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Abstract

In this paper We obtain an integral ﬁpresentation for the relaxation in BV(S; RP) of the
functional

u— /Q f (z,Vu(:))dz + jz(.)‘p(z,[u](z), v(z))dH N-1(z)

with respect to the BV weak topology-
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the functional

1 Introduction
BV weak topology of

In this paper we study the relaxation F(
defined in S BV(Q;R?) by

u— E(v):= ]ﬂ

) with respect to the

«p(z,{u](z), v(z)dH N-1(2) (1.1

distribut’xonal derivative
) is quasiconvex
nder some

s vue s+ Jo

where [¢)(z) denotes the jumpP ofuatz, T(u) is the jump

i esented by Dv = Vudz+[u)®vdH N_;[E(u)+C(u .

growth and that  grows at most linearly in the second argument, ¥
conditions (see Section 2) we obtain the integral re i

get of u and the

and has lineal
technical continuity

F(v)= jn o(z, Vu(2))dz + jz M
exification of the inf-

e g is the quasiconV
fVp(z,A) = inf{f(z,A-09® b) + ol

(1.2)

wher
z,a,b):

and h is given by
:u € A(ﬁ,u)} ,

h(z(h £» V) = inf { ‘P(zo, ‘.ul(x)’ V(z))dHN—l(z)

zo, VUZ dz +]

[, 1o THDE pra,
. 1 . 1

A(E,v) = {v € SBV;,.,(S;;;R’) 1o(y)=0 fy-v=-"29 v(y)=§ fy-v=3
:c with period one in the directions of Vis--- LUN-1}>

- of RN and Sy is the strip

{V],...,
1
Sy:{yGR": \y-v\<-§ .

g™) denotes the recession fanction of f (resp. g) given by

In the above §o (resp-
f°°(z,A) := limsup !(—z_,_t_él
=00 ]
and o is the positively homogeneous of degree one function defined by
oz, t6:V)

‘PO(Z,f, V) = “LI&, 1
thin the ﬁ'a.mework of the BV

hypotheses on f forces us to work Wi
assumes that there exist constants C, C, such that

CliAll - Cr € f(z:A)
ect to the L} topology.

The lack of 2 coercivity
weak topology- However, if one

then it is possible to relax with resp
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Functionals of the form (1.1) model many problems in Mathematical Physics, for example varia-
tional problems for phase transitions, where the function spaces involved should allow discontinuous,
vector-valued functions u. Minima of the functional E(-), when E(:) is lower semicontinuous, are
obtained via the Direct Methods of the Calculus of Variations. However, for nonconvex problems

E(-) is not lower semicontinuous and so, to obtain the effective energy of the system, one studies
the relaxed functional

F(v) = sup{G(u): G is 1s.c., G < E}.
Since the BV weak topology is not metrizable it turns out (see [12]) that

F(u) = inf {lit._ne ilnf E(u;) : (%i)ier is a net converging to u in the BV weak topology}.

We will restrict ourselves to finding an integral repr;zsentation for
F(u) = inf{l,i‘E*i’xg E(uy) : up — u in BV weak}

since the effective energy can always be obtained by using minimizing sequences.

When no surface energy term is present and assuming an explicit dependence of f on u, Fonseca
and Miiller [19] (see also [5]) obtained the following representation for the relaxation F(-) in BV
of the functional

uo—-/ﬂf(z,u(z),Vu(z))d:c ‘ (1.3)

with respect to the L! topology:
Fu) = /Q £(z,u(z), Vu(z))dz + /2 MK,(z,u-(z),u+(z),u(z))dHN_,(z)+
+ /9 F°(z,u(z), dC(u)).

Their surface energy density K : @ x R? x R? x S¥-1 — [0, +00) is given by

Ky(z,a,b,v) = inf {-/Qu f*(z,v(y),Vv(y))dy tv € A(a,b, u)}

where

Aa,bv) = {v€SBY(SuiR?) oy =aif yov =3, oly) =bify v =3

and v is periodic with period one in the directions of vy,...,vN_1}

and if f does not depend explicitly on u it turns out that Ky(z,a,b,v) = f°(z,(b- a) ® v) (see
[5] and [19], Remark 2.17).

