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Abstract . The classical condition for the contact angle of a

phase interface at a container wall is generalized to include

both anisotropy and kinetics. The derivation, which does not

involve an assumption of local equilibrium, is based on a

capillary force balance, a dissipation inequality representing

the second law, and suitable constitutive assumptions.

1. INTRODUCTION

Consider a vessel containing phases a and p separated by a sharp

interface. The classical condition for the contact angle if of the interface at

the container wall is

cos* = g/f, g = g« " gp, (1.1)

where f and gp (p=a,p) are constants with f the free energy of the

interface and gp the free energy of the contact layer between phase p and

the container wall. The condition (1.1) is generally derived from a condition

of local equilibrium, and it seems reasonable to inquire whether there is a

dynamical generalization that accounts for the motion of the contact point

along the container wall.

Our main result is a general contact condition that allows for both

anisotropy and kinetics:

C(eM(u>) = g(w) + uL(e,u>fv)v (1.2)

with |J(O,CA),V) > 0 a kinetic modulus and
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C(e) = f(e)T(e) + f (e)N(e) (1.3)

the capillary force. Here v is the velocity of the contact point along the

container wall, 0 is the normal angle of the interface, co is the normal

angle of the container wall, T(e) and N(e) are the unit tangent and

normal to the interface, and T(co) is the unit tangent to the wall.

(Although our derivation is in IR2, the results apply also to IR3, the

relevant plane being that spanned by the normal to the interface and the

normal to the wall. Precise definitions specifying orientations, etc. are given

in the text.)

If |JL is independent v, then, granted isotropy, we are led to a

dynamical generalization of (1.1):

f cosir = g + [iv, cos^ = Ke)-T(co); (1.4)

interestingly, (1.4) places a limitation on the magnitude of the velocity v.

We show that — granted certain assumptions — the contact condition

(1.2) has two roots

e = 0±(CA),V), co - TT < 6~(co,v) < co < 6+(GO,V) < co + TT. (1.5)

For |JL independent of © these roots can be obtained graphically using a

procedure that is most easily explained for the special case: |JL = O, g(oo)>0.

Plot the Frank diagrams 7 and 9 of f and g (7, for example, is the

graph, in polar coordinates, of r = f(O)~1). Assume that °S is convex and

enclosed by 9 (the "wetting condition"). Then given any angle co,

consider the point x on 9 that corresponds to the angle co. There are

exactly two lines through x that are tangent to 7; the angles O corres-

ponding to these points of tangency are the roots e = 6±(co) of (1.2).

Our derivation of the general condition (1.2) is dynamical from the

outset; it is based on a capillary force balance for the contact point, a

dissipation inequality representing the second law for the restricted

situation under consideration, and suitable constitutive assumptions.
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2. BALANCE OF FORCES

We consider the motion of a two-phase system in a fixed container Q

in K2. We assume that the phases, labelled a and p, are separated by a

sharp interface at each time. Our interest is in the behavior of the system

near a given contact point z(t) of the interface with the container wall

dQ. With this in mind, we choose an arbitrary time t0 and write

JD(r) = Q n{open disc of radius r centered at z(t0)}. (2.1)

We assume there is a sufficiently small r0 such that, for all t in a

sufficiently small neighborhood 7 of t0 , z(t) is the only contact point in

We henceforth confine attention to the time

interval 7 and to behavior within Do.

We assume that the portion 4,(t) of the interface in Do is a

smoothly evolving curve with a time-dependent parametrization whose arc

length s increases away from z(t). In addition, we choose a unit normal

N(x,t) and unit tangent T(x,t) on 4,(t) orientated as in Figure 1.

We also allow for boundary layers (of zero thickness) between the

container wall and each of the phases. Restricting attention to the section

of this wall in Do , we write tp(t), p=oc,p, for the portion of dQnD0

contained in phase p, and we identify these boundary layers with ^ ( t )

and <^(t). We assume that c)QnJD0 is smooth, we choose a paramet-

rization in which arc length a increases as z(t) is traversed from a to p,

and we choose a unit normal t»(x) and unit tangent T(X) to dQnD0 as

in Figure 1.

