ ,

(3.45)

Then W® is easily checked to be Caratheodory. Thus, by (C2), there exists
a sequence x£ € I/°°(£2; {0,1}) with

Xn
q — 0n weak- * in L°°(fi; [0,1]),

and

Hence
1

But, by virtue of (3.44) and (3.45)

W${x,Vvn{x)) = ̂ n ( x ) , V ^ ( i ) ) , for a.e. x in £}.

Thus
/ TJ/0 / , - , T7/,. /'•wW.J/** I TJ/0//) / ~ \ T7«. / - W J - ,

Jn XXq* Jn
which, together with (3.43), proves (3.42).

In view of (3.42) the very definition of F convergence implies the existence
of a sequence {xnq} in L°°(Q; [0,1]) of a sequence {vnq} in WliP(Q\ RN) and
of an integer g(n), with q(n) depending on n such that

Xnq —k 0n weak-* in

vnq -—k rn weakly in

; [0,1]),

(3.46)

9 >
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A diagonalization argument permits to conclude to the existence of sequence
Xn = Xntfin), vn = vng.{n) such that

Xn^0 weak- * in X°°(fi; [0,1]),

vn — v weakly in ^ ' " ( f i ; RN), ( 3 47)

liminf /*„(£„) < Uminf / W°(en{x), Vvn(x))dx.
n—>oo fi—*oo yj^

The third inequality of (3.46) and th° fact that (a subsequence of) \ n sat-
isfies (cf. (3.41))

7*n — k 4 n } '
imply that

liminf f W°(0n(x),Vvn(x))dx > I°in){v)

weak-* inL°°(n;[0,l])|

W°(6(x),Vv{x))dx./
n

Note that (3.42) applied with n = oo has been used in deriving the last
equality. Thus, recalling (3.39) and the inequality 9(x) > 6(x), a.e. in £),
we obtain

liminf J u(x,Vvn(x))dx > f [W°(0(x),Vv(x)) + K9(x)]dx

> I u;(x,Vv(x))dx,

which was the result sought.

We conclude that

Proposition 3.17 IfWu and Wd defined in (3.1) are such that Conjecture
3.15 holds true (such is the case ifWu and Wd are e.g. convex) then Problem
3.13 admits a solution.
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Remark 3.18 The reader should refrain from drawing the conclusion that
Problem 3.13 is a "relaxation" of Problem 3.3 (or 3.4). Indeed although Sub-
section 3.1 established that $J is a bona fide relaxation of $i , the argument
breaks down at subsequent time steps because the irreversibility constraint
x(x) > Xi-iix) a e - *n f^t-i f°r admissible x's in X{ (see (3.10)) has been
relaxed to 6(x) > 0i_i(x) in the definition of tp*.

This pathology which has already been encountered in [FRANCFORT
MARIGO 93] has not as of yet been circumvented. The complete discretized
time/space relaxation, which may be different from that hinted at in this
subsection, is beyond reach because it would require a better understanding
of the minimizing sequences Xn(x) f°r a given 0l(x) in expressions like (3.22).
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