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SMOOTHING IN NONLINEAR CONSERVATION LAWS 15

Let e > 0 be an arbitrary (small) positive number so that cr(u)(t++e, x) is absolutely
continuous and (1) holds for t = t+ + e and almost every x. Invoke the estimates
(34) and (35) to obtain

k(t - s)ut(ds,x) < —6k(r(x+ - x) + e), x € ((),£*),

and so for x € (0, x*),

a{u)(U + €,**) - a(u)(U + e,x)<-6 k(r(y) + e) dy.

Jo
Finally, let c j 0 and apply the monotone convergence theorem together with (29).
The result is

lim(a(u)(i* + e, £*) - a(u)(t* + e, x)) = -oo ,

which is impossible.
This contradiction shows that u cannot have any discontinuities and the proof

of Theorem 5 is complete. D
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14 GUSTAF GRIPENBERG AND STIG-OLOF LONDEN

The second case is the one where

limsup^<|. (32)
no p(<) 3

In this case, there is a number T € (0,1) such that k(t)/p(t) < f when t £ (0, T)
and we have

_ Ht)(p(t) - Kt)) l k(t)

Since limtjo / 0 k(s)ds = 0 we see again that (30) holds.
If neither (31) nor (32) holds, then there are infinitely many nonoverlapping

intervals (SJ,fy), j = 1,2, . . . contained in (0,1) such that

_ 2
" 3

Since A: is nonincreasing, it follows that we must have

and therefore we get

i:

This completes the proof. D

We now apply Lemma 7 with a = y/C/2. By (21) and by (28) we have

2At

which implies that T ( A I ) > 2 At. In view of the monotonicity of u and the definition
of Atf, we therefore have

u(t, xm -Ax)<u+-6, t<U- T(AX). (33)

Now recall that Ax € (0,x«) was arbitrary. Thus we may in fact write (33) as

u(t,x)<u+-6, 0<t<T(xm-x), z€(0,x*). (34)

On the other hand, from the monotonicity of u it follows that

u ( < , x ) > u + , t>U x€(0 ,x*) - (35)
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On the other hand we have, because u takes its values in [0,1] and the support of
is contained in [0, At] that

>=o

>-<r(l)pAt([0,At])At.

This gives the desired contradiction and we have established (20).
In order to exploit the fact, expressed by (21) that the level curves of u run

almost parallel to the i-axis in the vicinity of (tm,xm) we need the following simple
result.

Lemma 7. Let k 6 £|OC(R+;R) be nonnegative and nonincreasing on (0, oo)
with lim^o k(t) = +oo. Let a > 0 be some constant and define tie function

a
- . (28)

Then
fV k(r(x))dx = +oo, (29)

Jo
when y < x?^y-

Proof. Define the (strictly decreasing) function p by

P(<) = 7 fl
I Jo

In the integral in (29) we change variables by taking t = ^z) , or equivalently,
p(t) = a/x, so that dx = (-ap'(t)/p(t)2)dt, and we conclude that (29) holds if and
only if we have

= +oo. (30)

Depending on the behavior of k(t)/p(t) as t approaches 0, we distinguish three
different cases. Suppose first that

(31)minf^>i
tio p(t) 3

In this case, there is a number T G (0,1) such that k(t)/p(t) > \ when t 6 (0,T)
and we have

= +oo.
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by (ii). Use (24) on the right hand side of (23) to obtain

fx(t,z)= I (v(t + At,y)-v(t,y))dy, i> 0, x > 0, (25)

where v = k * pAt * ̂ (& * u 0- f̂ 0111 o u r assumptions on k it follows that fc * pAt is
nonincreasing (on (0, oo)), and that k*p&t*k is nondecreasing on (0, At]. Therefore,
by the fact that u(t,x) is nondecreasing for each fixed x and satisfies u < 1, we
may apply Lemma 6 to get

2Ax
fx < (k * PAt * Jfc)(At), t > 0, x > 0.

Hence, for t > 0 and 0 < Xi < X2,

f(t,x2) - f(t,Xl) < ^(k * PAt * k)(At)(x2 - an). (26)

In order to estimate / , note that because u is monotone in both of its variables
and continuous from the right in the first, we have

u(s,xm) < tt_, to < s < <*,

and, using the definition of At,

u(s, xo) > u+ — 6, <o — At < s < t*.

