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REMARKS ON SOME INTERPOLATION SPACES

Luc TARTAR
Carnegie-Mellon University

Dedicated to Enrico MA GENES

Abstract. One purpose of this paper is to introduce a new idea of associating microlocal measures to bounded
functions of bounded variation, and even to functions in the interpolation space (Hl(Q)yL

2(Q))1.7oo, in
order to replace and improve some methods from geometric measure theory. Some properties of similar
interpolation spaces are reviewed first.

I do not remember when I met Enrico MAGENES for the first time. My first visit to Italy was for a
CIME course in Varenna in 1970, and he may have come there, or I may have met him a few months after
at ICM70 in Nice, but I definitely met him three years after on my second visit to Italy, when I stopped for
a few days in Pavia on my way to Trieste. He kindly guided my visit to the famous Certosa di Pavia, and
insisted that I should come back again as my visit could not be complete without seeing the facade; it was
not that some work was being done with scaffoldings all around as it unfortunately happens sometimes when
one visits a famous monument, but it was in November and the fog limited our visibility to a few meters.
I did visit Pavia a few other times, not quite as often as I would have liked, and in that warm atmosphere
that emanated from E. MAGENES I always felt as if there was now an Italian branch on my family tree.

I cannot remember if my thesis advisor, Jacques-Louis LIONS, had told me to read any of the three
volumes that he had written with Enrico MAGENES, but I did read the first one entirely and some parts of
the others two and it was then that I first learned about the theory of interpolation in the case of HlLBERT
spaces [Ll&M]. J.-L. LIONS did give me his article with Jack PEETRE to read [L2&P], which improved my
understanding of the case of BANACH spaces, and he mentioned some improvements by J. PEETRE, some of
which I later found useful when I wrote my thesis: the first part [Tl] answered a question that J.-L. LIONS
had asked me in order to generalize one of his results [L3]; the second part also answered another question
of J.-L. LIONS but never appeared as the corrections proposed by the editor never reached me due to some
defect in the transatlantic mail system, and as my personal difficulties about writing (and also reading) were
genuine, I could not put my mind on questions of publication for quite a long time after this incident. Many
of my results remained then unpublished, sometimes mentioned by J.-L. LIONS as "to appear" instead of
"personal communication" which would have been more appropriate, as I could not have initiated the too
arduous process for me of preparing a manuscript for publication without someone insisting that a particular
result of mine was worth publishing.

Progressively, I moved away from functional analysis and set my new goal of understanding more about
Continuum Mechanics and Physics, so I could not find enough motivation to write down some of these
technical results which I had obtained before.

Today, however, I realize that even for questions of Continuum Mechanics, some technical results from
interpolation theory might be more important than I had thought previously. I did mention orally some
remarks in this sense in two meetings during the Summer of 1992, the first one in Oberwolfach and the
second one in TYento, where I had the pleasure to meet again Enrico MAGENES, and it is therefore with
great pleasure that I dedicate to him some of these old remarks, mixed with new ideas.

I. A problem in singular perturbations and boundary layers.

In the early 70s, J.-L. LIONS was working on questions of singular perturbations, some of them involving
questions of boundary layers; as he often did, he was teaching the subject and writing a book on it at the
same time [L4]. One of the many questions that he was considering was to describe the boundary layer
correction in a variational elliptic problem of the type

-e2Aue + ut = / in fi, w c =Oon0f2 , (I.I)
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Q being a bounded open set of Rs. For € > 0, this problem has a natural variational framework in V = H\ (Q)
when / is given in V' = H~l(Q) or H = L2(Q), and one obtains the natural bounds

IMIv < §| | / | |v , and \\ut\\H < j\\f\\v, (1.2)

which can be improved in the case / £ L2(Q)y to give

Ikllv < fll/lltf, and |M|* < C\\f\\H, (1.3)

where, as usual, C denotes various constants, not necessarily all equal. One then turns to the question of
describing the behaviour of ut as e tends to 0, assuming at least that / £ L2(Q), and the first result is that

ut - / in L2(Q) strong, (1.4)

but without any uniform estimate, while if / € #o(ft) o n e c a n write an equation for ut - f and deduce that

\Wt-f\\n<Ce\\f\\v. (1.5)

One arrives then at the interesting question of studying the boundary layer, i.e. of describing what
occurs :n the case where / is smooth but not 0 on the loundary dQ of Q. In that case, the standard
technique consists in performing a local change of variable, using £ as a characteristic length for rescaling in
the normal direction, and one then discovers that one needs a correction in c~ ** , with d(x) denoting the
distance to dQ\ after a few computations, this gives the error estimate

||ur - f\\H < C\fi if / and dQ are smooth enough. (1.6)

The question which puzzled me was that this classical method is not well adapted to discovering what
is the minimum regularity that one should ask for / and for the boundary dQ in order to have an estimate
like (1.6). With Bernard NlVELET, who was working on this kind of problem at the time, I did some quite
technical computations in order to check that the estimate is still true in the case where / is smooth and
Q is a square, even though A(e~ * ) has singularities on the diagonals, but I then found a method that
could give an estimate like (1.6) without describing the correction at all. My method has a few advantages
for what concerns regularity hypotheses: for what concerns the regularity of / , it does not even ask that /
belong to Hl(Q)y as / 6 i/'(fi) is enough for s > 3, and even a little less, as we will see when I will describe
the precise interpolation spaces which I used. For what concerns the regularity of the coefficients, it applies
if —A is replaced by a second order operator with bounded measurable coefficients — X ^ ' - i S§"(aOEF")
assuming of course that it is uniformly elliptic, i.e. there exists a > 0 such that J2ij=\aijti£j > **l£|2

for all £ £ Rs and almost every x £ Q. For what concerns the regularity of the boundary, it applies to
strongly LiPSCHITZ domains; actually, if the goal is only to prove an estimate like (1.6), 1 conjecture that the
regularity hypothesis for dQ can be weakened by a careful use of nonlinear interpolation as I did in my thesis
for what concerns the regularity of coefficients needed for regularity theorems obtained by interpolation.

