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ABSTRACT
The standard forces associated with continua arise as a response to the motion of

material points. That additional configurational forces may be needed to describe internal
structure is clear from Eshelby's work on lattice defects. Eshelby's studies are statical,
based on variational arguments. I take a different point of view. 1 believe that configura-
tional forces should be viewed as basic objects consistent with their own force balance,
rather than as variational constructs. My objective here is to demonstrate the power of
configurational force balances in the study of dynamical phase transitions. In standard
theories of Stefan-type solidification, curvature flows, and solid-solid phase transitions an
extra interface condition—over and above those that follow from standard balance laws—is
needed. What I believe to be a compelling argument in support of configurational forces is
the conceptual unification that results: each of these "extra" conditions is a consequence of
the configurational balance applied across the interface. Configurational forces also lead to
new results for existing theories (e. g., a weak formulation of the supercooled Stefan
problem) and seem a valuable component in the formulation of new theories.
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1. INTRODUCTION

The standard forces associated with continua arise as a response to the mo-

tion of material points. That additional, configurational1 forces may be needed

to describe the internal structure of the material is clear from Eshelby's work on

lattice defects2 and is at least intimated by Gibbs3 in his discussion of multi-

phase equilibria. These studies are statical, based on variational arguments, with

the configurational forces defined as derivatives of the energy. I take a different

point of view. Although variational derivations may point the way toward a cor-

rect statement of basic laws, such derivations obscure the fundamental nature of

balance laws in any general framework that includes dissipation. While I am not

in favor of the capricious introduction of "fundamental physical laws", I do believe

that configurational forces should be viewed as basic primitive objects consistent

with their own force balance, rather than as variational constructs.4

My objective here is to demonstrate the role of configurational force-balances

in the study of dynamical phase transitions. In the standard theories of

(i) Stefan-type solidification,

(ii) interface motion neglecting bulk behavior,

(iii) solid-solid phase transitions

an extra interface condition — over and above those that follow from standard

balance laws—is needed:

• for (i), the extra condition is the classical Stefan condition, temperature equals

*I use the adjective "configurational" to differentiate these forces the standard forces,
which I refer to as "deformational". In the past I used the term "accretive" rather than
"configurational11, but I now use "accretive" to describe the addition or removal of material.
2Cf. [1951,1970]. Eshelby [1951] remarks that the idea of a force on a lattice defect goes
back to "an interesting paper" of Burton [1892].
3Gibbs's discussion [1878, pp. 314-331] is paraphrased by Cahn [1980] as follows: "solid
surfaces can have their physical area changed in two ways, either by creating or destroying
surface without changing surface structure and properties per unit area, or by an elastic
strain along the surface keeping the number of surface lattice sites constant "
The creation of surface involves configurational forces, while stretching the surface
involves more standard deformational forces.

See also Nozieres [1989, p. 26], who uses the term "chemical" rather than "configurational",
and writes: "Such a concept of 'chemical stresses', although somewhat misleading, is often
useful in assessing equilibrium shapes."
4 It is difficult to imagine distinct force systems acting concurrently at each point of a
body, which is perhaps why configurational forces have never been more than just vari-
ational constructs. Here I am reminded of opposition to the use of standard forces more than
half a century after the publication of Newton's Principia: as Truesdell [1966] writes,
" D'Alembert spoke of Newtonian forces as 'obscure and metaphysical beings, capable of
nothing but spreading darkness over a science clear by itself.' "
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melting temperature, or a more general relation between temperature, curva-
ture, and normal velocity;

• for (ii), the condition is the motion-by-curvature equation of Burke and
Turnbull [1952] and Mullins [1956], or a more general relation of that type;

• for (iii), (in the absence of interfacial stress) the condition is a kinetic relation of
the type proposed by Truskinovsky [1987,1991] and Abeyaratne and Knowles
[1990,1991].

There are, I believe, three compelling argument in support of configurational
forces:

(i) Configurational forces provide a conceptual unification, as each of these

extra conditions is a consequence of the configurational force-balance

applied across the interface.

(ii) Configurational forces lead to new results, an example being a weak formu-

lation of the supercooled Stefan problem.

(iii) Configurational forces provide a valuable tool in the framing of new

theories.5

The general configurational force-balance upon which I base the theory is6

JCmda + Jfda + jCVds + J«da = 0, (1.1)
dR R SG Q

with R a control volume that intersects the phase interface, m the outward unit

normal to dR, Q the portion of the interface in R, and V the outward unit normal

to the boundary curve dQ (Figure 1). The configurational fields appearing in (1.1)

have the following interpretation: C is a bulk stress that acts in response to the

exchange of material at the boundary of R; C, a generalization of surface tension,

is a stress within the interface that acts in response to increases in interfacial

area as well as to changes in the orientation of the interface; 8 and f, respecti-

vely, represent internal forces distributed over the interface and over the bulk

volume. In the theories discussed here f is generally unimportant, but 0 is essen-

tial, as it represents dissipative forces associated with the kinetics of the interface.

Configurational forces are irrelevant when discussing defect-free single-phase

materials, but their inclusion gives insight into the relation between C, the bulk
5Cf. Cermelli and Gurtin [1994].
6Gurtin (1994a, eqt. (4.3)]. A less specific version appears in Gurtin [1988, eqt. (3.2)] and
Gurtin and Struthers [1990, eqt. (7.9)], where the balance is applied directly to the interface
with the effects of C and 9 combined.
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free energy $, the standard bulk deformational-stress S, and the deformation

gradient F. Here, to capture the mechanics associated with the addition and

deletion of material points at the boundary of a portion of the body, / use refer-

ential control volumes R = R(t) that evolve with time. Their use, which requires
generalizations of the basic physical laws, leads to an important expression, C=$l-

FTS, discovered by Eshelby [1951,1970]. My derivation of the Eshelby relation is

accomplished without recourse to constitutive equations or to a variational prin-

ciple; the derivation is based on a version of the second law appropriate to a

mechanical theory in conjunction with a requirement that this law be invariant

under changes in the time-dependent parametrization of 3R(t).

Notation. I use notation standard in continuum mechanics (cf. Gurtin [1981]). The
body B is identified with the region of IR̂  it occupies in a fixed reference configura-
tion; terms such as "referential volume" and "undeformed volume" are used inter-
changeably; X designates an arbitrary material point (point of B); fields $ are
described materially (as functions of (X,t)); $• denotes the material time-derivative
of $ (with respect to t holding X fixed), V and div denote the material gradient and
divergence (with respect to X holding t fixed).
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2. VARIATIONAL DEFINITION OF CONFIGURATIONAL FORCES
To better understand the nature of configurational forces, I begin with a

standard variational derivation for a coherent two-phase elastic solid, neglecting

thermal and compositional variations as well as interfacial energy. I consider a

body B whose phases a and p occupy closed complementary subregions Ba and Bp

of B, with the interface /8 = BanBe a smooth, oriented surface whose continuous

unit normal field n points outward from Ba (Figure 2). A deformation y of B is

then a continuous function that assigns to each material point X in B a point

x=y(X) of space, has deformation gradient

F = Vy (2.1)

continuous up to the interface from either side, and has detF>0.