Therefore,

(cr(u) * pAt)(5,x*) - (cr(u) * />At)(5,x0) < ^/9At([0, At]), t0 < 5 < t*,

where ^ d= <J(U+ — 5) — a(u»). So, because t+ = t0 + At and x* = x0 + Ax, we
get by (22)

/(<o,*o) < -^PAt([0, At])At. (27)

From the relations (26) and (27) we arrive at (20) in the following manner.
Assume that (20) does not hold and define the integer m by

m«|2£l|.
It follows from (26) (with x\ = x0 and x2 — xo +jAx) and from (27) that we have

/(<o,so+jAz) < -i^/»At([0,A<])A<, j = 0,1,2,... ,m.

Add these inequalities to obtain

m
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that is

>
Jo

Moreover, by the definition of p&t we have (k * k * pAt)(At) = Jo fc(,s)d,s and
therefore inequality (20) says that

1At p

( 2 1 )

The conclusion is thus that (20)—once established—will give us an upper bound
for At in terms of Ax. In particular, observe that for unbounded kernels k we
have that At is small compared to Ax, i.e., the level curves of u axe close to being
parallell to the x-axis near (<*,x»).

To establish (20), we define

,x) = J ((G(U) * pA()(s,x + Ax) - (<T(U) * pAt)(«, x)J d5, t> 0, x > 0.

(22)
(Note that if in (22) we have pAt = p, then /(i,x) = -ff+A\u(s,x + Ax) -
t/(s,x))d,s. However, for technical reasons we axe forced to work with the cut-off
resolvent PAt-)

By Theorem 4.(a), / is differentiate with respect to the second variable. This
gives the first equality in the equation below. The second follows by Theorem 4.(c).
To obtain the third, note that Theorem 4.(a) and the growth condition on a in (ii)
imply that for almost every t the function u{t,x) is absolutely continuous.

rt+A<
fz(t, x) = / {(<r(u)x * pAt)(s, x + Ax) - (o{u)x * pAt)(s, x)J ds

/

H-At ^ d

\'ds^k * pAt * U^S'X + A x ) "" 'ds(k * pAt * U ^ 5 ' X V ds

= - / \(k * PAt * v>x)(t + At,y) - (k * pAt * uz)(t,y)J dy.

By (1) we have

ux(t, x) = -h(t, x) / k{t - 6)txt(d5, x), t> 0, x > 0, (24)
•/[o,t]where

0, otherwise.

Note that
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because we assumed that &2 is nonincreasing. Since ki is nonincreasing the second
term is nonpositive and the proof is completed. •

Proof of Theorem 5. First note that the solution u that exists according to Theorem
4 is such that u(t,z) = 1 when t > 0 and x < 0, and that since u{t,x) belongs
to D(A) for almost every t > 0 it follows from the monotonicity properties that
u is continuous in R+ x R~ \ {(0,0)}. Thus we may, without loss of generality,
take u to be continuous from the right in the second variable, that is, u{t,x) =

Assume now that u is discontinuous at some point (t*,rr*) where t* > 0 and
xm > 0. Let

u+ = limsup u(t,x),

t/_ = liminf tz(t,x),
r def W+ - tX-

For every Ax € (0,a?») we define the numbers xo, to? and At by

At = i ^ -

t0 = <» - At.

Observe that t* — 2At > 0, because XQ > 0 and limtjo^(t,xo) = 0 by Theorem
4.(e).