Ambrosio and Braides [3], [4] obtained lower semicontinuity and relaxation results for the func-
tional (1.1) in the scalar case and assuming that ¢ > a > 0 and that f has superlinear growth at
infinity. A similar problem was studied by Bouchitté, Braides and Buttazzo [10] in the isotropic
(radial), scalar case.The lower semicontinuity of the functional (1.1) in the space SBV(:;R?),
under the above assumptions, was generalized by Ambrosio [2] to the vector-valued case.



We recently became aware of a result of Braides and Coscia {11] providing a2 integral represen-
tation of the relaxation with respect to the L! topology of the functional

we [ SN ]Equu](zmv(z»dﬂn-x(z).

No growth condition on f 18 assumed, however ¢ is required to be positively homogeneous of degree
one and locally bounded in N independent directions of RN.

‘We organize the paper as follows; in Section 9 we mention some results on functions of bounded
variation and we state our main results (see Theorems 2.13 and 2.14)- In Section 3 we prove a
glicing lemma that allows us to modify a sequence near the boundary without increasing its total
energy, as well as gome properties of the density fanctions g and h which will be of later use in
the paper. In Section 4, using the blow-up method introduced by Fonseca and Miiller in (18], we
obtain a lower bound for the relaxation F(v) and in Section 5 an upper bound is obtained in the
case where v € SBV(;RP). Assuming that ¢ is positively homogeneous of degree one, in Section
6 we extend our previous results to arbitrary BV functions and we find an explicit formula for the
function h, namely

h(’v("’) = 9°°(z’€ ® V)

Finally in Section 7 we complete the proof of Theorem 2.13 by removing the requirement that ¢
be positively homogeneous of degree one.

We remark that when ¢ = ¥o, i in the homogeneous case, the proof of Theorem 2.13 is
simplified since wWe do not need the blow-up of the Cantor part to relax in BV. ‘

2 Preliminaries. Statement of the Theorem

In what follows Q c RY is an open, bounded set, P, N 2 1,{e1,.--€ N} is the standard orthonormal

. basis of RN and M pxN is the vector space ofal px N real matrices endowed with the norm

(4] = (er(AT AP
Given v € gN-1:={z € RN : lizll = 1} we denote by Qv an open unit cube centered at the
origin with two of its faces pormal to v, i.e

Quv:= {zell": \z-v;\(%,\z»v\ < %,i: 1,...,N-— 1}

for some orthonormal basis of RN {v1,¥2:-- ,VN-],V}.

We briefly recall some facts on functions of bounded variation which will be of later use in this
paper. For more details we refer the reader to Ambrosio, Mortola and Tortorelli [7], Evans and
Gariepy [15], Federer (16], Giusti (21] and Ziemer [25).

Definition 2.1 A function v € L' RP) is said to be of bounded variation, U € BV(S:;RP), if

for alli € {1,....p1 J € {1,...,N} there ezists a Radon measure p;; such that

8¢ _
Jositerge e d = | #e) v

for every ¢ € C(). The distributional derivative Du is the matriz-valued measure with components
Hij-
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Definition 2.2 A set A C Q is said to be of finite perimeter in Q if x4, € BV(Q), where x4
denotes the characteristic function of A. The perimeter of A in Q is defined by

Perg(A) := sup { /A divg(z)dz : 6 € CHEGRY), lidlleo < 1} .