I restrict attention to deformations y that obey a given boundary condition

on SB. Then, for equilibrium, the position of the interface and the deformation

minimize the total energy

= J$dv +
Ba Bp (2.2)

w h e r e t he bulk energy 3KX), per uni t vo lume, is given by cons t i tu t ive equat ions

in B a , $(X) - 5p(F(X)) in Bp. (2.3)
a ,

To formally compute the first variation 6E(£,y), which must vanish, the compati

bility condition and the identity

[6y] - -(8£)[F]n, [fg] = <f>[g] + <g>[f] (2.4)

are useful. Here 6y (with 6y=0 on 9B) is the variation of y; 6,8, a scalar field, is

the normal variation of Z\ [f] denotes the jump in a field f across the interface

(limit from p minus that from ot); and (i) denotes the average of the interfacial

limits of f. (Less formally, considering time-dependent departures (/8(t),y(t)) from

(^,y), the variations 8E(^,y), 8y, and 8,8 may be identified with E(,8,y)\ y , and

the normal velocity V of £(t).) The requirement 6E(^,y) = 0, (2.4), and the diver-

gence theorem yield the expression

JdivSa-8ydv + JdivS^Sydv + J{[S]n.(8y> + ([$]-<Sn>.[Fn]) 8^}da = 0, (2.5)
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where S(X) is the bulk stress, here defined as the derivative of the energy:

in B a , S = 3F^(F) in Bp. (2.6)
a ,

Since 6y can be specified arbitrarily away from Zt and since (6y) and 8/8 can be
specified arbitrarily on Z, (2.5) yields the standard equilibrium equations

divS = 0 in bulk (2.7)

(that is, in Ba and in B^), the standard force balance

[S]n = 0 on the interface, (2.8)

and an additional condition7

[Fn-Sn] on the interface, (2.9)

often referred to as the Maxwell relation.
Since (2.9) cannot be derived from balance of forces alone, this leads to the

question of whether the Maxwell relation represents an additional "force balance".
In fact it does. To see this, consider the "stress tensor"

C = 51 - FTS (2.10)

introduced by Eshelby in his discussion of defects.8 In terms of the Eshelby
tensor, the Maxwell relation has the simple form n-[C]n=0. Further, the conti-
nuity of y across the interface implies that [F]t=O for any vector t tangent to the
interface, so that (2.8) yields t-[C]n=0. Thus

[C]n = 0 on the interface, (2.ID9

implying continuity of the Eshelby traction across the interface. Further, a com-
putation based on (2.6) and (2.7) yields the conclusion10

7Cf. Eshelby [1970], Robin [1974], Larch* and Cahn [1978], Gnnfeld [1981], James [1981],
Gurtin [1983].
8Grinfeld [1981] refers to C/p as a chemical-potential tensor.
9Cf. Kaganova and Roitburd [1988].
1 0 d i v C * 0 •* divS*0 in bulk, an equivalence not generally carried over to the interface
conditions (2.8) and (2.11).
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divC = 0 in bulk, (2.12)

so that the force system corresponding to the Eshelby tensor satisfies a balance
law; in fact, (2.11) and (2.12) together imply the more standard integral balance

JCmda = 0 (2.13)
dR

for every subregion R of B, where m is the outward unit normal to dR.
I henceforth use the term deformational balance for balances such as (2.7)

and (2.8) involving the standard (Piola-Kirchhoff) stress S, as opposed to the term
configurational balance, which I reserve for balances of the form (2.13) involving
the Eshelby tensor C.

This analysis leads to the questions:

• Is there a formulation in which C is a primitive quantity, consistent with a
force balance of the type (2.13), and in which the Eshelby relation (2.10) follows
as a natural consequence?

• Aside from a possible better understanding of the underlying physics, does the
introduction of configurational forces lead to new results?

In what follows I will attempt to answer these questions.
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3. BASIC IDEAS. CONFIGURATIONAL FORCES IN A SINGLE-PHASE MATERIAL11

Configurational forces are irrelevant to the theory of single-phase continua

without defects, but their study within that context provides essential informa-

tion regarding their nature.

a. Referential control volumes that evolve with time

Let B be a single-phase body, and let y be a motion of B, so that y(X,t) is a

deformation for each fixed t, with deformation gradient F(X,t) and material

velocity y(X,t) smooth functions.

As is standard, I formulate balance laws using referential control volumes

(subregions of B). But as is not standard, I capture the mechanics associated with

the addition and deletion of material points at the boundary of a portion of the

body using referential control volumes that evolve with time. Given such a con-

trol volume R(t), I write V(X,t) for the normal velocity of c)R(t) in the direction of

the outward unit normal m(X,t). Then for §(X,t) a smooth field,

(d/dt){J§) = f$ 'dv+ J$Vda, (3.1)
R R 3R

where

(d/dt){ / $dv} denotes (d/dt){ J$(X,t) dv(X) }. (3.2)
R R(t)

The evolving surface dR(t) may be parametrized in a sufficiently small time-
interval and in a neighborhood of any of its points by a function of the form
X=X(u1,u2,t); the field

\>(X,t) = 3X(u1,u2,t)/at (3.3)

then represents a velocity field for dR(t) in that neighborhood. It is possible to use

such parametrizations to construct a velocity field v for 3R; that is, a smooth

field \)(X,t) defined for all X on dR(t) and all t in any (sufficiently small) time-

interval. A field \) so constructed depends on the choice of local parametrizations,

but its normal component is intrinsic:

\)-m = V. (3.4)

Under the motion y, R(t) will deform to a region R(t) = y(R(t),t), and each local
11Gurtin [1994a]
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parametrization X=X(u lfu2,t) will induce a corresponding local parametrization
x=x(u1,u2,t) = y(X(u1,u2,t),t) for 3K(t); the corresponding velocity field

,t) = ax(u1,u2,t)/3t (3.5)

for 3K(t) is related to \> through the relation

\> = y + F\>; (3.6)

v will be referred to as the velocity field for dR induced by \> (Figure 3).

b. Classical deformational forces. Mechanical version of the second law
Let S denote the standard stress that arises in response to deformation, with

S measured per unit referential area, and let p denote the reference density.
Then, representing inertia through the body force

b = -py" , (3.7)

but neglecting other external forces, the standard balance laws for forces and
moments take the form

JSmda + Jbdv = 0, JyxSmda + Jyxbdv = 0 (3.8)
dR R dR R

for each referential control volume R, with m the outward unit normal to dR.
Since R is arbitrary, a standard argument12 yields the local relations

divS + b = 0, SFT = FST. (3.9)

In the absence of thermal and compositional effects the classical theory may
be based on a "second law" that utilizes time-independent control volumes R and
has the form13

(d /d t ) { J idv ) < JSm-y-da + Jb-y'dv (3.10)
R dR R

with $ the free energy, per unit referential volume. For an evolving control
12Cf. e.g., Gurtin [1981, p. 179].
1 3(3.10) (with $ the free energy) follows from standard statements of the first two laws
(cf. Gurtin [1991]).
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volume R(t) the standard generalization of (3.10) would include the term

energy flow = J$17da (3.11)
dR

on the right side. My discussion of configurational forces will be based on what I

believe to be a more fundamental version of the second law.

c. Configurational stress. A version of the second law that accounts for accretion

/ consider the dependence of R(t) on t as representing the addition of

material to — or the removal of material from — the boundary 3R(t). A standard

precept of continuum mechanics is that when writing basic laws for R(t) the

material outside of R(t) may be accounted for by the action of forces on 3R(t). I

believe that—consistent with this — an accounting of the work required to add or

remove material precludes an (explicit) accounting of the flow of energy into R(t).