Now let p be the resolvent of first kind of A:, that is p satisfies the equation

s)p(ds) = 1, t > 0 , (19)

(which is the same as (6) when 7 = 0) and define the restriction p^t to [0, At] by

/ k(t -

for each Borel set E C R+ . Recall that p, hence p&t, is a nonnegative measure.
We shall prove that

v ' (k * k

where
^ c<T(a(u+ - 6) -

8(7(1)

and ca is the constant defined in (ii). To throw some light on (20), we observe that
this inequality can be used to yield a more transparent estimate. From (19) we get
after an integration that

fAt

A t < / fc(5)d
Jo
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Lemma 6, Let h > 0, suppose tf> € Z{£>
C(R+;R) is nonnegative, and let /i be

a nonnegative Bnite measure on R+ . Assume that k\ and k2 € ^iocO^*'^) are
nonnegative and nonincreasing on (0, oo) and such that the convolution k\ * k2 is
nondecreasing on (0, h]. If

v(t) d= / kx{t - s)rP(s) I k2(s - r)/z(dr)ds, t > 0,
Jo -/[o,«]

then
v(t) — v(t — h) < 2/x([0,t])||^||x/oo(ro>t])(^i * k2)(h), 0 < h

Proof. Let

def f*

•/r
so that we have

r(<) = / >l(<,r)//(dr), < > 0,

and therefore

t;(t) - v(* - fc) < / A(«, r)^i(dr) + / (A(t, r) - A(< - h,
J(t-h,t] J[o,t-h]

< ^ ( [0 , <]) ( s u p -A(t, r ) + s u p (A(t, r ) - A(t - fc, r ) ) ) , 0 < / i < t .
\r€[t-/i,t] r€[0,t-/i] /

Now it is clear that we have

f*
sup A(t,r) <\\xJ>\\Loo([0ity sup / ki(t — s)k2(s — r)ds

r€[t-A,t] ' r€[t-/i,t] A
), 0 < h< t,

since we assumed that k\ * ̂ 2 was nondecreasing on [0, h]. For the second term we
use the decomposition

A(t, r) — A(t — A, r) = / fci(t — 5)^(^)^2(5 — r)ds
Jt-h

ff~h, x
+ / (fci(< — 5) — ki(t — fe — •s))^(5)^2(^ — r)ds .

Jr

The first term is easy to handle and we get

sup / k\ (t — s)tj)(s)k2 (s — r) ds
r€[0,t-^] «/t-^

< sup ||^||LOO([0)<]) / ki(h — s)k2(t — r — h + s)ds
r€[0,t-h] $ Jo
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where fx\ is a nonnegative Borel measure such that /iA(R+) < 1 and such that when
we define k\ by

4
then we have k\ —• k in X1

1
oc(R"f ;i2) as A j 0. (In [5], p\ was chosen so that the

operator jjkx* is the Yosida approximation of the operator 37^*, but it is easy,
in this case where 7 = 0, to see that it is sufficient that the properties mentioned
above are satisfied.)

If the function r(f, x) is nonnegative, nondecreasing in its first and nonincreasing
in its second variable, and v(£,0) < 1, then the same holds true for the function

Since equation (17) can be solved by iteration, it follows from Lemma 3 that the
solution u\ satisfies (d).

To obtain uniqueness for this extended solution we observe that if (1) is written
in the form (7) (with r replaced by the measure resolvent p if necessary) we can con-
clude that the solutions we have to consider satisfy u — x i - G ̂ k>c(^+! -L1(R;R)).
Let u and v be two such solutions and let w = u — v. By the same argument that
was used in the proof of Lemma 3 we get

/ (<r(ti)r(t, x) - v(v)x(t, x)) sign(u(<, x) - v(t, x)) dx = 0, (18)

for almost every t > 0. On the other hand, since tx;(0,x) = 0 we have for almost
every t > 0

dt Ht-

= / k(t)w(t,x)sign(w(t,x))dx
J

t — s,x) — w(tyx))k'(ds)sign(w(t,x))dx

>k(t) [\w(tJx)\dx+ I (f\w(t-a,x)\6x- I \w(t,x)\ dx\k'{ds)
•/m Act] v i Jm y

(o,t)

We conclude from (1) and (18) that

/ k{t -*) [ \u(s, x) - v(s, x)\ dx ds < 0, t> 0.
Jo JM

It follows that we must have u = v and we have established the uniqueness of the
solution. D

For the proof of Theorem 5 we need the following technical lemma.
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Suppose next that / G X2(R+;R) is such that <?{f) has bounded variation. For
technical reasons we assume for the moment that / is continuous and /(0) = 1.
Let A > 0 and write again u = J\(f) so that we have cr^u)' = A\(f) and (13).

