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On a Gap Phenomenon for Isoperimetrically
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Abstract: We consider functional of the calculus of variations subjected to constraints of the
form

/ g(x,u)dx = 1.
Jn

We identify the relaxed problem and we show that, when a lack of compactness occurs, the constraint
may relax to a gap term.

1. Introduction

The term Lavrentiev phenomenon refers to a surprising result first demonstrated by Lavrentiev in
1926 [29]. There he presented an example showing that it is possible for the variational integral of a two-
point Lagrange problem which is sequentially weakly lower semicontinuous on the admissible class of
absolutely continuous functions, to possess an infimum on the dense subclass of C1 admissible functions
that strictly exceeds its minimum value on the full admissible class. The global C1 regularity constraint
on the admissible functions was thereby shown to incur an infimum gap in comparison with the relaxed
problem in which this constraint has been removed. Since that time there have been additional works
devoted to analyzing this gap phenomenon (see References), of which the paper [12] is most closely
related to the work we present here.

The present article was stimulated by a result of Lezenina and Sobolevskii [30] in which a gap
phenomenon having some analogy to the Lavrentiev phenomenon for free problems was encountered in
an isoperimetric variational problem associated with a singular elliptic equation. We here demonstrate that
for a large class of isoperimetrically constrained variational problems there is such a gap phenomenon,
which has a natural interpretation as a relaxation effect, as was shown in Buttazzo and Mizel [12] to
be also true of free problems for which the Lavrentiev phenomenon occurs. We prefer here to consider
only the gap effect deriving from the lack of compactness and so, to avoid possible interactions with the
gap due to regularity of admissible functions, we consider our problems as defined on the whole class of
absolutely continuous functions. The result is that, after relaxation, the initial constraint becomes a kind
of penalization term which, in several cases, can be explicitly computed.
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2. The Relaxation Result

Let ft be the interval ]0,1[; we consider
WliX(Q) the space of all absolutely continuous functions on ft;
A the class of all functions u £ Wl'x(Q) with u(0) = 0̂ _
/(x,5,C) a nonnegative Borel function from ft x R x R into R which is lower semicontinuous

in (s, C) and convex in £;
g(xy s) a nonnegative Borel function from ft x R into R which is lower semicontinuous in s.
For every u € A we define

F(u)= I f(x,u,u')dx
Jn

G(u)= / g(x,u)dx

F(u) i f G ( t i ) = l
+00 otherwise

and we denote by H the greatest functional on A which is sequentially lower semicontinuous with respect
to weak Wfc*(Q) convergence and less than or equal to H. By the assumptions made on the integrand
/ , the functional F turns out to be sequentially lower semicontinuous, so that

~H(u) > F(u) Vu e A.

On the other hand, the equality H = H is possible only if the constraint G(u) = 1 is preserved in the
relaxation, which does not occur in general when the integrand g(x,s) has singularities which prevent
the compactness of embeddings. We want to write 77 in the form

and to characterize the gap L explicitly. It is clear that, when the compactness condition

Uh _ u in w _ W^{Q), F(uh) < c => G(uh) - G(u)

is fulfilled, then 77 = H, that is
I ( t t ) = ( 0 ifC?(«) = l

t +oo otherwise.

In general, however, only the inequality G(u) < 1 holds in the relaxed functional, by Fatou's lemma.
Thus L(u) = +oo whenever G(u) > 1, L(u) = 0 whenever G(u) = 1, but L(u) may take finite nonzero
values on functions v € A such that G(u) < 1.

In order to characterize explicitly the gap functional L we introduce the
following notations:

Fx(u)= (* f(t%u%u')dt
Jo

f
Jo

= / g(t,u)dt
Jo

V(x,s,z) = inf {Fx(u) : u £ A, u(x) = 5, Gx(u) = z}
W(x,s,z) = liminf V(X,£,T]).

The representation result for L is then the following.

Theorem 2.1. Assume the following conditions are fulfilled:
(2.1) for every 6 > 0 there exists a function ab 6 I2(ft) and a function 0b : R -» R with Ob(r)/r •—

+00 as r —* +00 such that

(x) Vx€]6,l[, Vs€R, V<€R;



G. BUTTAZZO & V. J. M1ZEL: Relaxation of Constrained Problems

(2.2) g(x,s) is continuous in s, and for every 6 > 0 there exists a function 7$(z,f) increasing in t
and integrable in x such that

*(*,«) <7«(*,l«l) V* €]«, 1[, V« € R.