For u € BV(Q;RP) the approzimate upper and lower limit of each component u;, for all i €
{1,...,p}, are given by

v} (z):=inf {t €ER :c% ;}ﬁcn [{ui > t} N B(z,€)] = 0}
and
u; (z) := sup {t €ER: (1_1.% e%ﬁn [{ui < t} N B(z,¢)] = 0}

where B(z,¢) is the open ball centered at x and with radius €. The set £(u) is called the singular
set of u or jump set and is defined by

»
z(v)= {z €EN:u;(z)< u;-"(z)} .
=1
It is well known that ¥(u) is N — 1 rectifiable, i.e.
(-2
L(u)= |J K.VE
n=1
where Hy_1(E) = 0 and K, is a compact subset of a C? hypersurface.
Theorem 2.3 If u € BV(Q; RP) then
i) for Ly a.e. 2 € R
£
lm, - { I ACORNORMORCE z)lw’i-ndy} =0;

€0t € z,€

ii) for Hy_) a.e. z € T(u) there ezists a unit vector v(z) € SN-!, normal to T(u) at z, and
there ezist vectors u~(z),u*(z) € R? such that

1
li / -ut Wti_ld =0,
8. F S erg-eyviape MW Y ENITT
. 1
lim %
€—0* €7 J{yeB(z,€):(y-2)-V(£)<0}
§ii) for HN_y a.e. zo € 2\ Z(u)

lu(y) - v (=)|¥Tdy = 0;

. 1
el-l.% meas(B(zo,¢€)) JB(z0.€)

and for Hy_; a.e. zg € I(u)

lu(z) — u(zo)ldz =0

. 1
(l—l.nol+ mea&(B(-’to, ‘)) B(W ")

)z = ut(z0) + u’(zo).

u(z 2
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We remark that in general (w)* # (u®);. In the following we shall denote by [u)(z) the jump
of u at z defined by _
[W]@@) = v*(2) - v (2)-
If u € BV(Q;RP) then Du may be represented as
Du=Vudz + (st -v7)® vdHn-1|E(v) + C(¥) (2.1)

where Vu is the density of the absolutely continuous part of Du with respect to the N-dimensional
Lebesgue measure LN, Hn-y is the N — 1 dimensional Hausdorfl measure and C(u) is the so-
called Cantor part. The three measures in (2.1) are mutually singular; if H N-1(B) < +oo then
IC(w)(B)=0 and there exists a Borel set E such that Ln(E) =0 and [C(w)I(X) = IC(WI(XNE)
for all Borel sets X C Q, where |u| denotes the total variation measure of p. When C(u) = 0 we
say that u is a special BV function and we write v € SBV(;RP). This space was introduced by
Ambrosio and De Giorgi in (6). The following lower semi-continuity result holds : if un € BV (Q;RP)
converges to u in L* (Q; RP) then

|Dul(@) < limjnf | Dunl(2)-
Lemma 2.4 Letu € BV(Q;RP) and letp € CP(RN) bea nonnegative function such that
. p(z)dz = 1,8uppp = B(0,1), p(z) = p(~z) for every z € RN.
Let po(2) := nNp(nz) and

un(e) 1= (ue o)) = [l uIpa(z = 1)

Then

[ PENT (N < [ con B paNDUN
whenever dist(zo,09) > €+ % and h is a nonnegative Borel function;
ii)
lim 8(Vun(z)) dz = ] 8(Du(z))

n—+00 JB(z0.€) B(z0.€)

for every function @ positively homogeneous of degree one and for every € € (o, dist(zo,0))
such that lDul(BB(zo,e)) =0

#ii) if, in addition, ¥ € L(S2; RP) then for every To € N\ Z(u)

un(20) = u(zo) and (|un — ul # 22 )(z0) = 0

as n — +00.



The proof of this lemma can be found in (7], Lemma 4.5. The next result is proved in [19),
Lemma 2.6.

Lemma 2.8 For Hy_) a.e. zo € (u)

lim / t(z)-u~ - = |ut -u” .
B T IS oot €Quiagy) ju™ () - v (z)|dHN-1(2) = |47 (z0) — u™(20)|

The following version of the Besicovitch Diflerentiation Theorem was proven by Ambrosio and
Dal Maso, [5] Proposition 2.2.

Theorem 2.6 If A and p are Radon measures in §, w2 0, then there ezists a Borel set E C Q)
such that u(E) = 0 and for every z € suppu \ E

A(z + €C)

( )= c-—o+ p(z + €C)

ezists and is finite whenever C is a bounded, convez, open set containing the origin.