Now the set { x 6 R"1" | cr(u)'(x) ^ 0 } can be written as a union Ujf=1(aj, bj) of
nonoverlapping intervals where J < oo and for all j we have that <r(u)f is strictly
positive or strictly negative on (ctj^bj) and a{u)\aj) = a(t/)'(67) = 0. (Here we
use the assumption that /(0) = 1 so that a(u)'(0) = 0.) If (a>j,bj) is one such
subinterval of (0, oo), then it follows by (13) that f(a,j) = u(aj) and f(bj) = u(67),
or equivalently,

(«(*i» - *(«(«j)| = k(/(*i)) - ^(/(«i))|- (is)

(Note that this result holds in the case where bj; = oo as well, because
limx_>oo/(a0 = limar_Oow(a:) = 0.) Since the intervals are nonoverlapping, it fol-
lows from (15) that

/
i=l Ja

< Vax(a(/);R+), A > 0.

Every / € X1(R+; R) such that <r(/) has bounded variation can be approximated
in £1(R+;R) by functions /„ that are continuous, satisfy /n(0) = 1, and are such
that

Var(<r(/n);R+) < |a(l) - o(f(0))\ + Var(a(/);R+).

Because A\ is Lipschitz continuous we can therefore remove the extra regularity
assumption and from (16) we conclude that

Var(a(/);R+), A > 0.

This concludes the proof. •

Proof of Theorem 4- We see directly that 0 G D(A) and therefore it follows from [5,
Thm. 2] that (9) with 7 = 0 and t; = 0 has a strong solution u, when A is defined
as in Lemma 3. We can extend u as 1 on R+ x R" and then we immediately get
(a) and (c). Once we have established (d) we get (b) as well.

If we can show that u is nondecreasing in its first and nonincreasing in its second
variable, then the claim (e) follows from [5, Cor. 1].

The strong solution u is by the results in [5] obtained as the limit in
X]l

oc(R
+;JD1(R+;R)) as A | 0 of a sequence of functions ux : R+ -> X 1 ^ ; 1 1 )

satisfying the equation

([ \ <>0, (17)
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where J < oo, \CJ\ = 1 for all jf, and where we choose the intervals (a,,bj) so that
u — v does not change sign on (a,-, 6j), and u(aj) — v(a,j) = u(bj) — v(bj) = 0. Thus

II" - »IILI<I+) < I!" - v + A(A(u) - A(v

and so -A is accretive.
It remains to prove that R(I+\A) = L^R+j R) for all A > 0. Let / € CC(R+; R)

be a function with compact support and let A > 0. Then there exists a function y
that is a solution of the equation

/(*) , * > 0 , y(0) = <r(l),

and for large values of the argument y is a monotone function converging to 0.
Thus it follows that y' and ^(y) € /^(R+jR) and if we let u = ^(y) we see that
we have a solution of the equation

u + XA(u) = / . (12)

If now / is an arbitrary function in L1(R+;R) we can approximate it by functions
fn € CC(R+;R) and we can find solutions un of the equation un + XA(un) = fn.
The accretivity implies that

and we see that there is a function u € L1(R+;R) such that un —• u. But then the
functions A(un) converge as well, and since A is closed we conclude that u satisfies
(12). Thus A is m-accretive.

Next let / and g € L^R+jR) be such that f(x) < g(x) and denote, for every
A > 0, J\(f) and J\(g) by u and v, respectively. Thus we know that

u(x) + \<r(u)'(x) = /(x), * > 0 t/(0) = l, (13)

and
V(x) + \<r(v)'(x) = flf(a), x > 0 v(0) = l. (14)

The functions u and v are continuous. Therefore, if u(x) < v(x) does not hold for
all x € R+ , then there is a nonempty interval (a, b) C (0, oo) such that u{a) = v(a)
and u(x) > v(x) for all x G (a, 6). But by (13) and (14) this implies that a(u)'(x) —
a(v)'(x) < 0, for almost every x € (a, &), and a{u){a) = a(v)(a). It follows that
cr(u)(x) — <r(t;)(x) < 0, for all x € (a, 6) which cannot possibly hold because a is
increasing. From this contradiction we conclude that JA(/ ) (2 . ) £ ^A(ff)(^) for every
A > 0 .