Then for every u € A with G(u) < 1 we have

(2.3) L(t/)>limsupW fx, 1100,1- / g(t,u)dt)
*-0 \ Jx J

(2.4) L(u)<X\m\i&v(x%u(x)%\- f g{t,u)dt\ .

Hence

L(u) = lim \

ifV(x, •, •) is lower semicontinuous on R x R.

Proof. Consider any sequence (uh) in A with G(uh) = 1 and un —• u weakly in Wfcl(Q); then for
every 6 > 0 we have

_ [' , tl

JO J6 ~~

) , 1 - / g{x,uh)dx\+J f(x,uh,u'h)dx>

) , 1 - / y(a;,uh)dar) + / / (x , uh, u'h) dx.
Jb J Jb

Passing to the limit as h. —• -f oo gives, by using (2.1) and (2.2)

H(u) > W ( 6, u(6), 1 — / ^(x,u) rfx J + / f(x,u,u')dx
\ Jb J Jb

and, as 6 —• 0,

~H(u) > lim sup W ( « , u ( 6 ) , l - / ^(x^Jdx ) + F(u)

so that inequality (2.3) is proved.
In order to prove inequality (2.4) let xh —• 0 be such that

( f1 \ • / fl \
(2.5) liminf V I x,u(x), 1 — / ^(f,u)c//)=: lim V I Xfl)u(xfl)) 1 — / gf(t,u)cft 1 < - foer-^° V Jx J ^-+~ \ JXh J

and let Vh € A be such that

(2.6) vh(xh)=u(xh), / g{t,vh)dt=l- I g(t,u)dt
Jo Jxk

(2.7) y hf(t,vh,v'h)dt<j + v(xh,u(xh),l-J g(t,u)dt).

Define
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we have uh £ A, G(uh) = 1 by (2.6), and uh — u weakly in W^l((l) by (2.1). Furthermore, by (2.5)
and (2.7)

~H(u) <liminf F(uh) =

= liminf f I*" f(t,vh,v'h)dt+ f f(t,u,uf)dt\ <

< Hminf [ i + V f*h,ti(xfc)i 1 - / *(*, ti) eft) + F(u)] =

= liniinf V f x,t/(x), 1 - / </(/, u) dt J + F(tz).

Hence inequality (2.4) is also proved. •

Remark 2.2. Similar results with similar proofs hold if we replace the class A with Wlfl(Q) or

Remark 2.3. The assumptions of Theorem 2.1 ensure that the lack of compactness may occur only at
the origin. In a similar way we can treat problems in which the lack of compactness occurs at a finite
number of points, but we do not know the form of the relaxed functional ~H when the function g{x,s)
may allow more general "singular sets".

3. Some Examples

In order to provide a source of isoperimetrically constrained one- dimensional variational problems
possessing a gap it will be useful to present a dynamic programming type of result by studying the link
between the value function V(x,s,z) and the solutions of the associated Hamilton-Jacobi equation. In
the following we denote by fm(x,s, •) the Fenchel conjugate of / ( x , s , •). We will also suppose that

(3.1) g{x, s) > 0 for a. e. x e fi and for all s ^ 0;

this implies that for every x eQ and s ^ 0

Theorem 3.1. Suppose that U(t,s,z) is a positive C1 solution on D = R+ x R+ x R + of the
Hamilton-Jacobi equation

such that

(3.3) lim U{t,s,z) = 0 V j € N
( t .a . i )—(0,0,0)

where (Dj) is an expanding sequence of bounded subdomains of D such that (0,0,0) € 1)j, U is
C1-bounded on Dj, and UjDj = D.
Putting

one has the following inequality for every u £ B

(3.4) Fx(u) > U(x, u(x), zu{x)) V* € [0,1].
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Furthermore, if for some (x,s,z) € D there is a u G B such that u(x) = s, zu(x) = z, and (3.4)
holds with equality, then u is a minimizer for the problem

(VX}8)2) min{Fx(u) : u € 5, u(x) = s, zu(x) = 2:}.

Proof. Fix u G B ; then for every x,y with 0 < y < a r < l t h e graph (t,u(t),zu(t)), t € [y,x] lies in
J9j for some j € N. Then by the chain rule for the function U on Dj n ([y, x] x R + x R+) we get

,] dt.