In this spirit I base the mechanical theory on a "second law" of the form

(d/dt) {energy of R(t)} < {rate at which work is performed on R(t)}. (3.12)

The view expressed above requires a careful treatment of the kinematics and

mechanics of accretion, the term I use to describe the addition and removal of

material. Kinematically, accretion is independent of the motion y, and since inde-

pendent kinematical processes generally give rise to independent force systems, it

seems reasonable to introduce additional forces that perform work during accre-

tion. I therefore consider a tensor field C, the configurational stress, whose work-

ing accompanies the evolution of dR. More precisely, I choose local parametri-

zations X= X(u1,u2,t) for 3R(t), define a velocity field \) for dR through (3.3), and

assume that Cm-\> represents the corresponding working, per unit area.

The working of the deformational stress S must also be taken into account.

The motion of the deformed boundary 33£(t) = yOR(t),t) is—for R independent of

time—described by the material velocity y', and Snvy* gives the required work-

ing. But when R(t) depends on t there is no intrinsic material description of 9R(t),

as material is continually being added and removed, and it would seem approp-

riate to use, as a velocity for 3&(t), the derivative v(X,t) of y(X(u1,u2,t),t) with

respect to t holding the surface parameters (ulfu2) fixed; for that reason I write

the working of S in the form Sm-\>.

I therefore take as an appropriate form of the second law the inequality
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(d/dt){J$dv) < J(Sm-\) + Cm-i))da + Jb-y*dv (3.13)
R 3R R

with \) a velocity field for 3R=3R(t) and \) the corresponding induced velocity field

for 33£. (Note that the deformational working Sm-\> is a classical term Sm-y# plus

a term Sm-F\> that accounts for the addition of strained material to 9R.) To en-

sure that the resulting theory be independent of local parametrizations, I require

that (3.13) hold for any choice of the velocity field \> for dR. This requirement of

invariance under reparamethzation has important consequences.

d. Bulk tension. Derivation of the Eshelby relation

Invariance of (3.13) under reparametrization is equivalent to invariance of

the "working

Tff(R) = ^(Sm-S + Cm-iOda + Jb-y'dv (3.14)
9R R

)da + Jb-y'dv. (3.15)
9R R

Because of (3.4), changes in parametrization affect the tangential component of \),

but leave the normal component unaltered. In fact, invariance of (3.15) under

reparametrization is equivalent to the requirement that (FTSm +Cm)-t = 0 on dR

for all tangential vector fields t on 3R; thus, since R is arbitrary, (FTS + C)m must

be parallel to m for all m, so that

C + FTS = TTI (3.16)

and, by (3.4), the working has the intrinsic form

Tff(R) = JSm-y'da • Jb-y'dv • JrrVda. (3.17)
dR R dR

The scalar field IT is a bulk tension that works to increase the volume of R
through the addition of material at its boundary. Referring to the final term in
(3.17) as the configurational working, (3.17) may be written more suggestively as

(working) = {mechanical working) + {configurational working). (3.18)
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Note that the configurational working nV is not due solely to the action of the

configurational stress C; the deformational stress contributes also through the

term (Sm-Fm)V.

My next step is to relate TT to the free energy $. Using (3.1) and (3.17), the

inequality (3.13) may be rewritten as

J i ' dv < J{Sm-y' + (Tr-$)V}da + Jb-y'dv. (3.19)
R OR R

Given a t ime T , it is possible to find a second referential control v o l u m e R'(t) wi th

R ' ( T ) = R ( T ) , bu t w i t h V ( X , T ) , t he no rma l velocity of Q R ' ( T ) , an arbitrary scalar

field on 3 R ' ( T ) ; satisfaction of (3.19) for all such V implies

TT = $. (3.20)

Bulk tension therefore coincides with bulk free-energy, a result analogous to the

coincidence of surface tension and surface free-energy; but what is more impor-

tant, (3.16) and (3.20) yield the Eshelby relation

C « $1 - FTS. (3.21)

This derivation of the Eshelby relation was accomplished without recourse to

constitutive equations or to a variational principle; the derivation was based on a

version of the second law appropriate to referential control volumes whose boun-

daries evolve with time.

The result (3.16) is a consequence of the invariance of TJJ(R) under reparame-

trization; it is independent of the particular form chosen for the second law and is

hence more basic than (3.21). In fact, the identification of TT with a "grand

canonical potential" such as the free energy depends on whether or not there are

associated transport processes; (3.16) is independent of such considerations.

Finally, in the notation of (3.11) and (3.18),

{configurational working} = {energy flow}, (3.22)

at least in this purely mechanical context, establishing consistency of the "second
law" (3.13) with the more standard inequality (3.10) modified by (3.11).

e. The configurational force balance

In addition to the configurational stress C, I allow for internal configurational
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(body) forces f, which, being internal, contribute neither to the working (3.14)
nor to the "second law" (3.13). As a second point of departure from the classical
theory, I postulate a configurational force balance

JCmda + Jfdv = 0 (3.23)
dR R

for each R, or equivalently,

divC + f = 0. (3.24)

C performs work when material is added to R through the motion of 3R.
Material is neither added nor removed from the interior of R. In fact, each mate-
rial point X is constrained to a given position in the reference configuration for all
time. Consequently, the force f, which acts interior to R, performs no work (an
observation consistent with its omision from (3.14)). I therefore consider f to be
indeterminate,14 in fact, as defined by the configurational balance (3.24).

Assume, for the moment, that the material is elastic and homogeneous with
constitutive equations giving the stress S as the derivative of the free energy $:

5 = S(F), S = c)F$(F). (3.25)

Then (3.21) yields an auxialiary relation giving C as a function of F, and (3.9),
(3.21), (3.24), and (3.25) yield f=FTb. If b=0 (equilibrium), then the internal confi-
gurational force vanishes. This is a direct consequence of homogeniety; for an
inhomogeneous material with energy $(F,X) and stress S=3F5'(F,X),

f = - 3 x l (3.26)

and internal configurational forces are present (even though b=0). A one-dimen-
sional cartoon giving an intuitive description of the configurational force system
for homogeneous and inhomogeneous reference configurations is given in Figure 4.

Thus for a single-phase elastic material the theory is equivalent to the clas-
sical theory based on (3.9) with (3.24) and (3.21) considered as defining relations
for f and C; configurational forces play no role. On the other hand, for a two-
phase system configurational forces play a pivotal role in the evolution of the
interface, since it is there that the material structure undergoes change.