For simplicity, I describe the method for - A . My result was mentioned in [L4] for / € H1(Q), but I
had shown it for / £ H9(Q) with s > £, and this result was rediscovered later by Yoshio KONISHI [K]. The
discussion will center on two families of interpolation spaces and I first recall what these interpolation spaces
are, using the /^-method of J. PEETRE (which, together with its dual J-method, is a simplification of the
methods introduced by J.-L. LIONS k J. PEETRE [L2&P], which already generalized a few earlier ideas).

Definition 1: If EQ and E\ are two BANACH spaces embedded in a common topological space so that their
sum £o + Ei is defined, then for t > 0 and a € Eo -f E\ one denotes K(i,a) = inf(||ao||o + t||ai||i), where
the infimum is taken over all the decompositions a = ao-f aj , with a, 6 £*», and where | | . | j t denotes the
norm on £, . Then for 0 < B < 1 and 1 < p < oo, (Eo,Ei)$tP denotes the Banach space of a € Eo -f Ex

such that t~#A'(<,a) £ Lp(0,oo\ ^)» the norm on this space being the corresponding norm of t~§K(t,a) in
I r(0,oo; Y ) - For convenience, we will write E(6,p) instead of (E0,£>i)^lP.



Remark 2: Describing what these spaces are in particular circumstances is not always easy, but one always
has E(6%p) € E(6tq) if 1 < p < q < oo. These spaces satisfy the interpolation property, namely if a linear
operator T from Eo 4- E\ into Fo + F\ is continuous from Eo into Fo and continuous from Ei into F\, then
it is continuous from E(6,p) into F(0,p) with norm < C||r||J"#||r||J, where ||r||i denotes the norm of T
from Ei into Fi.

Notation 3: For 1 < p < oo, X(ptQ) = (i^(n),L'(fi))1/2p and Yfofi) = (H^) ,£ (« ) ) 1/2>p.

Theorem 4: If / € AT(oo,fi), then the estimate (1.6) holds, namely

,n). (1.7)

Theorem 5: One has X(oo,fi) C Y(oo,fi). If fi is a strongly Lipschitz bounded open subset of RN, then
Y(l ,n)CA'(oo,f i) .

Remark 6: As for $ > % one has i/'(fi) = (Hl(Q)yL
7(Q))^g7 C Y(1,O) one deduces that (1.7) holds if

the norm in A'(oo,fi) is replaced by a norm in H*(ft) with s > %.

Theorem 4 has not much content as it is almost the definition of the interpolation space X(oc,n)
mentioned in the statement, but Theorem 5 and its corollary stated in Remark 6, is a more interesting
statement.

Proof of Theorem J: The linear mapping T defined by Tf = u€ — / , with uc defined by equation (I.I),
maps H&(Q) into L2(fi) with a norm < Ce by (1.5) and maps L2(fi) into L2(fi) with a norm < C by (1.3);
therefore, by the interpolation property, it maps -Y(oo,n) = (Hl(Q),L2(Q))l/2oo into L7(Q) with a norm

< Cyfi, which gives (1.7).

Proof of Theorem 5: As i/^(fi) C Hl(Q), the interpolation property implies that X(oo,fi) C Y(oo,fi).
In order to prove the second inclusion, one first uses a LIPSCHITZ partition of unity to localize what

happens around various points of Q or the (compact) boundary dfl; of course for u € Y(l,fi) one has
v. = Y^,k 0*w w*1^ a'l *̂ LIPSCHITZ and the interpolation property implies that each 0*ti belongs to Y(l,fi).
As Q is a strongly LIPSCHITZ domain, around a given point of the boundary, one can consider that Q is
replaced by Q' = {x € Rs : ** > F(xu . . . , * T V _ I ) } where F is a LIPSCHITZ map, and then by R* =
{x G Rs : I N > 0} by considering z # — F(x\,... , x ^ - i ) ; of course the interpolation property is again used
to see that spaces like Y(l,fi) behave nicely by LIPSCHITZ changes of variable. It is enough then to show
that Y(l , /?£) C A'(oo,/2£), and then put all the pieces back together by using once more the interpolation
property to deal with spaces A'(oo) for various open sets.

For it € V(1, /?£) we want to show that u £ X(oo, /?£). For this we consider that u is extended by 0 for
i ^ < 0, take a C°° function p having compact support in xs > 1 and having integral 1, and for 0 < e < 1
we define ut by the convolution product

J ( j j ) * - V)dy (1.8)

so that ut has its support in x# > e and therefore belongs to Hl(R%). Using now H = L2(R+) and
V = Hl(R%), we want to show that

||ti - tiell* < Cv/F, and ||grad(tif)||ir < ^ (1.9)

which will imply that u € X(oo,R%) because it shows that K(t,u) < C(-fe+ty/e) and therefore by taking
e = \ that K{t,u) < C\Tt for t > 1 (as Hl{R%) C L7(R%), one has /f(t,ti) < C< by writing u = 0 + ti, and
there is no need to check that K(t,u) < Cy/i for t < I). All the required inequalities will follow from the
fact that u € Y(l,/Z+) implies



I K - y) - u(.)\\u < C v /MI | t i | |y ( l t ^ ) for y € Rs• (1.10)