Behavior within the interface is described by a capillary force C(x,t)

on $,(t) whose tangential and normal components represent surface tension

and surface shear [AG,G1,G2]. Let & with initial and terminal points x1

and x2 be a subcurve of 4,(t). Then -C(x1,t) and C(x2,t) are the

capillary forces exerted on K across c)3£ at x± and x2.

We also allow for capillarity at the container walls described by forces

Ga(x,t) and Gp(x,t) on ta(t) and tp(t), respectively. If B — with initial

and terminal points x± and x2 — is a subcurve of <ra(t), then -G0((x1,t)
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and Ga(x2,t) are the capillary forces exerted on 3B across dS at xx and

x2, and similarly for t^(t).

Finally, we associate with z(t) a force P(t) acting at z(t); P(t)

represents the force exerted by the container on the junction (of the

interface and the boundary layers).

Consider an arbitrary "control volume" D(r) (r<r0). Let

ip(r,t) = i p ( t ) n : D ( r ) ' ( 2 - 2 )

and let z(t) and y(r,t) denote the initial and terminal points of 4,(r,t);

xx(r) and z(t) the initial and terminal points of ta(r,t); z(t) and x2(r)

the initial and terminal points of <rp(r,t). Then, suppressing the argument

t, balance of forces for D(r) takes the form (Figure 2)

C(y(r)) + Gp(x2(r)) - Goc(x1(r)) + P = 0; (2.3)

thus, letting r —* 0, we arrive at a force balance for the contact point:

C - G + P = 0 at (z(t),t), (2.4)

where

G(t) = Ga(z(t),t) - Gp(z(t),t), (2.5)

and where, for example, Gp(z(t),t) represents the limit of Gp(x,t) as

x-*z(t) from tp(t).

3. DISSIPATION INEQUALITY

a. FREE ENERGIES

We write f(x,t)>0 for the free energy, per unit length, of the

interface 4,(t), and, for p=oc,p, we let gp(x,t) > 0 denote the free energy,

per unit length, of the boundary layer tp(t); then, granted the equivalence

of surface tension and free energy,

f = CT, gp = Gp-T. (3.1)
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The total free energy E(r,t) of the interface and boundary layer in a

"control volume" JD(r) is given by

E(r,t) = Jfds + Jg a da + Jg^da, (3.2)
<k(r,t) ia(r,t) <rp(rft)

where here and in what follows we use the notation in the paragraph

containing (2.2). Thus, suppressing the argument t,

{Jfds}- = f(y(r))y-(r).T(y(r)) - f(z)z#-T(z) + J ( . . . . )ds , (3.3)

v/here the integrand ( . . . . ) is unimportant, and where a superposed dot

denotes differentiation with respect to t (cf. [G2], eqt. (2.24)). Similar ex-

pressions apply to the other two integrals in (3.2); these and (3.3) imply

that, as r -> 0,

E'(r) = f(z)[y-(0)-T(z) - z#-T(z)] + gz'-r(z) + o(l), (3.4)

where

g(t) = ga(z(t),t)-g^(z(t),t), (3.5)

and v/here y#(0) denotes the limit of y#(r) as r —* 0.