Hence, by approaching the liminf as y —• 0+ and using the definition of B and property (3.3) we can
write

V{xM*)**u(x))-Fx(u)= / [Ut+g(t,u)U2+u'U8-f(t,uyu')]dt.
Jo

Now, by the Hamilton-Jacobi equation (3.2), the integrand is nonpositive everywhere on JO,*], whence
(3.4) follows. The conclusion that u is a minimizer of problem (VX)8)Z) when equality holds in (3.4) is
now immediate. •

Remark 3.2. When problem (3.2) has multiple solutions the above result applies to the maximal
solution, in particular, as the only candidate for the value function of the problem.

Our next result demonstrates a homogeneity property of the value functions Y of (P*,,,*) and V of
(Vx,s,z)> the analogue of (P*,*,*) o n t h e ful1 admissible class A.

Theorem 3.3. Suppose that the integrands f and g satisfying (2.1) and (2.2) have the form

*(<,«) = I'M'

with a,/? £ R and y,6 > 0. Then the value function V associated with the problems (Vx,s,z)
satisfies

(3.5) V(x,«lr) = aro + 1 |«pV(l,l ,«- /'-1H"*) Vs # 0.

Likewise, the value function Y associated with (Px,s,z) satisfies

Y (*, 5, z) = **+1 |spy(i, i, M- ' - 1 !*!" ' ) v* # o.

Proof. Given u e A with u(x) = s and zu(x) = 2 define v(t) = «(<x) so that

v'(t) = *u'(t*), 2,(1) = x ^ - 1 ^ ^ ) , Fx(r) = x — J

It follows from these relations that

(3.6) V(x,6,z) = x^Va^zx-*-1).

On the other hand, given A € R define w(t) = \u(t) so that

w'(t) = Au'(0, ^(ar) = |A|^o(a:), Fx(w) =
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These relations yield

(3.7) V(x^z)=\\\-<V(xAsM).

The validity of (3.5) now follows from (3.6) and (3.7). The proof for Y is similar. •

As a consequence of Theorems 3.1 and 3.3 we obtain the following result.

Theorem 3.4. Let f and g be as in Theorem 33. Then every solution U of (3.2) having the form

U ( t , s , z) = < a + V " 1 *

for some positive function R £ C ! (R + ) , is such that R is a positive solution of the ordinary
differential equation

/ ) - (/? + l)wR'(w) + K(w) + hm (yR(w) - 6wR{wj) = 0
\/J(0+) =

In particular, for every u £ B satisfying u(x) = s and zu(x) = z one has

and equality ensures that u is a minimizer for (Vr,StZ).

Corollary 3.5. Let f and g be as in Theorem 3.3 with a = 0, 7 = S and assume that h £ C !(R),
is strictly convex, and satisfies MC)/C —* +°° ^ ICI —* +°°- TAen equation (3.8) becomes

(3 9) { * ( T ( ^ ( ^ ) - wRf(w))) + (a + l)(7J(u;) - ti;iZ'(ti;)) + R(w) = 0

The maximal solution of (3.9) on ]0, -f oo[ is given by the convex function

corresponding to the C1 solution of (3.2)

(3.10) C/(x, 5, z) = r/ lf!^!. . SL±1\ .

Moreover, the unique B-optimal trajectory (u, zu) for (ViiS,z) corresponding to the above solution
is given by

(3.11) i/(*) = 5*(l*r/;-a

Finally, if for some a > 0

(3-12) - J -

where h~l denotes the inverse of the restriction ofh to some interval [A, +oo[ on which it is strictly
monotone, then

V(X%8,2) = Y(X,8,Z) = U(X,8,Z)

and the trajectory in (3.11) is (Vi,StZ) optimal.
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Proof. By virtue of superlinearity and strict convexity of A, we have for every (

(3.13) hr[h'(Q) = CA'(C) - MO and (ft*)'(C) = (h')'l(C)

so that the supremum yielding h* (y(R{w) — wR'(w))} in (3.9) is attained at (assuming existence of a

minimizer u for problem (V\tStZ))

(3.14) t-^- = (h')

On the other hand, by formally differentiating the implicit Clairaut type equation (3.9) one obtains (we
recall that, by Rockafellar [36], Theorem 26 .5, h* is C1)

jR"(ti;)[l - (Q + l)w - yw(h*)'(y(R{w) - t/;J?'(u;)))] = 0.