Let us first admit (1.10). Then, because p has integral 1, one has

ut{x) - u(x) = / e-Np(*) (ti(x - y) - u(x))dy (1.11)

and therefore taking the I 2 norm gives

\W.-U\\H<J Ne-N\p(j)\V\y\dy<CVe. (1.12)

On the other hand as ut is a convolution product, one has

djut(x) = j ^ e-<N+%p(Z)u(x - y)dy = j ^ c'^*%p(^) («(« - y) - «(*))</», (1.13)

as the integral of djp is 0, and this gives

It remains to prove (1.10). For ys = 0, inequality (1.10) holds even for u € Y(oo,R%) because one has
IM.-y)-w( . ) l l# / < C|y|.||ii||v and | | t i ( . -y ) - i i ( . ) |U < 2||ti||// and the interpolation property gives (1.10),
but this argument does not work if ys ^ 0, but it does apply for the case of Rs, as we will use later. Let
us consider now the case where ys # 0 and y; = 0 for j ^ A\ and denote by Pu the extension of u which is
even in xs, i-e.

P U ( X 1 , . . . 1 X A ' . I , X A T ) = ti(jPi, . . . ,*Ar-i ,*jv) if *s > Oor u(ari, . . . ,xs-ii-xN) if xs < 0. (1.15)

The interpolation property shows that v 6 Y(1,R+) implies Pu € Y(1,RN) and therefore by applying the
preceding argument to Pu on RN, one deduces that

||Pu(. - y) - Pu(.)||n < Cv/MHuHrd^) for y € flA\ (1.16)

and this will give (1.10) if we show the inequality

< CV^IItlHy^^W). (1.17)

Indeed for a function <p of a single variable one has

(1.18)

where C is independent of *0, and therefore

y (1.19)

which after integration in x i , . . .^xs-i gives

IMIL»<O<«*<*> < Cy/h\\u\\li(/olklli»w. (1.20)
This last inequality implies (1.17) by a classical argument of LIONS & PEETRE [L2&P] (which uses the
J-method), namely if tf linear map S satisfies

\\Su\\z < C||ul|ir#||ti||^ for all u € ftnft, (1.21)
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then it satisfies

\\S*\\x < C||u||B{#|1). (1.22)

Remark 7: By interpolation, if u 6 A"(oo,Q), then the extension of u by 0 outside Q gives a function in
X(oo,RN)t and therefore an inequality of type (1.10) holds, giving then an inequality of type (1.16), i.e. by
denoting d(x) the distance of x to <9Q, u £ AT(oo,fi) implies

IML»<o<«*)<*> < CVK for 0 < h < 1. (1.23)

The preceding proof actually shows that ti € X(oo,fi) if and only if ti € V(oo,fi) and (1.23) holds for
ti, as this inequality is conserved by localization and LlPSCHITZ change of variable.

ft. An interpolation space on 0 with traces exactly in L2(3Q).

If inequality (1.17) was true with Y(1,RN) replaced by Y(p,Rs) with p > 1, then by taking squares,
dividing by h and letting h tend to 0, it would imply that functions in Y(p,Rs) have a trace on xs = 0
belonging to L2(RS), and this is not true. However, the space Y(1,/?N) does have L2(RS'1) traces on
XN = 0 (as follows from (1.17)), a fact which I learned in 1975 in a talk of Shmuel AAGMON, who was
describing some work he had done with Lars HORMANDER concerning questions of spectral theory [A&H].
The trace result obviously extends to LlPSCHITZ hypersurfaces (S. AGMON ii L. HORMANDER were actually
interested in traces on spheres, and working with the FOURIER transform of Y(1,RS) instead); S. AAGMON
& L. HORMANDER also proved that any L2(RN~l) function could be a such a trace, not by an explicit
construction but by an argument using the transposed operator.

Of course, one cannot obtain information on the trace by interpolation as one is exactly considering
a limiting case beyond which traces are not defined. Around 1985, in collaboration with Michel ARTOLA,
we constructed an explicit lifting of the trace from L7(dQ) into Y(l,fi) by applying a method which I had
derived earlier for proving the classical result of Emilio GAGLIARDO [Ga] that every function in Ll(dQ) is
the trace of a function in W7ll(ft); my method is quite similar to E. GAGLIARDO's original method. For
simplicity, I consider the case of R~, and present both results for completeness and in order to show the
similarities of the two questions.

For / € Ll(R) let us construct u € W = Wl'l(R?) such that u(x,0) = / (*) almost everywhere.
Continuous functions with compact support are dense in Ll(R), and can be approximated uniformly by
continuous piecewise affine functions by refining the mesh size, so there exists a mesh size h and a continuous
function g affine on every interval (iA,(t'+ l)/i), such that | | / - 9\\L*(R) < <*ll/lli»(rt) with a < 1. The
interest of this class of functions g is that there exists a constant C independent of g and h such that
H|HIL»(H) ^ TIMI^H*) - A Unction G € W = Wl*l(R2) with trace g is then given explicitly by

G(*,y) = p(*)e- i*1, (II.l)

and one immediately checks that it satisfies

\\G\\w < C||y||L.(n). (112)

Then one repeats the procedure with / replaced by / - g and one creates then a series of functions G (with
smaller and smaller mesh sizes) whose sum is the desired function.