In subsequent sections I will demonstrate the role played by configurational
1 4That is, not specified constitutively (cf. Truesdel) and Noll [1965, p. 70]).
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forces in the study of evolving phase interfaces. But this does not seem the only
circumstance in which this concept could be useful: configurational forces might
form a basis for the systematic study of time-dependent defect structures such as
dislocations and cracks.15

1 ^

An idea due to Paolo Podio-Guidugli (private communication).
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4. CONFIGURATIONAL FORCES FOR AN EVOLVING INTERFACE, NEGLECTING BULK
BEHAVIOR

There are situations of physical interest in which the nnotion of a phase inter-
face is effectively independent of deformational and transport processes in the
bulk material;16 granted this, the underlying balance law is a configurational
balance for the interface itself. I now turn toward a characterization of such
behavior.

a. Configurational force balance. Working
I consider two phases separated by a smoothly evolving surface /8(t). I assume

that /8 is oriented by a choice of unit normal field n and write V for the normal
velocity, I for the curvature tensor, K for the total curvature (twice the mean
curvature), and V^ and div^ for the surface gradient and surface divergence. (Cf.
the Appendix for a discussion of evolving surfaces.)

I restrict attention to a configurational force system described by the fields:

C bulk stress
C surface stress
f internal bulk force
8 internal surface force

C and f are as discussed in Section 3. The superficial vector field 8 represents
internal forces distributed over the interface, while C, a superficial tensor field on
J&t generalizes surface tension. Given a referential control volume R(t), let

Q(t) = *(t)nR(t)

denote the portion of the interface in R(t) with V(X,t) (a tangential field on Mt))
the outward unit normal to dG(t) (Figure 1); then Cv represents configurational
forces within the interface applied to R across SO.

The configurational force balance now takes the form

J C m d a + J f d a + j C v d s + J e d a = 0, (4.1)
SR R dQ Q

with R(t) a control volume and m the outward unit normal to 9R. Shrinking R to

the interface,

the Introduction of Taylor, Cahn, and Handwerker [1992].
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J([C]n + »)da + jCvds = 0,
Q 30

which, by virtue of the surface divergence theorem (A9), yields the interfacial
force balance

[C]n + • + divgC = 0. (4.2)

On the other hand, restricting attention to R in (4.1) that do not intersect the
interface yields the bulk relation (3.24).

The motion of the curve 9Q(t) is characterized intrinsically by the velocity
field Vn + VaQV, where VdQ, the tangential edge velocity of Q, is the velocity of dQ
in the direction of the normal V. Alternatively, 5G(t) may be parametrized locally
by functions X=r(u,t), which may be used to generate a velocity field

w(X,t) = 3r(u,t)/3t (4.3)

for SQ(t). Then

w-n = V, w-V = VaQ, (4.4)

but the component of w tangent to dQ depends on the choice of local parame-
trizations.

Guided by the discussion leading to (3.14), I define the working 1fl(R) by

lfl(R) = JCm.\)da + JCv-wds, (4.5)
3R SQ

with the stipulation that TJJ(R) be independent of the particular local parame-
trizations X- X(u l fu2 , t ) and X = r(u,t) used to determine the velocity fields
\)(X,t) and w(X,t) for 3R(t) and SG(t). The argument leading to (3.16) then
reduces C to a bulk tension:

C = TTI. (4.6)

Invariance under changes in parametrization for dQ(t) has an equally
stringent consequence. Because of (4.4), such changes effect the component of w
tangential to 9Qf but leave w otherwise unaltered. In fact, invariance of l)J(R)
under changes in parametrization for dQ is equivalent to the requirement that
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JCV-tds = 0 (4.7)
dQ

for every vector field t tangential to dQ. Bearing in mind that R and hence 30 is
arbitrary, it follows17 that the tangential part of C is a surface tension:

(4.8)

(cf. (A3)) with a the surface tension. Thus, by (A4),

C = aP + n®C, (4.9)

where C, the surface shear, is a tangential vector field that represents forces
within /8 that act normal to >8.18

A computation, based on (Al), (A7), (A8), and (4.9), yields

div^C = (aK + d i v ^ n + V^a - Lc, (4.10)

and since V^a and Lc are tangential, (4.2) and (4.6) yield the normal force
balance

oK + div^C + [TT] + e = 0 (4.11)

with

e = ®-n (4.12)

the normal internal force.

Next, by (3.4), (4.4), (4.5), (4.6), and (4.9),

Tff(R) « J(oVdQ + VC.V)ds + JTTV da, (4.13)
dQ SR

and hence (A9), (A10), and (4.11) yield19

17Gurtin and Struthers [1990, eqt. (7.4)].
18Gurtin and Struthers [1990, eqt. (7.5)] (cf. Gurtin [1988]). For statics an essentially equi-
valent relation was derived by Herring [1951], Hoffman and Cahn 1972], and Cahn and
Hoffman [1974] using variational arguments based on a constitutive equation ^=^(n) for the
interfacial energy, with a and C defined by (4.19) and (4.22). The derivation given above is
independent of constitutive equations.
19Gurtin [1988], Gurtin and Struthers [1990].
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Tff(R) « -J{aKV + C-n* + ([Ti] + e)V}ds + JaVdQds + JrrVda, (4.14)
Q 30 3R

where (...)° denotes the time derivative following the normal trajectories of the
interface. The right side of this relation catalogs the manner in which configura-
tional forces perform work (Figure 5):

• the surface tension a works to increase the area of Q: at internal points through
-aKV, at its boundary through crVdQ;

• the surface shear C works to change the orientation of Q;

• the jump [IT] in bulk tension and the normal internal force e work to advance
the interface;

• the bulk tension works over dR to increase the volume of R.

Note that there is no expenditure of work associated with "tangential motion"
of the interface (cf. the paragraph following (3.24)). Consistent with a "constraint"
of this type, I leave as indeterminate the tangential component P® of the
internal force, an assumption that allows me to restrict attention to the normal
balance (4.11).

b. The second law neglecting variations in temperature and composition
As before, I allow for a bulk free-energy $, but, in accord with the physical

assumptions underlying the current development, I assume that $ is constant in
each phase and write

U = [$] (= constant). (4.15)

In addition, I now allow for an interfacial free-energy vp(X,t), per unit area, and
write the second law in the form (3.12):

(d/dt){J*dv + J>ds} < liT(R) (4.16)
R Q

for every evolving control volume R(t), with G(t) = >8(t)nR(t).
The argument leading to (3.20) is valid here also. Further, by (4.15),

(d/dt){J$dv) = -JUVda + JSVda, (4.17)
R Q dR
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so that, by (3.20), (4.14), and (A13), (4.16) becomes

- 4>KV)da + J>VdQds < -J{aKV + C-no + Ve}ds + JaVdQds. (4.18)
Q 80 Q SQ

Given a time T, it is possible to find a second referential control volume R'(t) with
R'(T) = R ( T ) , but with VdQ.(X,T), the normal velocity of 3Q'(T), an arbitrary scalar
field on 9Q'(T); satisfaction of (4.18) for all such VdQ. implies

o = ty (4.19)

and the surface tension and surface free-energy coincide.20 Thus, since Q is arbi-
trary, what remains is the interfacial dissipation inequality

\\J° + C-n° + eV < 0. (4.20)

At this point it is worth noting the similarities between the bulk tension TT
and the surface tension a:

• bulk tension works to increase the volume of bulk material, surface tension
works to increase the area of the interface;