Since R" = 0 is inconsistent with R(0+) = +oo, we have

(3.15) {hm)'(i(R{w) - wR'iw))) = — - ?L±1.
\ / yw 7

Then, from (3.14) and (3.15) we obtain

(3.16) u'^^fl-a-iV
7/ \w )

Moreover, inserting (3.15) into (3.9), and taking into account (3.13) gives as singular solution the convex
function

R{w) = wh I - L _
yw 7

which proves (3.10) by Theorem 3.4. Now, recalling that tu = zf~x-c*\s\-'1, while z'u(t) = g(t, u(t)) =
r|t/(t) |7 , we obtain by (3.16)

wf(t) = z'ur°-l\u\-"> - {Q^l)zj'Q'2\u\^^
1 Q + 1 71W / 1 o -h l \

= u' = 0.
t t t \yw 7 /

That is, w is constant along an optimal trajectory. In particular, w(t) = w(l) = ^l^l"7, so that (3.11)
follows from (3.16).

Finally, we show that when (3.12) is satisfied, then y = V by proving that for each u eA\B we
have zu(x) = -foe for every x e fl. By definition of B it follows that for some positive 6, <r one has

If we suppose 2U(1) < +°o, ih^n by taking cr sufficiently small, we can ensure that the argument of h
lies in the semi-axis [A, +oo[ where h is invertible. Thus, since z'u(x) = xa |u(x)|7 , we have the relation

Since ^u(0+) = 0 and h is superlinear, we may deduce from this (by decreasing a) that
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Denoting by k(zu) the coefficient of z'u in (3.17) we have by (3.12) that k e Ll(Q,e) for e sufficiently
small. Letting K(t) = /J k(s) ds, it follows from the local absolute continuity of zu by the chain rule
(cf. e.g. [34]) and from (3.17) that

K(zu(x)) - K(zu(y)) > l\og(x/y) 0 < y < x < a

which gives, as y — 0"1", ~u(:r) = +oo for every x small enough. •

We now examine a special subclass of the integrands discussed in Corollary 3.5 for which an explicit
estimate is available.

Corollary 3.6. Let p > n and let, with the notation of Corollary 3.5, /i(C) = |Clp> a = n — 1 — p,
7 = p, so that

/(<,o = <"-1icr, 9(t,*) = <n-p-1kip-
Consider the variational problem

(Vi,.,3) min {F , (« ) : « € 5 . «(1) = 5, -'u(l) = z).

Then an optimal trajectory is given by

u(t) = s/<M'7.*-"+r>/F) -u(<) _ ztWh

corresponding to a minimal cost given by

:\P

n +
P

(x,s,z)£D.

In particular,

Coi-ollary 3.7. Let d(1) = dist.(/.dQ) and consider the problem

Then, if V is the value function of Corollary 3.6 with n = 1, the infimum m is given by m
2V/(l/2,0+, «:/2) and there is a minimizing sequence which converges to UQ = 0.

Proof. By the symmetry in I the infimum m can be obtained as

U l/2 ,1/2 |̂

Jo J
= inf {V'(l/2,5,r1) + K(l/2,5,22) : zx + 22 = 2}

where T, is the class of functions such that t/(0) = v(0) = 0, u(l/2) = t;(l/2) = 5, 2u(l/2)-f 2v(l/2)
z. By the convexity of V{x, s, •) we get ri = r2 = z/2 so that

m = inf 2V(l/2,«,*/2) = 21/(1/2,0+, z/2) = (1 - 1/p)^

and a minimizing sequence (as s —* 0"4") is

ti fx) = / 8{2x)W*'l*+r-Wr if 0 < x < 1/2
' l ^ U ( 2 - 2 * ) < 2 " ' ' ' / * + P - I ) / P i f l / 2 < x < L B



G. BUTTAZZO <6 V. J. MIZEL: Relaxation of Constrained Problems

Remark 3.8. In accordance with Theorem 2.1 we have in the example of Corollary 3.7 F(u0) = 0 < m
and G(UQ) = 0 < z. For p = 2 this is the one-dimensional case of the gap phenomenon noted by Lezenina
and Sobolevskii in [30]. An analogous problem in dimension n > 1 and for Q the punctured unit ball in
Rn is

min [ / \Du\r dx : u € W^{Q), f \x\'p\u\p dx = z\ .

We conjecture that there is a radially symmetric minimizer for the relaxed problem and thus the gap is
as described in Corollary 3.6.
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