Let / € L1(R+;R) be nonnegative and nonincreasing with / (0+) < 1. Let A > 0
be arbitrary. Denoting again J\(f) by u, we obtain equation (13). Using the same
kind of argument as above, we easily conclude that we must have u(x) > f(x)
and it follows from the equation that CT{U) and hence u must be nonnegative and
nonincreasing.
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Then the solution of (1) with uo = X»- ^a* exists according to Theorem 4 is
continuous in R+ x R \ {(0,0)}.

Our proof of Theorem 5 relies on the monotonicity properties of u stated in
(d) of Theorem 4. These properties are obviously not satisfied by solutions cor-
responding to arbitrary initial functions uo. Thus an extension of Theorem 5 to
include arbitrary uo (of bounded variation) is a nontrivial task. Moreover, we have
not—sofar—established the absolute continuity of u. Consequently, the existence
of acceleration waves is unsettled.

The formulation (1) may give a new way to approach the "entropy" solution
of (2). For this approach to be of more general use, we clearly need to extend
Theorem 5 to allow for any UQ £ BV(R) D X2(R) and to examine whether the
resulting solution satisfies some modified entropy inequality.

Let us finally remark that one may view the left side of (1) as the sum of two
maximal monotone mappings, see [3]. However, for our purposes this approach
does not appear productive.

3. PROOFS.

Proof of Lemma S. The definitions of D(A) and A do not change if we replace <r(u)
by a(u) — &(0). Thus we may assume that a(0) = 0.

Denote the inverse function of a by if). Then it follows that

(11)

and we claim on the basis of this equality that A is a closed operator. Suppose that
a(R) = (a, 6) where —oo < a < b < oo and that un —• u and A{un) —> w in X1(R+)
as n —• oo. For each x > 0 we know that the sequence <r(l) + J^A(un)(s)ds
converges and we observe that at those points x where the limit is a or 6 we must
have limn—oo|un(z)| = oo. Thus the measure of these points is 0. At all other
points we can invoke the continuity of if) on (a, 6) and conclude that

J w(s)ds\

But this means that we have

[~w
Jo

and this implies that (when we modify u on a set with measure 0) u 6 D(A) and
A{u) = w. Thus A is closed.

If u and t; G D(A), then cr(u) and <J(V) are continuous and converge toward 0
at infinity. If we define sign($) = 1 when s > 0, sign(s) = — 1 when s < 0 and
sign(0) = 0, then we can write

f°(«r(«)'(*) - *(*)'(*)) sign(u(x) - »(*)) dx
Jo

= E r w w - *(»)'(*))(-i)c' a*=o,
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Lemma 3. Assume that a 6 C(R; R) is strictly increasing. Let

D(A) = { u € LHR^R) I <T(U) G AC(R+;R), U(0) = 1, o{u)' € ^

and
A(u) = <r(ti)\ u € D(A).

Then A is a closed, m-accretive operator in L1(R+;R).
Moreover,

(a) if f and g € L\R+;R) and f(x) *<' g(x) then Jx(f)(x) < Jx(g)(x) for
every A > 0,

(b) if f € X1(R+;R) is nonnegative and nonincreasing with /(0+) < 1, then
J\(f) is nonnegative and nonincreasing, for every A > 0,

(c) every f € I^R+jR) with the property that <r(f) 6 BV(R+;R), belongs to
D(A).

This is essentially the same result as [1, Thm. 3.1], but the fact that we consider
integrable functions on R+, and not on R, forces us to assume that a is strictly
increasing and not merely strictly monotone. For completeness, we give a proof
below.

With Lemma 3 at hand we may apply [5, Thm. 2] (with X = X^R+jR), A as
in Lemma 3, 7 = 0, and v = 0) to (9). This gives the existence of a unique (see [5,
Thm. 1]) strong solution of (10). It is possible to show that this solution has some
desirable monotonicity properties and that one can extend it to a solution of (1).
Thus we get the following result.

Theorem 4. Assume that

(i) k G J L ^ R ^ J R ) is nonnegative and nonincreasing with fc(0+) = 00,
(ii) o € C(R; R) is strictly increasing.