• the configurational stresses C=TT1 and C tan=aP have "isotropic" forms; these are
not consequences of material symmetry, but follow instead from invariance
under reparametrization;

• both TT and a are related to energy: TT to bulk free-energy, a to interfacial free-
energy.

c. Constitutive equations
Guided by the dissipation inequality (4.20), I consider constitutive equations

for the interface giving the free energy vp, the surface shear C, and the normal
internal force e as functions of the orientation n and the normal velocity V:

v|i = ij/fci.V), C = C(n,V), e = e(n,V). (4.21)

I view the second law as a restriction on constitutive relations;21 more pre-
20Gurtin and Struthers [1990] (cf. Gurtin [1991]).
2 1 This use of the second law is due to Coleman and Noll [1963], who study single-phase
thermoelastic materials; the extension to two-phase materials is given by Gurtin [1988] (cf.
Angenent and Gurtin [1989], Gurtin [1993a]). An interesting feature of this procedure is that
the local dissipation inequality generally suggests which fields should be given constitutive
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cisely, granted (4.21), I require that the dissipation inequality (4.20) be satisfied in
all motions of the interface:

3v4;(n,V)Vo + {dn4>(n,V) + C(n,V)}.n° + e(n,V)V < 0

in all such motions. It is possible to construct a motion of the interface for which
n, n°, V, and V° have arbitrarily assigned values at some given point and time,
an observation that leads to the following constitutive restrictions: the free energy
must be independent of the velocity V; the shear must be the negative of the
derivative of the energy with respect to n,

6 = -9n(ji(n); (4.22)

the relation e=e(n,V) for the normal internal force must have the form

e = -b(n,V)V, b(n,V) > 0, (4.23)

with b(n,V) a constitutive quantity called the kinetic modulus.22 These are the
most general constitutive equations of the form (4.21) that are consistent with
(4.20).

Anisotropy of the interface manifests itself in a nontrivial dependence of \\>{n)
on n; for an isotropic interface \\> is constant. An interesting consequence of (4.22)
is that for an anisotropic interface the surface shear cannot generally vanish.
This demonstrates the nonintuitive nature of configurational forces: the interface
is presumed to be infinitesimally thin, yet it supports shear; thus the danger
inherent in visualizing the interface as a membrane.

The surface shear must be balanced by couples exerted by the bulk material,
although such couples, being indeterminate, need not be made explicit.23 This
furnishes an additional argument in support of the separate treatment of configu-
rational forces when discussing deformation. If the variational t reatment of
Section 2 is generalized to include an anisotropic interfacial energy, then the
resulting bulk Euler-Lagrange equations remain (2.7). Since these classical equa-
tions support neither bulk internal-couples nor bulk couple-stresses, configura-
descriptions, a use of the second law that seems to lead— in all classical continuum
theories — to the "correct" set of constitutive variables. This contrasts the standard forma-
lism of studying balance laws to see where a lack of field equations may be compensated for
by the introduction of constitutive relations.
2 2For b(n,V) independent of V, b(n)~^ is referred to as the mobility of the interface.
23Gurtin (1988, Remark 3.2].
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tional fields are needed to balance the surface-shear induced couples.

d. Evolution equation for the interface
The evolution equation for the interface follows from the normal force-

balance (4.11), (4.15), the tension-energy relations (3.20) and (4.19), the reduced
constitutive relations (4.22) and (4.23), and the identity (A15):

b(n,V)V = {4>(n)l + 3 n
9n^n)}-L + U. (4.24)24

For an isotropic material with b independent of V and U=0, (4.24), after a resca-
ling, reduces to the curve-shortening equation, V = K.25 In (4.24) the derivatives
must respect the constraint lnl=l. A simpler form of the equation follows if ^(n) is
extended from the unit sphere to IR3 by defining 4>(z) = lzl4>(z/lzl), for then the
term { } reduces to {3z92$(z)} at z=n. Finally, the analogous relation for evo-
lution in IR2, with n replaced by the counterclockwise angle cp from a fixed axis to
n, is26

b(cp,V)V = {̂ (cp) + 4/'(cp)}K + U. (4.25)

The expression (4.24) represents the normal part of the configurational force
balance (4.2). The indeterminacy of the tangential part of e renders the tangential
part of (4.2) unimportant. Interestingly, a computation using (A15)lf (4.6), (4.10),
(4.19), and (4.22) shows the tangential balances to be satisfied automatically with
P© = 0, so that 8 = en.

For nonsmooth interfaces—which are possible when $(z) is nonconvex—the
evolution equation (4.24) is not, by itself, sufficient to describe the motion of the
interface: the weaker form (4.1) must be used, for example across curves defined
by a jump in the interface normal n.27

2 4 Proposed by Uwaha 11987, eqt. (2)] (in IR2 with b = b(n)) and independently by Gurtin
[1988, eqt. (8.3)]. Evolution according to (4.24) with b = b(n) is studied by Angenent [1991],
Chen, Giga, and Goto [1991], and Soner [1993]. The special case V'-bin)'^ was introduced
by Frank [1958]. A formulation of (4.24) using a variational definition of the curvature term
(Taylor [1992]) is given by Taylor, Cahn, and Handwerker [1992], who give extensive
references.
2 5Burke and Turnbull [1952] and Mullins [1956] introduced V«K to study the motion of
grain boundaries. Evolution according to this equation is discussed by many authors (cf.
Gurtin [1993a, Footnote 12]).
2 6Derived using a thermomechanical argument by Angenent and Gurtin [1989], although
the configurational force system is somewhat different (cf. Gurtin [1993a]).
27Cf. Angenent and Gurtin [1989] and Gurtin [1993a] for discussions of this issue in IR2.
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5. TWO PHASE THEORY WITH DEFORMATION28

a. Theory neglecting interfacial energy
I now consider a coherent two-phase elastic solid, neglecting interfacial

energy, interfacial stress, and, as before, thermal and compositional variations.
The body B is presumed independent of time, but the subregions Ba(t) and B^(t)
occupied by oc and p as well as the interface Z{t) depend on t. Coherency requires
that motions y of B be continuous across the interface, with deformation gradient
F and material velocity y ' continuous up to the interface from either side, a
constraint that yields the compatibility conditions

[y'l = -V[F]n, [F]P = 0, (5.1)

with n the unit normal to & directed outward from Ba and V the normal velocity
of &.

While inertia is easily included, I neglect it to simplify the presentation. The
basic balance laws are as discussed in Section 3 for single-phase materials, but
with the interface accounted for by internal configurational forces with density @
distributed over ,8. The deformational and configurational balances thus take the
form

JSmda = 0, JyxSmda = 0, (5.2)
3R dR

JCmda + Jfda + J«da = 0, (5.3)
dR R Q

where R(t) is an arbitrary referential control volume with Q(t) = /8(t)HR(t) the
portion of the interface in R(t).

The local force-balances now consist of bulk equations and interface
conditions; the bulk equations remain (3.9) (with b=0) and (3.24), while the inter-
face conditions are

[S]n = 0, [C]n + • = 0. (5.4)

The working still has the form (3.14) (with b=0); there is no contribution of ®,
as it acts internally. Restricting R(t) to not intersect the interface leads to the
relation (3.16) for the configurational stress. Further, since interfacial energy is
neglected, the second law takes the form (3.13) (granted variations in
28Gurtin [1993b, 1994a].
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temperature and composition are negligible), and leads again to the bulk Eshelby
relation (3.21).