The theory under consideration is purely mechanical, with the inter-

face driven by bulk free-energy differences. If Fa and Fp , assumed

constant, denote the bulk free energies of a and p, then, letting F(x,t)

denote the piecewise constant function that has the value Fa in phase a

and Fp in phase p, the total bulk energy E(r,t) of D(r) is given by

E(r,t) = jF(x,t)da, (3.6)
JD(r)

The rate E*(r,t) is then the integral over 4,(r) of F a -F p times the normal

velocity of 4,(r), and therefore, as r —• 0,

E'(r,t) = o(l). (3.7)
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b. EXPENDED POWER

The total power expended on D(r) is given by

P(r,t) = C(y(r,t),t)-y(r,t). (3.8)

The forces Goc(x1(r),t) and Gp(x2(r),t) act on dD(r), but do not perform

work, since x^r) and x2(r) do not vary with time; the forces C(z(t),t),

Ga(z(t),t), and Gp(z(t),t) do not enter (3.8), since they act internally to

D(r). Finally, we consider I)(r) as a "control volume" whose boundary

segment dD(r)n3Q lies in the container wall immediately adjacent to the

boundary layer, a consideration that allows us to capture the interaction

between the material inside the container and the container walls. With

this interpretation, the force P(t) acts on c)D(r) at z(t), but performs no

work, since the points of the container are stationary.

c. DISSIPATION INEQUALITY

We base the theory on a dynamical version of the second law, the

dissipation inequality, which requires that the energy of a control volume

JD(r) change at a rate not greater than the power expended on D(r):

E"(rft) + E'(r,t) < P(r,t). (3.9)

Letting r -> 0, we conclude, with the aid of (3.4), (3.7), and (3.8), that

f(z)[y-(0)-T(z) - z--T(z)] + gz#-T(z) < C(z)-y(0), (3.10)

where we have again suppressed the argument t.

We denote by V(t) the normal velocity of the interface at the

contact point, and by v(t) the velocity of the contact point along the

container wall:

V = N(z)-y(0) = N(z)-z\ z- = VT(Z). (3.11)

By (2.5) and (3.5),
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g = 6(z).T(z)f (3.12)

and using (2.4), (3.11), and (3.12), we can reduce the inequality (3.10) to the

simple form

P tanv < 0, (3.13)

which asserts that the tangential force

P t a n = P.T (3.14)

exerted by the container wall on the junction of the interface and the

boundary layers dissipates energy over the velocity of the junction along

the container wall.

Note that, by (3.12), the tangential part (with respect to T) of the

force balance (2.4) yields

C ' T " 8 + Ptan = 0- (3.15)

4. CONSTITUTIVE ASSUMPTIONS

It is convenient to introduce the angle e(t) from the (1,0) axis in [R2

to the normal N(z(t),t) and the angle co(t) from the (1,0) axis to the

normal v(z(t),t), with both angles measured counterclockwise. Then

N(z(t),t) and T(z(t),t) may be considered as functions of e(t):

N(e) = (sine,cose), T(e) = (-cose,sine). (4.1)

Further, using the functional relations (4.1), we can write v(z(t),t) and

T(z(t),t) as

*(z(t),t) « N(oo(t)), T(z(t),t) = T(co(t)). (4.2)

As constitutive assumptions we assume that the free energy of the

interface at the contact point is a function of the normal angle of the

interface, and that the difference (3.5) in the boundary energies of the two
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phases at the contact point is a function of the normal angle of the
container wall:

f = f(e), g = g(co). (4.3)

In addition, we assume that the free energy f(e) generates the capillary
force C through the constitutive equation [AG,G1,G2]

C * C(e) = f(e)T(e) + f(e)N(e). (4.4)

Finally, we assume that the tangential force is a function P t a n = Ptan(e,oo,v)
of e, oo, and the tangential velocity v; granted smoothness, the most
general such relation of this form consistent with the dissipation inequality
(3.13) is

Ptan = -u(e,w,v)v, (4.5)

with (j(©,oo,v) > 0, the kinetic modulus, a constitutive property.
The contact point is constrained to move along the container wall, and

the normal force P*N(oo) is a reaction to this constraint; for that reason
we do not write a constitutive equation for P*N(co), but consider it instead
as determined by the normal component of the force balance (2.4).

5. CONTACT-ANGLE CONDITIONS
Combining the constitutive equations (4.2)-(4.4) with the force balance

(3.15) yields the general contact condition

C(e)-T(oo) = g(oo) + n(e,u>,v)v. (5.1)

In contrast to more classical conditions, (5.1) is dynamical; it furnishes a

condition relating the normal angle of the interface, the normal angle of the

container wall, and the velocity of the contact point along this wall.