Then there exists a solution u of (1) with no = Xi- such that

(a) x H-* cr(u)(t,x_) is absolutely continuous in R for almost every t > 0,

(b) i •-+ /o &(£— s)(u(s,x)"" Xi- (x)) &s *s absolutely continuous in R + for every
xeR,

(c) equation (1) holds almost everywhere in R+ x R,
(d) t H-» u(£, x) is nondecreasing for each x 6 R and x H-> u(i, x_) is nonincreasing

for each t > 0,
(e) limtjo u(<, x) = 0 for every x > 0 and u(<, x) = 1 for every t>0 and x < 0 .

Moreover, the solution is unique among all solutions that are such that <r(u)x 6

+ and ti - X i - +

In the final step, we show that the solution given by Theorem 4 is continuous.
For this result we are forced to assume that the rate of increase of a is bounded
away from 0. The proof of this step requires some rather detailed estimates.

Theorem 5. Assume that

(i) k e X1
1

OC(R+;R) is nonnegative and nonincreasing with k(0+) = 00,
(ii) a € C(R; R) and there is a constant co > 0 such that cr(v)—a(w) > ca(v—w)

when v > w.
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Theorem 2. Let k € X^R^jR) be nonnegative and nonincreasing on (0, oo)
with A:(0+) = oo. Then the solution u of the problem

a f*
- 0, t > 0, x e R, (8)

has the following properties.

(a) u is continuous on R+ x R \ {(0,0)},
(b) t *-* iz(t, x) is absolutely continuous in R+ for each i G R ,
(c) •£ •"••• u ( t , x } i S absolutely continuous in R for each < > 0,
(d) 1*-> u(£, x) is nondecreasing for each x € R and £ »-» u(t, x) is nonincreasing

for each t > 0,
(e) ti(i,x) > 0 when t > 0 and x € R, that is, the speed of propagation is

in&nite.

In [9] the equation studied is formulated as a linear version of (7) and the initial
condition on R"~ is replaced by a boundary condition on the line x = 0, but in our
opinion, it is more natural to work with (1) than with (7), both in the linear and
the nonlinear case.

Equation (1) (and (5)) may be viewed as a particular case of the (abstract)
equation

X f-A(u(t)) = 0, t > 0 , (9)

considered in [5]. This is the approach taken below in our first result. In (9),
the constant 7 is nonnegative, u : R+ —• X with X a real Banach space, A is an
m-accretive operator in A", and v is the initial value.

2. STATEMENT OF RESULTS.

It turns out that if txo = Xm~ ^ d & 1S increasing, then one can replace (1) where
i G R b y the equation

))d3 + v(u)x(t,z) = O, t>0, s>0,

u(t, 0) = 1, < > 0 , u(0, x) = 0, x > 0.

To analyze (10) we first establish that u »-• <r(u)x, with a domain taking into ac-
count the boundary condition in (10) defines an m-accretive operator in JL 2 (R+ ; R).

Recall that A is an m-accretive operator in a Banach space X, with norm ||«||,
provided

||« - HI < ll« - v + X(A(u) - A(v)) ||, A > 0,
for all u, v € D(A) and provided R(I+ XA) = X for A > 0 . (In general, A can be a
multivalued operator and the definition has to be interpreted in the way that A(u)
stands for an arbitrary element of A(u).) The Yosida approximation is then defined
to be A\ = j(I — J\) where J\ = (I + XA)"1. The operator A\ is a Lipschitz
continuous operator. We denote by D(A) the set { u 6 X \ SUP A > 0 | |AA(I0 | | < 00 }.
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one does have locally existing smooth solutions and globally existing weak solutions.
Moreover, it is proved that under appropriate conditions on the initial data, the
time derivative of a smooth solution blows up in finite time. The structure of
possible shocks is analyzed and the existence of shocks for the case where a(t) is a
decaying exponential is demonstrated. Moreover, it is shown that the integral term
causes the shock strength to decay exponentially to zero in time.

In [8], the more general (different nonlinearities) equation

ut + CT(U)Z + a * \}>{u)x = 0. (4)

is examined. It is shown that first derivatives of locally existing smooth solutions
may blow up in finite time.