To derive an expression for the second law at the interface, I restrict atten-
tion to time-independent control volumes that intersect the interface; granted
this, (3.13) reduces to

(d/dt){j£dv) < JSm-y'da. (5.5)
R dR

But

(d/dt){J$dv) = -J[$]Vda + J$#dv. (5.6)
R Q R

Thus shrinking R to the interface yields the jump condition [$]V + [Sn*y*] > 0, so
that, by (5.1) and the first of (5.4), ([$]-[Fn-Sn])V> 0, or equivalently, using (3.21)
and the second of (5.4),

eV < 0, (5.7)

with e = 8«n the normal internal force.
I consider bulk constitutive equations for each phase of the form (3.25). (These

are the most general constitutive equations—consistent with (5.5)—giving \\> and S
as functions of F.) In addition, I consider a constitutive equation for the interface
giving e as a function of V and a list z of fields such as n and the interfacial limits
of F; the requirement that (5.7) hold in all motions then yields the reduced
constitutive relation

e = -bV, b « b(z,V) > 0, (5.8)

with b(z,V) a constitutive modulus.
The relations (3.21), (5.4), and (5.8) yield final interface conditions

[S]n « 0, n-[$l - FTS]n - bV, (5.9)

which are replaced by

[S]n = -plyiV, n-[$l - FTS]n = -k + bV, (5.10)

when inertia is included. Here *,= (p/2)[|Fnl2]V2.
The kinetic relation (5.10)2 was derived by Truskinovsky [1987,1991] and
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Abeyaratne and Knowles [1990,1991] on the basis of an argument that does not

require the introduction of configurational forces. They note that the second law

yields the inequality ([$]- [Fn«Sn]+AJV > 0, which they use to motivate a consti-

tutive relation for the "driving traction" f = -[$] + [Fn-Sn] -*, of the form f = -bV,

b>0. This argument is simpler than the one I have given, since it does not involve

a configurational force balance, but I believe it to be unsound: k is a known

function of F, n, and V, while $ and S are prescribed as functions of F through

constitutive relations; therefore postulating an additional relation for [$] -

[FivSn]+& seems both superfluous and arbitrary. I know of no other example

from continuum mechanics in which fields specified by constitutive relations are

presumed related by yet another such relation.

b. Theory with interfacial energy and stress

I now generalize the theory of Section 5a to include interfacial structure, but

I will merely sketch the analysis, as it is complicated. The inclusion of interfacial

stress characterized by the superficial tensor fields

S deformational surface stress

C configurational surface stress

necessitates modification of (5.2) and (5.3) as follows: let V denote the outward

unit normal to 3Q; then the terms

jSvds, JyxSvds, jCvds,
dQ dQ dQ

respectively, should be added to the left sides of the deformational force and

moment balances and the left side of the configurational balance. This yields

[S]n + divgS = 0, SFT = FST, [C]n + 8 + divgC = 0, (5.11)

with

F = FaP = FpP (5.12)

the tangential deformation gradient (cf. (5.1)2).

In addition to the bulk free-energy $, there is an interfacial free-energy ^

and the inequality representing the second law takes the form

(d/dt){J$dv + J>da} < ltf(R) (5.13)
R Q



Sun, Apr 24, 1994 24

for all R(t), where ltf(R) now includes working of the surface forces:

Tff(R) = J(Sm-\> + Cm-\>)da + J(Cv-w + Sv-w) ds. (5.14)
dR dQ

Here v is a velocity field for dR with * the corresponding induced velocity field for
dJlt while w is a velocity field for the curve 3Q(t) with w the corresponding
induced velocity field for the deformed curve yOQ(t),t); that is, w(X,t) is com-
puted using time-dependent parametrizations (4.3) for 9Q(t) and w=y*+Fw.

Invariance under reparametrization for c)R(t) then yields the Eshelby relation
(3.21), while invariance under reparametrization for 3Q(t) yields an Eshelby
relation for the interface:

C tan - 41P - FTS. (5.15)

The resulting interfacial dissipation inequality, which generalizes (4.20), is

i\>° + (G + STEn)-n* - S-E° + eV < 0, (5.16)

with C the configurational shear and E the average of the interfacial limits Fa

and Fp of F:

C = CTn, E = <F>. (5.17)

As constitutive equations for the interface I allow ^, S, C, and e to depend on

n, V, Fa , and Fp. A consequence of (5.16) is that ^, 8, and C are independent of V

and depend on Fa and F^ through their average E. In fact, the energy ^ ^

determines S and C through the relations

S = aElji(Efn)f C + STEn = -Sn^(E,n), (5.18)

and
e = - b V , b - b(Fa,Fp,n,V) > 0. (5.19)

The final interface conditions consist of the compatibility condition (5.1) and
the force balances
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[S]n = -divgS, n - [ * l - F T S ] n + (i|>P - F T S ) L + d i v ^ C = bV ( 5 . 2 0 ) 2 9

supplemented by the constitutive equations (5.18) and (5.19) as well as those for

the bulk material. Note that (5.20)2, which represents the normal configurational

force balance, may be written in the form

n-[bulk Eshelby tensorln + (interfacial Eshelby tensor)-L + div^C = bV.

(5.21)

29Gurtin and Struthcrs [1990], Gurtin [1993b,1994a]. See also Lusk [1992]. For statics
(5.20)^ was derived by Gurtin and Murdoch [1974] from a force balance, while (5.20)2 was
derived by Leo and Sekerka [1989] as an Euler - Lagrange equation for stable equilibria (cf.
Alexander and Johnson [1985], Johnson and Alexander [1986], and Fonseca [1989]).
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6. SOLIDIFICATION. THE STEFAN AND GIBBS-THOMPSON CONDITIONS AS

CONSEQUENCES OF THE CONFIGURATIONAL FORCE BALANCE

To demonstrate the role of configurational forces in situations that are not

purely mechanical, I turn now to two-phase heat flow, neglecting deformation.

Paralleling (3.12), I write the first two laws for a control volume R(t) as

(d/dt) {internal energy) = {heating) + {working),

(d/dt) {internal entropy) > {entropy flux induced by heating)

in which the right sides include an accounting of the work and heat required to

add or remove material, but make no explicit mention of flows of internal energy

and internal entropy across dR.

a. Single-phase theory

To the classical fields

t internal energy

r\ internal entropy

B absolute temperature

q heat flux vector

I add three configurational fields

C stress

f internal force

Q heating

where Q is a scalar field, while C and f are as discussed previously, and I define

the free energy through

$ = c - en. (6.1)

For R(t) an evolving control volume, with V the normal velocity of dR,

jQVda, J(Q/e)Vda
dR dR

represent flows of heat and entropy into R associated with the motion of dR.