Assume that |JL is independent v; then, granted isotropy, f, g, and

U are constants and
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f T(e)-T(co) = g + uv; (5.2)

thus, defining *€[O,TT] as the angle between T(e) and T(oo), so tha t

cosy = T(e)-T(co), siny = N(e)-T(oj), (5.3)

we find tha t

f cos^ = g + IJLV, (5.4)

which is a dynamical counterpart of the classical condition fcosy=g for the
contact angle y. If we assume that |JL > 0 and lgl<f, which is the classical
"wetting condition", we arrive at a limiting condition on the velocity:

Ivl < (f/nXl + e), 8 = Ig/fl. (5.5)

The dynamical condition (5.4) can also be wri t ten in te rms of the
normal velocity V. Indeed, (3.11) yields V = vN(o)»T(co), so tha t

f cosy = g + (jVsiny. (5.6)

Thus, in contrast to v, the normal velocity V is not limited in size; in
fact, for g=0,

V = (f/uOcot*, (5.7)

so tha t V goes from +«> to -«> as y goes from 0 to TT.

6. SOLUTION OF THE GENERAL CONTACT CONDITION
a. SOLUTION WITHOUT KINETICS

Here we restrict attention to the equilibrium condition

C(e).T(u>) = g(co). (6.1)

If g(w) = 0, then (5.3) and (6.1) yield
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tantf = -f(e)/f(e), (6.2)

which results in the classical condition K = TT/2 when f is constant. We

henceforth assume that

g(oo) never vanishes. (6.3)

To find solutions e= 6(oo) of the contact condition (6.1), we introduce

the Frank diagram 7 of the interfacial energy f: 7 is the graph, in polar

coordinates (r,e), of r = f(e)"1. Any point y on 7 thus has the form

y = N(e)/f(e), (6.4)

and, by (4.4),

f(e)2C(e) = -(d/de){N(e)/f(e)}; (6.5)

hence C(o) has the same direction as the tangent line { to If at the

point (6.4). A short computation shows that { is the set of points x that

satisfy

x-QC(e) = 1, (6.6)

where Q is the rotation with QT=N. Our final step is to rewrite (6.1) as

$(e,CA>) := QC(e)-{N(oj)/g(oo)} = 1, (6.7)

which asserts that the point N(oo)/g(co) lie on the tangent I to the Frank

diagram 7 at the angle 0 (Figure 3). Thus if GO is given, we can find all

roots & = 6(oo) of (6.1) by drawing all lines through N(oo) /g(oo); those that

are tangent to 7 give rise to roots of (6.1), and the angles B that

correspond to the tangencies are precisely these roots.

In what follows we will assume that the "wetting condition"
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g(cp) < f(<p) for all angles <p if g > 0 , gs

-g(cp) < f(cp + Ti) for all angles <p if g < 0

is satisfied, so t h a t N(co)/g(oo) is a lways exterior to °S.

Case 1: The Frank diagram 7 is smooth and strictly convex

(curvature bounded away from zero). This, the most stable situation,

results in a corresponding Wulff shape without corners. In this case, for

each oo, there are exactly two tangents to 7 that pass through

N(co) /g(co), and we have exactly two roots

e = 6±(oo) (6.9)

of (6.1). Further, the line through N(oo)/g(oo) and the origin is never

tangent to 7, and always splits 7 into two parts, with each part

containing exactly one root. We may therefore order the roots such that

co - n < 0~(oo) < co < 6+(oo) < oo + IT. (6.10)

If f and g are smooth, then the implicit function theorem may be

used to show that the roots 0±(co) of (6.7) are smooth functions of co.