For / € L2(R) let us construct u € Y(1>R2) such that ti(x,0) = / (* ) almost everywhere. By the same
argument, there exists a mesh size h and a continuous function g affine on every interval (t*A,(t + l)/i), such
that \\f-g\\L2(R) < »ll/lk'(K) with a < 1. We make the same observation that |||*||i*(*) < §||0||i»(*)
and use a similar formula

G(x,») = y ( « ) e - * , (113)



in order to generate a function with trace g (notice the different power of h in the exponential). It remains
to estimate the norm of G in V(l, R?). One has ||G||ia(K>) < Cy/h\\g\\Li(R) and ||G||i,a(fl») + \\^\

$f < $JIMIL»<JI). *nd therefore

») < C\\G\\l{R3)\\G\\*Hlilt3) < C\\g\\LHR).

Then one repeats the procedure with / replaced by / — g and this creates then a series of function G (with
smaller and smaller mesh sizes) whose sum is the desired function.

HI. Regularity for evolution variational inequalities*

Just after having found the role played by X(oo,(l) and y(oo,f2) in the singular perturbation problem,
I discovered another situation where a space like y(oo) arose naturally, this time in relation with a question
of regularity in time of solutions of evolution variational inequalities (of parabolic type).

In the usual Hilbert setting V C H = H' C V\ V being dense in H and the respective norms being
denoted by ||.||, |.| and ||.||., let A € £(V, V) be such that there exists a > 0 and 0 € R such that

(Au, if) > a||v||2 - 0\u\2 for all u € K (III.l)

and then let / € I 2 ( 0 , J T ; V) and uo € H. Then there exists a unique solution u € I 2(0,T; V)nC(\O)T]\H)
of

and it obviously satisfies ^ € i 2 ( 0 , T ; V ) , because both / and Au belong to this space. The evolution
variational inequality consists in having for each t a nonempty closed convex set K{t) in V and ask instead
of (III.2) that u satisfy

) > ( / , t - i i ) a . c . <€(0,T)foral l t> € A'(t) a.e. t G (0,T),

ii(0 € K(t) for t € [0, T\\ ii(0) = u0. (III.3)

Of course, one adds that tio belongs to the closure of A'(0) in i/ , and one requires some reasonable dependence
for A'(0 with respect to /, but the problem is that if such a solution u exisu cne cannot deduce where ^
will be. One must then use a weaker notion of solution, corresponding tc •. formulation where ^ is not
used, and then one must ask about the regularity of that solution. In my argument, I was using a particular
hypothesis for A'(0* namely that

A'(0 is nondecreasing in *, (HI.4)

and what I obtained was not an estimate on the derivative of u in <, but on a derivative of order 4, involving
a space like y(oo), but with values in H. Let us consider first the case of smooth solutions.

Theorem 8: Under assumptions (III.l) and (III.4), there is a constant C such that if u is a strong solution
of (III.3), i.e. such that u € L2(0yT; V)nC([0,T\;H) and ̂  € I 2(0,T; V% then it satisfies

jj \u(t) - U(t - h)?dt < Ch[j^ Mm7.* + Wo? + l) for 0 < h < Tt (III.5)

where u had been extended by 0 for t < 0.
Proof. By choosing a constant t; € A'(O), which is admissible because of (III.4), the inequality (III.3) gives

d(\u-v\7) .
- i - j j L + 2o||ti - t;||2 - 2fi\u - v\2 < 2||/ - ilv|U||ti|| < a||ii - t;||2 + ±| | / - Av\\l



which implies the first elementary estimate

sup \u{t)-v\7<c(f
l€[O,T] VO

p \
I€[O,T]

where C depends upon a, /?, T and the best constant 7 such that ||v|| > -y|t;| for every v € V. In order to
obtain the less elementary estimate (III.5), I made a translation in order to have 0 € K(0)y and chose the
test function v to be

4 / ' u(s)dsite(0iT) (III.8)

with A > 0 arbitrary and u being extended by 0 for t < 0. Again, this is an admissible test function because
of (HI.4) and the extension of u by 0 for t < 0 gives v(0) = 0, which is admissible because 0 € K(0). We
then integrate (III.3) from 0 to T with this choice of v. One has

( $ ) 5 5 ( ) ^ ( ) • (in9)

so that

J (HMO)

As all the other terms are bounded by constants independent of h because of the first estimate (III.7), one
obtains a bound independent of h for £ / 0 \u(t) — u(t — h)\7dt, i.e. the estimate (III.5).

Remark 9: For weak solutions, one must be a little more careful, but the idea is the same. One uses a time
discretization, choosing a mesh size k = At = ^ , approximating / by /„ = j /(n-i)* / ( 0 * for n = 1 , . . . , N,
and defining un> expected to be an approximation of u(nAt), by an implicit scheme: solving for n = 1 , . . . , Ar,
the variational inequalities

| ( u n - t i n . i , v - un) -f (i4tintt; - un) > (/„, v - un) for all v € K(nk), with un € K(nk). (III.ll)

Assuming that we have made a translation so that 0 € A*(0) € A'(nJfc), we can take v = 0 in (III.ll)
and obtain the discrete analog of (III.7), i.e.