The basic laws, for each evolving control volume R(t), are balance of energy
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(d /d t ) {Jedv) = -Jq-mda + jQVda • JCm-vda, (6.2)
R dR SR 3R

growth of entropy

(d/dt){Jndv) > -J(q/e)-mda + J(Q/e)Vda, (6.3)
R dR dR

and balance of configurational forces

JCmda + Jfdv = 0, (6.4)
dR R

with m the outward unit normal to 3R, and with the stipulation that balance of
energy be independent of the particular local parametrizations used to determine
the velocity field v for dR. For R stationary (6.2) and (6.3) become

(d/dt){/edv) = -Jq-mda, (d/dt){ Jndv } > -J(q/e)-mda, (6.5)
R dR R 3R

again demonstrating consistency with more standard ideas.
Arguing as before, invariance under changes in reparametrization for 9R(t)

yields the conclusion that C is a pure tension TT, as in (4.6); therefore, by (3.1)
applied to e in (6.2) and ri in (6.3),

c = TT + Q, T) = Q/e, (6.6)

relations that, when multiplied by V, express balance of energy and entropy
associated with the addition of material to R. A trivial but important corollary of
these relations is that, once again, bulk tension and bulk free-energy coincide:
TT = $. Thus

C = $1. (6.7)

Finally, restricting attention to stationary control volumes, and using (6.1)
and the energy balance to rewrite the entropy inequality yields the local relations

8- - -divq, (6.8)

$• + Tie' + e"1q-Ve < 0. (6.9)
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The standard constitutive equations consist of a relation between free energy
and temperature, a relation giving the entropy as the negative of the derivative
of the free energy with respect to temperature, and a Fourier law for heat con-
duction,

$ = l(e) , r\ - -£'(e), q = -K(e)Ve, (6.10)30

with K(e), the conductivity tensor, assumed positive definite. Granted these, the
dissipation inequality (6.9) is satisfied identically. By (6.1) and (6.10), there is an
auxiliary relation for the internal energy,

e = $(e) - ei'(e). (6.11)

The basic partial differential equation of the theory is given by balance of energy
supplemented by (6.10)3 and (6.11).

Note that, by the local form (3.24) of (6.4), (6.7), and (6.10),

f = TiVe, (6.12)

which I take as a defining relation for f.

b. The classical two-phase theory revisited. The Stefan condition as a consequence
of the configurational balance

I now consider two phases, oc and p, with i a ( s ) and ip(9)t and Ka(o) and
Kp(o) the corresponding free energies and conductivity tensors, and with resulting
constitutive relations of the form (6.10). I assume further that there is a unique
temperature, the melting temperature eM, at which the free energies of the
individual phases coincide:

I neglect interfacial structure, so that the basic laws remain (6.2)-(6.4).
Further, I assume that the temperature is continuous, but allow the other fields
to suffer jump discontinuities across the interface.

Balance of energy then yields the interfacial balance

^°These are consequences of (7.9) in conjunction with constitutive equations giving $, T\,
and q as functions of e and Ve with q linear in Ve.
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[e]V = [q]-n, (6.14)

which is the first of the classical interface conditions for the Stefan problem.
Next, the configurational balance (6.4) yields

[C]n = 0, (6.15)

which, by (6.7), has the alternative form

[$] = 0, (6.16)

or, in view of the hypothesis ending in (6.13),

9 * 9M on the interface. (6.17)

Thus the classical Stefan condition equating the temperature at the interface to
the melting temperature is equivalent to the configurational balance applied
across the interface?1

c. Weak form of the two-phase problem using the configurational balance
Not only does the configurational balance allow for a derivation of the classi-

cal Stefan condition, it allows for a weak formulation of the Stefan problem by
replacing the condition B=&M on the interface, which is local and inappropriate to
a weak formulation, with a partial differential equation. In particular, (6.5) and
the configurational balance divC = -f with C given by (6.7) and f by (6.12) yield
partial differential equations

s# = -divq, V$ = -T|Ve, TT > -div(q/e) (6.18)

to be interpreted in a weak sense, for example in the sense of distributions. The
distributional form of (6.18)1 gives that partial differential equation classically in
bulk and the balance (6.14) at the interface. The configurational balance (6.18)2 is
satisfied automatically in bulk; its only contribution is at the interface, where V$
is a distribution, as $ suffers a jump discontinuity (TIVO does not contribute, as TI

and Ve are bounded). In fact, (6.18)2 formally yields (6.16) and hence the Stefan
condition (6.17). Finally, (6.18)3 is satisfied automatically in bulk as well as across
the interface. To verify the latter assertion, note that (6.18)3 yields O[T)]V < [q]-n,
or equivalently, by (6.1) and (6.14), [$]V>0, an inequality satisfied by virtue of
31Gurtin [1988].
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(6.16). It might therefore appear that the entropy inequality (6.18)3 is super-

fluous, which is true when the interface moves smoothly, but there are situations

involving large amounts of supercooling or superheating in which the interface

moves "infinitely fast" resulting in an instantaneous change in phase for entire

subregions of the body;32 the entropy inequality is then needed to ensure that

such instantaneous changes be consistent with the second law.33

d. The two-phase theory with surface structure. The Gibbs-Thompson condition as

a consequence of the configurational balance34

I now generalize the theory to include surface structure by considering the

basic laws for each evolving control volume R(t) in the form

(d/dt ){Jedv + J e d a } = -Jq-mda + jQVda + jQVdQds + ltf(R), (6.19)
R Q 3R 3R dQ

(d /dt ){Jndv + Jf ida} > -J (q /e ) -mda + J(Q/e)Vda + J(Q/e)Vd Qds, (6.20)
R Q 9R dR dQ

JCmda + J fda + jCVds + J»da = 0, (6.21)
dR R dQ Q

where 1fl(R) is given by (4.5), C, 8, and Q are as discussed before, e is the inter-

facial energy, f\ is the interfacial entropy, and Q, a configurational heating, is an

analog of Q in the sense that

jQVdQds, J(Q/e)VdQds
dQ dQ

represent flows of heat and entropy into Q induced by the motion of the boundary

curve 3Q.

The arguments used before then yield the bulk relations discussed in the

paragraph containing (6.7), the interface relations

fi = Q/e, a = 4>, (6.22)

and the results (4.9) and (4.19) with the interfacial free-energy given by

3 2Sherman [1970], Fasano and Primicerio [1977], GOtz and Zaltsman [1993], Gurtin [1994b].
33Gurtin [1994b].
3 4This section is taken from Gurtin [1988,1993], although the configurational force-balance
is slightly different.
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y\> = t - BX\. (6.23)

The configurational balance remains (4.11), but the remaining interface

conditions are more complicated than before: balance of energy has the form

[e]V = [q]-n + e° - eKV - div^(VC) (6.24)

(cf. (A13), (4.13), (6.6), (6.22), (6.23)), an analogous inequality for the entropy

follows from (6.20), and this inequality, (4.11), and (6.24) yield the interfacial

dissipation inequality

4>° + fieo + C-n° + eV < 0. (6.25)

Guided by this inequality, I consider constitutive equations of the form (4.21),

but with (e,n,V) as independent variables and with an additional constitutive

equation, of the same form, for the entropy TV The most general constitutive

equations of this form consistent with the dissipation inequality (6.25) are

4> = 4>(efn), fi = -aevji(e,n)f c = -3n^(e,n), e = -b(e,n,V)V, (6.26)

with b(0,n,V) > 0. I henceforth assume that b is independent of V.