Indeed, it suffices to show that (d/de)§(e,oo) never vanishes. By (4.4),

C'(e) = [f(e) + f"(e)]N(e); hence (6.7) yields

O/ae)i(e,u>) = -{[f(e) + r(©)]/g(w))T(e).N(cA)). (6.1D

But T(e)-N(w)*0 for e = 6±(co), and f(e) + f"(e)*O, since the curvature of

7 never vanishes (cf. [AG], eqt. (A5)).

Next,

O/Sw)$(e,w) = QC(e)-(d/dco){N(co)/g(co)}, (6.12)

and since QC(e) is normal to cF at 0, while (d/dco){N(co)/g(co)} is

tangent to the locus of N(oo)/g(oo), it follows from the strict convexity of

7 that the roots 0±(co) will be strictly monotone functions of co

provided the locus of N(oo)/g(oo) is also strictly convex. Figure 4 gives

examples in which nonconvexity of this locus yields nonmonotonicity; but
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there are examples in which it does not.

We now drop the assumptions that 7 be convex and smooth. We

assume that f'(©) is piecewise continuous, with jump discontinuities

referred to as sharp spots. We let C(7) denote the convexification of 7

(the boundary of the convex hull of ?); we refer to angles B at which 7

and C(f) coincide as globally stable; and we refer to a tangent I to C(7)

as critical if {nC(7) is a nontrivial line segment or if {nC(7) is a sharp

spot y with $. tangent to one of the two smooth curves of C(7) that

meet at y. Finally, we refer to 7 as regular if ([AG], p. 359):

(i) 7 is strictly convex at globally stable angles;

(ii) the set of globally stable angles contains no isolated angles;

(iii) the critical tangents are finite in number, and each such tangent

intersects °5 at most at two points;

We now look for solutions (6.9) of (6.1) with 0 globally stable. (Such angles

represent normal angles at which the interface is, in some sense, stable (cf.

[AG], §4.3, §8.1; [G2], §7).)

Case 2: The Frank diagram tF is regular, but not convex and

possibly not smooth. As before, for any angle co0 there are exactly two

lines ^(GJQ) that are tangent to C(cF) and pass through N(co0)/g(co0).

Further, the intersections

L±(oo0) = ^(WoJnT (6.13)

(with 7) lie on opposite sides of — and are disjoint from — the line through

N(oo0) /g(co0) and the origin; in fact, we may order these sets such that

L"(co0) C (co0 - TT, oo0), L+(oo0) c (oo0, oo0 + TT). (6.14)

Further, by (iii) in the definition of regularity, each of the sets L±((JO0) is

either a single point or a pair of points.

We will consider only L~(ao0); the discussion for L+(co0) is no

different.

Let L*~(oo0) be a single point and not a sharp spot. Then for to close

to oo0, £~(co) will also meet 7 at a globally stable angle e which

depends smoothly on co. Thus near oo0 we have a smooth functional

relation e = 0~(co).

Let L~(oo0) be a sharp spot y. If £~(co0) is not a critical tangent,
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then for all GO near oo0, i~(co) will also pass through y, so that we

have a functional relation 0 = ©~(oo) near co0 with ©~(co) constant. If

i"(oo0) is a critical tangent, then oo0 is the boundary of an interval on

which 0"(oo) is constant.

Let L~(co0) consist of two points, with ©1 and ©2 ^he corresponding

angles. Then near co0, say for ooc(oo0 - 8, oo0 + e) there is a functional

relation O = 0~(co) that is smooth on (oo0-e,oo0) and on (oo0,co0 + e)

with a jump discontinuity from B1 to 02 (or vice versa) at oo0. Arguing

as above, if ©x is a sharp spot, and if ©x is the limiting value of 0~(co)

at co0 from GO < oo0 , then ©~(co) is constant for GO < co0 sufficiently

close to co0 , and similarly if it is the limiting value from co > co0 . An

analogous assertion applies to ©2.