* E IÎ H2 + SUPl^l2 ^ c ( / H/Oll'* + M 2 ) , (HI.12)

as well as

N

^2 \un - Wn-lP < C, (HI.13)
n=l

with C independent of N. The analog of (III.5) is

(111.14)
n s l

with C independent of m and N, and it is obtained by choosing v = vn = ^(tin-i + . . . + u n . m ) , and
summing in n after multiplying by k. Indeed the analog of the left hand side of (III.9) is



(111.15)
nsl

which transforms into a few more terms than the right hand side of (III.9), as -i}\u(T)\7 + ^|uo |2 is replaced
by -\Wtt? + £k>|2 - \ E n s i K - Un-i|2; then the other terms are (usvN) replacing (u(T),v(T)), and
~m En^Ji^^^n - t*n-m) replacing - £ /0

T(w(t), t*(<) - ii(* - A))A. This gives for the analog of (III.10) the
inequality

1 N-1 1 1
* < -5— V K - Un-ml + o M + ol^l ' (III.16)

nsl

which with (III.II) implies (III.14) as all the other terms appearing are bounded by constants independent
of m by (III.12). Having solved (III.11) for all n, one creates a function by interpolation, and any reasonable
method will give a function satisfying (III.5). Passing to the limit in (III.11) is Dot difficult if one uses a
test function such that v(t) € K(t) for every t € [0,T] and which is smooth enough, for example such that
^ € I°°(0,r; / / ) , so that the derivative in t can be used for the test function v instead of the solution u

I remember applying the same idea to other nonlinear problems. A first one was an abstract pseudo-
NAVIER-STOKES setting, ^ -f Av -f B(u,u) = / , for which I was considering variational inequalities if my
memory is correct, as I have misplaced my personal notes on that question long ago, but J.-L. LIONS did
mention it in a joint book with Roland GLOWINSKI and Raymond TRfeMOLlfcRES [G&L&T] (although they
wrongly attributed me a co-author for that result). A second one, answering a question of Halm BREZIS at
a meeting in Pau in February 1972, was an equation of the type ^ + d<p(u) € / with tp convex.

IV. What functional spaces could one use for hyperbolic equations?

At a meeting in Oxford in the Summer of 1982,1 did mention functional spaces like Y(oo) as a possible
answer to a question of Andrew MAJDA. I had heard mentioned before that the space of BV functions,
although quite useful for studying a scalar quasi-linear hyperbolic equation, did not seem adequate for
treating the case of systems of conservation laws; A. MAJDA was adding the remark that for linear hyperbolic
systems in more than one space variable the L? setting seemed almost necessary and that the study of small
perturbations of a nonlinear system added the constraint of using a functional space adapted to linearized
problems, so that a space like BV had to be excluded. A space like Y(00, Rs) seemed to me a good substitute,
as it was using a I? setting, while at the same time it contained many functions having discontinuities, as
piecewise smooth functions with discontinuities along smooth hypersurfaces do belong to Y(oo} RN).

Unfortunately, my only result in that direction concerns a scalar equation in only one space variable,
and it uses different interpolation spaces than Y(oo,/Z), so that I still do not know if the space Y(oo, RN) is
useful for hyperbolic equations. The framework is that of entropy solutions of

du (f())
•jz + v ' = 0 in the sense of distributions in R x (0, T)\ ti(x, 0) = v(x) a.e. in R, (IV.l)

obtained, for example, by the vanishing viscosity method. We assume for simplicity that / is a C1 function.
For e > 0, the regularized equation

-gj- + dx - £-fo? = 0 a.e. in R x (0,T); u c ( i ,0) = v(x) a.e. in R, (IV.2)

defines a (nonlinear) semigroup S'(1), which satisfies

for 1 < p < oo.



\\S'(t)v - St(t)w\\Li(R) < \\v - w\\LiW. (IV.4)

As € tends to 0, uc converges to the particular solution of (IV.1) which satisfies the following entropy
condition

< 0 in the sense of distributions in R x (0, T), (IV.5)

for every convex function <p, called an entropy by Peter LAX, the entropy flux V being defined by $' =
the entropy solution corresponds to a semigroup S(t) which satisfies the same inequalities (IV.3)-(IV.4) as
S'(t) does. As S'(t) and S(<) commute with translation, one can deduce immediately that

\\rkS(t)v - S (0» | |L«(H) < IIT^V - v||x>CJt). (IV.6)

where r* denotes the translation by A, i.e. T*ti(x,t) = u(x - fe,t). Flrom (IV.6), and the analog of (IV.3) for
p = 1, one can deduce that

\\S(t)v\\ByiR)<C\\v\\BV{R), (IV .7)

and by (nonlinear) interpolation that

\\S(t)v\\w<C\\v\\w, (IV .8)

where W is any interpolation space between BV(R) or Wl*l(R) and I^/J) , like W9*l(R) for 0 < s < 1. It
could seem natural to deduce existence results in interpolation spaces between BV(R) and I°°(«R), but the
known (nonlinear) interpolation theorems do not apply, as they require a LiPSCHITZ or HOLDER hypothesis
for the mapping on some of the spaces, and this does not hold for either BV(R) or L°°(R). However, I was
able to derive such an interpolation result, but by using a linear interpolation argument as follows.

Theorem 10: The semigroups 5C(<) and S(t) satisfy the estimate

\\Sc(t)v\\z(e>p) + \\S(t)v\\ZietP) < C|M|Z(,,p), (IV.9)

where Z(0,p) = (BV(R),L°°(R))0 p, with 0 < 9 < 1 and 1 < p < oo, and C is independent off.
Proof. For v € L°°(R), the solution of ut of (IV.2) is uniformly bounded, by an application of the maximum
principle, and satisfies

We define ae(z,t) = /'(uc(*,<)), and consider the linear equation

^ + a' j ^ - cjg = 0 a.e. in R x (0,T); w(x,0) = wo(x) a.e. in R, (IV.ll)

so that, because of (IV.2) and the fact that tic is smooth enough to have * " ^ ̂  = f'(ue)$£ the solution
of (IV.10) corresponding to the initial data v is V . By the maximum principle, the solution w of (IV.10)
satisfies

OIIi-W < IMU-W- (IV.12)