The resulting interface conditions consist of the energy balance (6.24) and the

configurational balance (4.11) with TT = $, a=4>:

[$] « -I|JK - div^C - e. (6.27)

These interface conditions supplemented by the constitutive equations are the

basic free-boundary conditions of the theory; the condition (6.27) replaces the

classical Stefan condition.

The interface conditions (6.24) and (6.27) are complicated. In [1988] I formally

derived an approximate theory appropriate to an interface whose free energy,

internal energy, and kinetic coefficient are small, with the latter independent of

V. Let

u « (e - e M ) /e M , I = sp(eM) - ea(eM),
ib.ZoJ

), bM(n) = b(eM,n),

where £ft(©) and eB(©) are the constitutive functions for the internal energy
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computed from the free energies $a(e) and $p(e) via (6.11), so that { is the latent
heat. Then the approximate interface conditions consist of an energy balance

«V = [q]-n (6.29)

and a generalized Stefan condition

O l - bM(n)V, (6.30)

which includes the effects of curvature and kinetics. For an isotropic material ^M

and bM are constants, which I write as \\> and b, and (6.30) reduces to3 5

«u = i|>K - bV, (6.31)

which is the Gibbs-Thompson condition tu=4>K augmented by the term bV, which
accounts for interface kinetics.

Acknowledgment. This work was supported by the Army Research Office and
the National Science Foundation. I am deeply grateful to Paolo Podio-Guidugli for
the many valuable discussions we have had concerning the material presented
here; in particular, unpublished notes of his on variational descriptions of the
Eshelby tensor were helpful to me in formulating the underlying ideas. I also
acknowledge valuable discussions with Mete' Soner.

3 5 ! u = -b(n)V was introduced by Frank [1958] and used by Chernov [1963,1964]; *u = K̂ was
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Sekerka [1963,1964]; lu«^K-bV was used by Voronkov [1964]. Cf. Gurtin [1993a, Footnote 84]
for additional references.
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APPENDIX ON EVOLVING SURFACES
a. Surfaces

Let % be a smooth closed surface oriented by a choice of unit normal field
n(X). The space nCXK of all vectors perpendicular to n(X) is the tangent space to
% at X, and the tensor

P(X) = 1 - n(X)®n(X) (Al)

projects vectors onto this tangent space.
In continuum mechanics tensors are generally linear transformations from

IR3 into itself, but of interest here are tensor fields T on % with the property that,
at each X in >8, T(X) is a linear transformation from the tangent space at X into
[R3. These two notions of a tensor field may be reconciled by extending T(X) to
vectors normal to % with the requirement that T(X) annihilate such vectors.
Precisely, a superficial tensor field T on & is a function that associates with each
X in % a linear transformation T(X) from IR3 into IR3 such that

In = 0. (A2)

T then admits a unique decomposition into tangential and normal components,
Ttan and ft, respectively:

T = T t a n + n®ft, T t a n = PT, 1 = TTn; (A3)

given any vector field v,

Tv = T t a nv + (ft-v)n (A4)

with T t a nv a tangential vector field on J&. (Note that the normal component ft of
T is a tangential vector field.)

I define the surface gradient V^ on >8 through the chain rule. Let cp(X) be a
smooth scalar field on % and v(X) a smooth vector field on Z. Then given any
curve z(t) on >8,

cp(z)B = V^cp(z)-z\ v(z)' = V^v(z)z- (A5)

(which defines V^v only on vectors tangent to Z, but, in accord with (A2), V^v is
extended by requiring that (V/8v)n=0). Then V̂ cp is a tangential vector field, while
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V^v is a superficial tensor field. The surface divergence of v is defined by

divgv = tr(Vjv), (A6)

while the surface divergence div^T of a superficial tensor field is defined through
the identity

a-divgT = div^(TTa) (A7)

for every constant vector a.
The curvature tensor L and total curvature K (twice the mean curvature)

are defined by

L = -V^n, K = t rL = 1-L = -div^n. (A8)

As is known, the curvature tensor is symmetric L = LT and (hence) tangential:
LTn=0.

Let Q denote a smooth subsurface of &, and let V(X) denote the outward unit
normal to the boundary curve dG, so that V(X) is tangent to J& at each XcSG.
The surface divergence theorem then has the form

Jt-Vds = Jdiv^t da, j T v d s = Jdiv^Tda (A9)
5G G dQ G

for t a tangential vector field and T a superficial tensor field.

b. Smoothly evolving surfaces

Now let £(t) depend smoothly on the t ime t. Let cp° denote the normal time-

derivative^t* of a scalar, vector, or tensor field cp on J&. Then

n o = -V jV , (A10)

wi th V the normal velocity of Z.
Let G(t) denote a smoothly evolving subsurface of /8(t) w i t h V(x,t) t h e

o u t w a r d un i t no rma l to c)G(t). The motion of the cu rve 9Q(t) m a y be c h a r a c -

terized intrinsically by the velocity field

derivative following the normal trajectories of the surface. Cf. Gurtin [1986, eqt.
(4.4)].
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Vn + VdQV, (All)

where VdQ, the tangential edge velocity of Q, is the velocity of dQ in the direction
of the normal V.

For cp a superficial scalar field,

(d/dt){Jcpda) denotes (d/dt) {Jcp(X,t)da(X)}. (A12)
Q Q(t)

Then37

(d/dt){ Jcpda} = J(q>° - cpKV)da + JcpVdQds. (A13)
Q Q dQ

c. Functions of orientation
In studying interface behavior I will discuss scalar functions cp(n) and vector

functions f(n) of the interface normal n. The derivatives 3ncp(n) and c)ntr(n) are
defined by the chain rule. Given any curve n(t) on the unit sphere,

tp(n)" = {ancf>(n)}-n\ fT(n)- = {antr(n)}rr; (A14)

3n(p(n) is tangent to the unit sphere, while 5nf(n) is defined by (A14) only on
vectors perpendicular to n, but is extended by requiring that {5nf(n))n=0). Then
for n the unit normal field on /8, a calculation using the chain-rule and (A8)
yields the identities

V^cp(n) = -L3ncp(n), V f̂T(n) = -{3n(T(n)}L, div^Hn) = -{3ntT(n)}. L. (A15)

37Cf. Petryk and Mroz [1986], Gurtin, Struthers, and Williams 11989], Estrada and Kanwal
[1991], Jane [1991].
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Figure 1. The portion Q of the interface contained in the control volume R; m is
the outward unit normal to dR; n is the unit normal to the interface; v
(tangent to the interface) is the outward unit normal to the boundary
curve 3G.



Figure 2. The regions Ba and Bp occupied by the phases a and 3 in the unde-
formed body.
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Figure 3. The time-dependent control volume R(t), which deforms to 3£(t), with
v(X,t) a velocity field for 3R(t) and v(X,t) a corresponding velocity field for
Sfc(t).
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Figure 4. Cartoon showing why internal configurational forces respond to the
inhomogeniety of the reference configuration.
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configurational stress is constant,
internal configurational force vanishes.
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Nonuniform configuration of atoms,
configurational stress is not constant,
internal configurational forces (the four
lower arrows) are needed.
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Figure 5. Contributions to the working at a phase interface.
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