We remark that in the above result the exceptional set E does not depend on C. An immediate
consequence is given below.

Theorem 2.7 If u is a nonnegative Radon measure and if f € L}, (RN, u) then

. 1
clilgf m /ﬂ"c 1 f(y) = f(2)ldu(y) =0

for p a.e. z € RV and for every bounded, convez, open set C containing the origin.

Recently, Alberti [1] showed that the density of the Cantor part C(u) is a rank-one matrix (see
also [5]). Taking into consideration Theorem 2.6 we have the following property:

Theorem 2.8 If u € BV(Q; RP) then for |C(u)| a.e. z € Q

— 1 D(u)(z+eX) .. C(u)(z+eX)
Az) = lim S @+ eX) — B IC(@)|(z + €X)

ezists and is a rank-one matriz of norm one, for every convez, open set X containing the origin.

The following two results can be found in [19], Lemma 2.13 and Proposition A.1. They will be
used in Section 4 when we treat the density of F(-) with respect to the Cantor part of the derivative
Du.

Lemma 2.9 Let p be a nonnegative Radon measure on RN. For p a.e. zo € RN and for every

0<t<1 onehas
lim sup (B(-"io,“))
emot’ p(B(zo, ‘))



Proposition 2.10 Let {p;} be a sequence of RP-valued Radon measures on Q such that i ()
— 1 and p() — @ where |a| = 1. Then

s — (e - @)al(@) = -

In Section 5 we will need to approximate get of finite perimeter by polyhedral sets and thus
we will need the following theorem which is proved in 8], Lemma 3.1.

Theorem 2.11 Let A be a subset of such that PerQ(A) < +00. There erists a sequence of
polyhedral sets {Ai} (i.e. Aj are bounded, strongly Lipschitz domains with 8Ax = H,UH2U...UH,
where each H; is @ closed subset of a hyperplane of the type {z € RN:z-vi= a;)}) satisfying the
Jollowing properties:

i) Ln[((Ax Q)\A)U (A\ (AN Q))] — 0 as k —= +0;
i) Perq(Ax) = Perq(A) as k — 400}
#i) Hn-1(0AxN 0)=0;
iv) Ln(Ax) = Ln(A).

Let f: QX MP*N o [0,+00) and ¢ : QxRP xSV - [0,40c) be continuous functions
satisfying the following hypotheses:

o (HO) f(z,-)1s quasiconvex for allz €
o (H1) there exists 2 constant C > 0 such that
0 < f(z,4) < CQ+1IAD
for all (z,A) € ¥ X MPN;
o (H2) for every Zo € Q and for every ¢ > 0 there exists a § > 0 such that

|z - zol < 6 = |f(z0,4) = f(z, )| < €L+ 1iAlD)

for all (z,A) € ¥ X MV,
We recall that the recession function of fis defined by
f*(A) := limsup 1(tA) .
tmtoo ¢

I f(z,-) is quasiconvex and has linear growth (see (H1) above) f>(z,-)isa quasiconvex, positively
homogeneous of degree one function (eee [19]). We assume further that

o (H3) there exist constants ¢,L >0,0<m < 1 such that

e, ay - L8 < e

for every (z,A) € X MP*N with ||A]| = 1 and for all £ > 0 such that t > L;

8



o (H4) there exists a constant C; > 0 such that
0 < ¢(z,&v) < il
for all (z,£,v) € @ x RP x SN-1;
e (H5) for every zo € 2 and for every € > 0 there exists a § > 0 such that
|z = 2o| < 6 = |¢(z0,£,v) — (2, €,v)] < €Ci¢]
for all (z,£,v) € @ x R? x SN-1;
o (H6) ¢ is subadditive i.e. )
(2,61 + £2,v) S H2,61,v) + (2, 6207)
¥(z,v) € @ x SN-1 and V¢,,&, € RP.
We define the positively homogeneous of degree one function

(z,t,v)

po(z, €)= Jim, £

Under hypothesis (H6) it turns out that (see [10] and [9])

W(39£7V) = sup g(_z_,t_f,_l/_).
>0 t

We will also need the following:

o (H7) there exist constants C,l,a > 0 such that

e

for every (z,£,v) € 2 x R? x SN¥-1 with |¢| = 1 and for all ¢ such that ¢t < I.