On the other hand the function 2 = j ^ satisfies

Tt + ̂ T ^ ~ £ £ = ° ae' mRx (0)T); w(x>0) = Wo{x) ac*in fi' (IV13)

so that, by the maximum principle applied to the dual problem, one has
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The interesting fact is that the inequalities (IV.12) and (IV. 14) are independent of the regularity of ar,
as long as a* is smooth enough, which is indeed the case because c > 0 and u* is reasonably smooth. As
BV(R) is included in L°°(R), a result which does not extend to more than one space variable, one may put
on BV(R) the norm

HglL 0V.15)
whereAf(TC) is the space of Radon measure with finite total mass, and easily deduce from (IV.12) and (IV.14)
that one has

IM-,«)IIBV(H) < IKIbv(H). (IV.16)

Then one can use linear interpolation theory to deduce from (IV.12) and (IV.16) that one also has

One then applies the result to u>o = t>, which gives w = uf and the desired estimate for Se(t)v in (IV.11),
and then letting € tend to 0, one obtains the same estimate for S(t)v, proving (IV.11).

Remark 11: The result for ue is actually true with BV(R) replaced by Wlil(R), but of course, the limit u
may have discontinuities and take values in BV(R) but not in Wl>l(R).

Remark 12: It is not difficult to check that

Y(p,R) = {u € H = L2(R) : -L| |rhti - ti|U € I ' ( o , oo; ^ ) } , (IV.18)

but because BV(R) is not embedded in L7(R), we also consider the spaces

Z(p, * ) = { « € I°°(iJ) : ̂ I M " «i||* € V (o, oo; ^ ) }. (IV.19)

With this notation, one has Z(^,2) C Z(oo,R). Indeed one has

Wnv - v\\Lx{R) < C\h\.\\v\\BV{R) and ||rht; - v\\L-m < 2\\v\\L-{R), (IV.20)

so that by interpolation one obtains

\\ThV - V\\L2{R) < CV^||v||2(l/2,2), (IV.21)

and as this is true for all A, and as Z(0,p) C L°°(R)y this implies

IMIy<oo,ji) < C\\v\\Z{l/2t2). (IV.22)

The space Z(£,2) is not included in Z(p,R) for p < oo, as there are functions in BV(R) which do not
belong to Y(pyR) or Z(p, R) for p < oo: let y? € P(0,oo) have integral 1, and define u by u(z) = 0 for z < 0
and u(x) = 1 - / * <p{y)dy for x > 0, so that u € BV(R) and has its FOURIER transform which decays like
j with c 9* 0, and therefore belongs to Y(oo,R) but not to Y(p,R) for p < oo.

The preceding construction showing that some discontinuities are not allowed in Y(p,R) or Z(p,R) for
p < oo (although not all functions of V(p, R) or Z(p,R) are continuous for p > 1) shows that in the family
of functional spaces Y(p,Rs) or Z(pyR

s) with 1 < p < oo, only Y(ooyR
N) or better Z(p,RN) could be

adapted to conservation laws.
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Remark 13: In the other direction, the spaces Y(p,R) are not included in Z(\,2) for p > 1, as 2(^,2) is
included in L°°(/Z), while Y(p,R) is not for p > 1. One can construct an unbounded function belonging to
Y(p,R) in the following way: let <p be a real even nonnegative C°° function having support in 1 < |x| < 2
and integral 1, and let tp be its FOURIER transform, which is a real even C°° function, belonging to S(R)
and such that V(0) = 1; then the function / defined by /(x) = £ n € z anV>(2nx) has FOURIER transform
F / ( 0 = £n€Z an2-"fV(2~nO and belongs to Y(p,R) if and only if the sequence an belongs to /*, and / will
be infinite at 0 by choosing the coefficients an to be nonnegative numbers such that the sequence an does
not belong to I1.

As Y(l,/2) only contains continuous functions, one has Y(lyR) C Z(l>R) and one can expect that
Y(l, R) is continuously embedded in Z($,2), but I do not know if that is true.

Y(\,R) is actually embedded in the larger space Z($,oo). In order to show that it is continuously
embedded in any space Z(£,p), it is enough (and therefore equivalent as Hl(R) C Y(1,R)) to prove that
Hl(R) is continuously embedded \n Z{\,p), i.e. that there exists a constant C such that

IMI*(i/a#> < C||y||jfi(H) for every u € H\R). (IV.23)

Then for A > 0, one applies (IV.23) to the rescaled function u\ defined by tix(x) = u(Xx) for x £ R;
•s I|UA||BV(J?) = II«IIBV(H) and ||UA||L«(/I) = IMIx,«»(*) for all A > 0, one deduces from the definition of
interpolation spaces that ||tiA||z(i/2,p) = llwllz(i/2,p) for all A > 0; on the other hand the L2(R) norm of u\
varies with A in a different manner than the norm of ^ , so that (IV.23) applied to u\ gives

^ | | t j ( f l ) for every « € H\K>. (IV.24)

Choosing the best A gives

i 11An 11 \

(IV.25)

which implies that there exists a constant C such that

). (IV.26)

I do not know if (IV.23) holds for p = 2, but it does hold for p = oo. For proving this, it is enough
to prove (IV.23) for p = oo and for nonnegative u, as for a general u € H1(R) both u_ and u+ belong to
H1(R). For a nonnegative u € Hl(R) and o > 0, let vo be defined by

«.(*) = ( « ( * ) - * ) + . (IV.27)

so that

ll« - ».IU-(J») < a, (IV.28)

and vo € BV(R) as vo € fi1(R) and is 0 outside a set of finite measure / (a ) , with / ( a ) satisfying / (a )a 3 <
JR \u(x)\3dx, and therefore one obtains

Ak'(R), (IV.29)

and (IV.28)-(IV.29) give directly (IV.23) for p = oo.