These results and results analogous to those given in the paragraphs

containing (6.11) and (6.12) may be summarized as follows. For a regular

Frank diagram the functions © = ©±(co) giving the two roots of the

equilibrium condition (6.1) are well defined and smooth except at a finite

number of jump discontinuities, and satisfy (6.10). The jump discontinuities

arise from tangents { to the convexified Frank diagram C(<3r) for which

£fiC(cF) is a nontrivial line segment. The functions ©±(co) are constant on

certain intervals that come from sharp spots. If the locus of N(co)/g(oo) is

convex, then the functions ©±(co) are monotone in co.

b. SOLUTION WITH KINETICS

Consider next the dynamical contact condition (5.1), but, for

convenience, with |j independent of 0:

C(e)-T(co) = g(oo) + |i(oofv)v. (6.15)

This yields, in place of (6.7), the condition

,oo,v) := QC(e)-{N(oo)/g(oo)} = 1,1 , (CA^
16.16J

g(co,v) = g(co) + |JL(CA>,V)V.

The argument of the previous section with g(u>) replaced by g(oo,v)

then establishes — for |v | sufficiently small that g(co,v) is consistent with

(6.8) — the existence of functions © = 0±(co,v) representing the roots of
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(6.15). These functions have properties completely analogous to those

established in the last section.

If (ji depends also on e, then we can use the implicit function

theorem to solve for functions O = 0±(colv), but it seems necessary to

assume that \(d/de)\i(e,oo,\r) vI is sufficiently small.

c. CONTACT CONDITIONS IN IR3 AND IN THE PRESENCE OF BULK DIFFUSION

The contact conditions were derived in IR2 within a purely mech-

anical framework, but they are valid almost without change in IR3 and in

the presence of heat and mass transport in bulk.

When the underlying space is IR3, we simply interpret all forces in

terms of their projections onto the plane spanned by the normals to the

interface and the container wall. In this case, if n.(t) represents the

contact curve between the interface and the container wall, then v

represents the normal velocity of n,(t) on dQ.

We can easily extend the results to situations involving bulk diffusion;

the crucial assumptions are: (i) for control volumes D(r), a force balance

and a dissipation inequality with limiting behavior

C(y(r,t),t) + Gp(x2(r),t) - Ga(x1(r),t) + P(t) + o(l) = 0,

E'(r,t) < P(r,t)

as r -» 0, where E and V have the forms (3.2) and (3.8); (ii) constitutive

equations of the form (4.3)-(4.5), but with constitutive functions allowed to

depend also on the limiting values of bulk fields at the contact point. For

example, the general two-phase Stefan system with heat transport in bulk

and with interfacial energy, entropy, and kinetics — as described in §§15-

17 of [G2] — is consistent with such assumptions. In particular, f and g

are then free energies and the constitutive equations (4.3)-(4.5) include

dependences on the limiting value of the temperature at the contact point.

7. EVOLUTION PROBLEMS

A general evolution equation — relating the normal velocity V, the

curvature K (with K negative when the center of curvature lies in phase
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oc), and the normal angle e at each point of an interface driven by a

constant difference U = F a-F p in bulk energies — is

b(e)V = h(e)K - U (6.18)

[AG,G2], where

h(e) = f(e) + f"(e), (6.19)

while b(e)>0 is a kinetic modulus. When the interface evolves in a con

tainer Q, this equation is supplemented by the contact condition

C(eM(co) = g(co) + |a(e,co,v)v (6.20)

at the intersections of the interface with

In the presence of isotropy with [i independent of v, and for U = 0,

this system reduces to the curve-shortening equation

V = K (6.21)

[Br,Mu] in conjunction with the contact condition

cos* = g + |jv (6.22)

(modulo a suitable scaling).
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Figure 1. The region £>0 of interest. Sign conventions.
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Figure 2. Forces on a control volume D(r).



Locus of N

Figure 3. Graphical solution of the equilibrium condition (6.1) for the
case g > 0.
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Figure 4. An example with e = ©+(oo) not monotone. It is assumed
tha t g > 0.
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