In [2], the existence of global weak X°°-solutions of (4) is proved. This is done
by the method of compensated compactness. In both [8] and [2], a € C1(R+).

In general the effort in these papers goes toward demonstrating that solutions of
(3) and (4) retain the features of solutions of (2). This is contrary to our philosophy
as regards the analysis of (1).

To see how (1) is related to equations (3) and (4), consider the equation

7U< + k • ut + cr(u)x = 0, (5)

where 7 > 0, together with the initial condition u(0, x) = UQ{X). If 7 = 0, then this
is the same equation as (1). We claim that (5) with 7 = 1 corresponds to (3), or
to (4) provided o = xp. To see that this claim holds, let r be the resolvent of the
first kind of 760 + &, i.e., the solution of the equation

*yr(t) + I k(t- s)r(s) ds = 1, t> 0.
Jo

(6)

If 7 > 0, then it is clear that such a solution exists. If 7 = 0 and k is nonnegative and
nonincreasing, then one can use the following lemma, [6, Thm. 5.5.5], to conclude
that the resolvent exists.

Lemma 1. Let k G X1
1
OC(R+; R) be nonnegative and nonincreasing on (0,00) and

not identically 0. Then k has a nonnegative (measure) resolvent of the £rst kind.
This resolvent has no discrete part iff k(0+) = 00.

Note that even if fc(0+) = 00 the resolvent p given by this lemma need not be
induced by a locally integrable function, see [4]. Thus, if 7 = 0 then (6) in general
reads L t1 k(t — s)p(ds) = 1, for t > 0. Also observe that in our model case, where

7 = 0 and k(t) = t~Q, for some a € (0,1), one has r(t) = ^ r d - a ) ^ " 1 '
A combination of (5) and (6) yields

u + r*a(u) x =u 0 , (7)

which is thus equivalent to (5) for any 7 > 0. But equation (7) is nothing but (4)
with o = %l>, provided r(0) = 1 and r' = a. On the other hand, r(0) = I/7 and so
the claim follows.

The Riemann problem for the linear version of (7) has been examined in detail
in [9]. In particular, the following theorem, which corresponds to the case 7 = 0
considered in this paper, may be extracted from this work, see [9, Thm. 2, p. 324].



 



FRACTIONAL DERIVATIVES AND SMOOTHING
IN NONLINEAR CONSERVATION LAWS

GUSTAF GRIPENBERG AND STIG-OLOF LONDEN

ABSTRACT. It is shown that the solution of the Riemann problem

£ f *(<-«)(u(«,«)-uo(«))d« + («r(«)).(t,«) = O>
Jo

where tio = x i - > *s continuous when t > 0. Here k is locally integrable, nonnegative,
and nonincreasing on R+ with fc(0+) = oo.

1. INTRODUCTION.

This work treats the Riemann problem for the nonlinear scalar equation

T̂  / k(t-s)(u(s,x)-uo(x))ds + a(u)x(t,x) = O, t> 0, x G R. (1)

We take fc 6 Xioc(R
+;R) to be nonnegative and nonincreasing on (0, oo) with

fc(0+) = oo. In particular, we include the case where -§j(k * u) represents the
fractional derivative of u, i.e., k(t) = <~a where 0 < a < 1. (Here * denotes
convolution with respect to the first variable.) Note that the formulation of (1)
includes the initial condition u(0,:r) = uo(x). We show, under weak assumptions
on a, that the solution u of (1) is continuous.

If k(t) d£ is replaced by the unit point mass £o(d£) at the origin, then (1) reduces
to the nonlinear conservation law

ut + c(u)z = 0. (2)

It is well known that solutions u of (2) in general are discontinuous, i.e., they exhibit
shocks. On the other hand, (2) does have weak solutions existing globally. Our
result shows that if, in (2), ut is replaced by |£-r, where 0 < a < 1, then the
solutions of the Riemann problem are continuous.

Several papers analyze (2) with an integral term added. In [7], the equation

ut + <x(u)x + a * a(u)x = 0, (3)

with t/(i,z) for t < 0 given (and the convolution taken over R with a(t) = 0 when
t < 0), is considered under the assumption that a € C1(R+;R). It is shown that
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