Remark 14: The preceding arguments apply to slightly larger spaces, modeled on the Lorentz space I2'°°(i?)
instead of L2(R). Let

Vi = L7-°°{R) and Vo = {« € Vl, ^ € Vj}. (IV.30)

Then one has
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As Y(oo, R) is not embedded in L°°(R), neither is the larger space V(£,oo), but one has

V(Loo) CBMO(R). (IV.32)

On the other hand V{\, 1) is larger than Y(1,R) but still contains only continuous functions.

Remark 15: Unfortunately, the argument used in Theorem 10 does not extend to the case of more than
one space variable. Indeed, one should then look at equations of the form

*\ A

£ £ + y* a. ̂ !L _ €Aw s 0 a.e. in R x (0, T); w(x, 0) = Wb(x) a.e. in fl, (IV.33)

for which the maximum principle does apply so that (IV.I2) is satisfied, but the difficulty comes from the
fact that the derivatives J-p do not satisfy simple equations with good Ll bounds.

So my search for discovering new functional spaces for hyperbolic problems, eventually defined as in-
terpolation spaces using more classical ones, is not much advanced as the only result that I have obtained
concerns a scalar equation in one space variable, while the main idea behind this search for new spaces was
that one must think of systems, and in a realistic multidimensional setting.

V. Associating microlocal measures to bounded BV functions.

My more recent contribution to this list of remarks about interpolation spaces, was to use them in - -der
to associate microlocal measures to BV functions.

There are many problem* in Continuum Mechanics where interfaces occ-r, and often they do r ve.
In conservation laws, for example, shocks can be created and it is not a completely understood question
to decide which discontinuities are physically relevant; it is believed that only the value of the solution
on both sides of the shock are relevant, and that an eventual internal structure of shock layers only helps
understanding what is the right admissibility criterion for shocks. However, in some other problems, the
geometry of an interface may play a role, for example when it moves in its normal direction with a velocity
depending upon the mean curvature of the interface, or a more general function of its curvature tensor,
as appears in some models in material science. Interfaces with small wrinkles may also appear in physical
problems, corresponding to the concept of generalized surfaces that Laurence C. YOUNG introduced a long
time ago, but instead of following his approach using a probability measure for the normal, I want to use
tools which are more adapted to partial differential equations, like microlocal measures.

In approximating (IV.I) by the vanishing viscosity method (IV.2), one obtains an estimate

v/?grad(uf) bounded in L2 (o, T\ I 2 ( # ) ) , (V.I)

and

c|grad(uc)|2 —• p in the sense of distributions in R x (0,T), (V.2)

and the nonnegative measure // appears in the entropy condition, as the entropy solution u must satisfy

\d(v?) {9iy))
- - ^ + —^g—- + /i = 0 in the sense of distributions in R x (0, T), (V.3)

where g(u) = f£ zf'(z)dz. The measure p lives on the shock set of the solution ti, but it does not know
directly what is the velocity of any shock curve it lives on. If instead of a measure in (*,*) one constructs a
microlocal measure in ((*,*)» ((»r))» li might contain some geometrical information about its support. Let
us consider for example a sequence of the form
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(V.4)

where U is a traveling wave joining the constant states a and b - with f(b) — f(a) = s(a — 6) of course -
satisfying V1 € L2(R). Then the measure \x is supported by the line of discontinuity x = st, and its constant
strength corresponds to jR\U'(a)^d(r\ on the other hand, the //-measure corresponding to y/£gT*d(ue)
contains a little more information as it lives on r -f s£ = 0, so that it can read directly what the speed of
propagation is.

Instead of following the approach of geometric measure theory, which starts from a function of bounded
variation and then analyzes it in order to find the surfaces of discontinuity and their normals, the new
idea consists in creating some microlocal measures associated to u, which would contain in a decoded way
the geometrical information needed. Of course, the microlocal measures would be either an object without
characteristic length like the //-measures which I have introduced [T2], identical to the microlocal defect
measures introduced independently by Patrick G&RARD [Gel], or an object with a characteristic length like
the semi-classical measures of P. G&RARD [Ge2], identical to the Wigner measures of Pierre-Louis LIONS &
Thierry PAUL [L'&Pa]; it could as well be another object that still has to be discovered.

My purpose here is to see how the space Z(oo>Rs), and the particular approach of our first subject of
singular perturbations, plays a role in a similar question: associate some microlocal measures to any bounded
BV function. What I do is actually to associate some //-measures to the space of functions Z(oo,RN)\ with
the same arguments used for one dimension in Remark 12, one has

\\ThV - vlLi(HV) < \h\.\\gT^d{v)\\M{li^yy \\THV - V||L«O(HN) < 2|ML-(K"), (V.5)

and therefore one deduces that Z(£,2) C Z(oo,Rs), i.e.

IMIz(oo.n») < CIMIza/2,2)- (V.6)

For u € Z(oo,/?N), we consider the equation

-e2Au<+u< = u i n R*\ (V.7)

for which have the bounds

(uf )\\LHRs) < C||ti||I2(*"), (V.8)

||grad(uf)I|jr3(^) < CllgradMH^KN), (V.9)

from which one can deduce

< C\\u\\Z{o0tRN).

The preceding inequality can be proved by interpolation, based on the following decomposition: for v €
Z(oo,RN) so that \\rhv - v||x,a(flv) < Cy/\h\> and for P € D{RN) with integral 1, one defines

for a > 0 so that

If one defines the FOURIER transform F by
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so that F induces an isometry on L2(RS) whose inverse is obtained by changing s into - t , then the preceding
decomposition shows that for u £ Y(ooyR

N) or u £ Z(oo%RN)> Fu(() belongs to an interpolation space and
that there exists a constant C such that

£ < C, for every r > 0. (V.14)

The spaces Y(oo,/2N) or Z(oo,RN) are then characterized as the spaces of functions in L2(RS) or
L°°(RN) satisfying (V.14) (notice that if u £ Z(oo,RN) then Fu may contain a Dirac mass at 0).

For u £ Z(oo,/JN), the estimate (V.10) implies that

V£grad(tic) - 0 in L2(RS) weak, (V.15)

and therefore, after eventual extraction of a subsequence, y/egThd(uc) defines a //-measure /i, which is a
N x N hermitian nonnegative matrix of Radon measures on RN x Ss~*. Because the curl of y/igT*d(ue)
is 0, the localization principle implies that /i = (£ g> £)i/ with v being a nonnegative Radon measure on
RN x Ss~l. Equation (V.7) gives Fue(^) = T+ttirtP?u(O> so that

i.e. F(v/?grad(tic))(O has the form f(e£)\/\£\Fu(Z) with f(z) = ^fofia so that in particular / is contin-
uous in Rs,O{\/\z\) near 0 and O(—y—) near infinity; the information (V.10) and (V.15) is then easily

obtained as a consequence of (V.14) and the fact that / tends to 0 at 0 and at infinity. One can then derive a
formula for the value of the measure i /ona test function \<p(x)\7\p(x), where <p is a LlPSCHITZ function with
compact support and VJ € C(SA""1): let rj —> 0 be the subsequence extracted for defining the H-measure /i,
then

L < ^ k - (V17)
One can deduce from (V.I7) something about the support of v: if for a Lipschitz function <p with

compact support, one has

lim / K = 0, (V.18)

then (v,\<p\H) = 0 for all %l> £ C(SN~l) and therefore v = 0 in {x : ip(x) ^ 0} x SNmml. In particular, if
v £ BV{RS) and is continuous on an open set u>, then v = 0 on w x SN~l; indeed let <p be a Lipschitz
function with compact support in u>, then <pu £ BV(RN) and is uniformly continuous, so it satisfies

\\rh<pu - pti||£i(*N) < C|A|, and \\rh<pu -

and therefore

\\rh<pu - ipu\\L7(Rs) < o(v/JA|), (V.20)

which does imply (V.I8).
If II is the characteristic function of an open set u/ with finite perimeter, and a subsequence corresponds

to a //-measure ft characterized by a scalar nonnegative measure */, then the support of v is included in
du> x SN~*. Of course, one can ask the same question for general sets of finite perimeter, or even for sets
with infinite perimeter but such that ti belongs to Z(oo,RN). Another natural question is to decide under
what hypothesis the measure v will only see points of the form (x,±n(x)) with x € du> and n(x) some kind
of a normal to 8u> at x. Obviously if the boundary is piecewise smooth, this will be the case because u will
satisfy equations of the type
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S

^ = 0, written as Y* j . - (div(a))u = 0, (V.21)
ox* —* oxi v /

with some functions a; smooth enough for applying the localization principle and deduce

s
= 0, (V.22)

i.e. Qj continuous and div(a) £ L°°(RS)\ if the functions aj are C1 , then one can use the transport theorem
to obtain more information. For example, if u is the square (0,1) x (0,1), and one looks for information
near the open edge (0,1) x {0} then the localization principle implies that the restriction * of v to that edge
is such that there exist nonnegative functions a, 0 6 Ll(RN) such that for every continuous function * one
has

= ^1[a(r)*((x,0),(0,l))+^)*((x,0),(0,-l))]dx, (V.23)

while the transport theorem implies that a and 0 are constant; a more careful analysis of a one dimensional
problem shows that ue looks like ^ — sign(x)e~ • near the edge and one can deduce that a = 0 = g. The
localization principle or transport theorem for //-measures give no information about u near the vertices,
and one must look again at the precise behaviour of ut for determining what v looks like near a vertex, and
one finds that v does not charge any of the vertices.

In general, I do not know if one can avoid the choice of a subsequence in the definition of v. As the
integral of v with respect to £ is obtained by taking <p = 1 in formula (V.17), extracting a subsequence might
be necessary, but I do not know if that happens for u G Z(oo,Rs) or u € BV{RS) O L°°(Rs)y as these
spaces are not simply characterized through their FOURIER transform.

One advantage of the preceding procedure of attaching microlocal measures to functions in BV(RN) C\
L°°(RS) is that it can be done for the larger space Z(oo,/2N), and another advantage is that one can do a
similar analysis for sequences. If a sequence ve is bounded in Z(oo, /ZN), then the sequence ue defined by

-r 2 Au £ + u c = t f in J?N, (V.24)

for which one has the bounds

C, (V.25)

and

>/Fgrad(ut) - 0 in L2{RN) weak, (V.26)

so that one can extract a subsequence such that >/Fgrad(uc) defines a //-measure /i, which must be of the
form (( ® ( )" ^ the localization principle. If the functions vg are initial data for an evolution problem
where the characteristic length e is used, the //-measure associated to the initial data or the solution of the
evolution problem could then become interesting objects for understanding the evolution of the oscillations
that one could put in the initial data.

Although I have only used the language of //-measures, the preceding analysis has made use of a
characteristic length, and therefore one could also use the language of semi-classical/WlGNER measures.
Certainly, the approach seems in defect for problems where many different scales occur, or problems where
one does not really know what are the characteristic scales involved. More research should be done, of course,
in order to decide if these ideas will help developing a new approach to problems usually attacked with the
technical methods of geometric measure theory, for example for existence and regularity of solutions of some
variational problems.
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