We remark that quasiconvexity of f (HO) and subadditivity of ¢ (H6) are necessary conditions
for lower semi-continuity of the functional

Jo @ TutNde + [ oo ul(e), e )dHn1(2)

(see Morrey [22], [23] and Ambrosio and Braides [3], [4]). Under assumptions (H1) and (H3) it
turns out that the limsup in the definition of f* is actually a limit. It is an easy consequence of

the definition of the recession function that

Lemma 2.12 Under hypotheses (H1) and (H2) it follows that

i) for all (z,A) € @ x MP*N
0 < f=(z,4) < C||All;



ry € > 0 there ezists a § > 0 such that
§ = |f2(@0, A) -~ I~ (z,A) < CliAll

ii) for every Zo € Q and for eve
|z — 2ol <

for all (z,A) €N X MP*N,
Our goal in this paper is to find an integral representation for the relaxation F(-) in BV(S;R?)
ed on SBV(Q;R?) by

of the functional defin
we E(u)i= [ Sl Vuledz + o o, [0](), ()EN-1()

with respect to the BV weak topology, namely
Flu) = jof, {lmjnf E(ua) : tm € SBV(RiR?), tn = 90 L{(;R?), sup |Dual(®) < +oo} .
ow tn € BV(Q;RP) because any ¢ € BV(Q;RP) can be approached
for which E(vs) =0 and this would imply that F(uv)=0.

Notice that we do not all
homogeneous function of degree one andif pisan R™ —valued

by Cantor-Vitali functions s
In what follows, if gis a positively
we use the notation

Jstan=fos (F5) o

v} form an orthonorm

measure,

Let (€,v) ER? X SN-1 let {v1,.--sUN-1» al basis of RN and define the
class of admissible functions

A(&v) = {v € SBViee(SviR?): v(y
eriod one in the directions of v1,.-- JUN=1}»

. 1 .
y=0ify-v=-3 v(y)=§ify-v=73
and v is periodic with p

where Sy is the strip )
Sy = {yGRN: |y-v|< 5}
and where the boundary values of v are anderstood in the sense
be periodic with period one in the direction of v; if

w(y) = v(y + kvi)

of traces. A function v is said to

for all k € Z,y € Sv-
The main result of

Under hypotheses (H0)-(H7),
h(z, [u)(), v(z))dH N-1(z) + / q ¢=(z,dC(v)) =: F*(u)

this paper is the following

Theorem 2.13 if u € BV(;R?) then

Fy= [ otevuleNde + /EM

where

ooty o= int ][ HeoTee# oo O
u € SBV(Q;R”),u log (2) = Az}
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and
h(zo,€,v) := inf { /Q 1w, Vale))dz + /2 g, PE0 @) MEDdAN-(2)  w € AL, u)} :

In Proposition 6.3 we obtain an explicit formula for the function g involving the inf-convolution
of f and g defined by

fVp0(z0, A) := inf{f(z0, A — a ® b) + ¢o(z0,a,b) : a € R?,b € RV}
Assuming further that ¢ is positively homogeneous of degree one i.e.
o (H8) ¢(z,A£,v) = Ap(z,€,v) for all A > 0 and all (z,£,v) € 2 x R? x SN-?

we show that (cf. Theorem 6.7 and Proposition 7.2)
Theorem 2.14 If f and ¢ satisfy (H0)-(H8) then, for any u € BV(Q; RP),

Flu) = /Q QfVy)(z, Vu(z))dz + /2(“) Q™ (fVe)(z, [u)(z) ® v(z))dHn_1(z) +
+ 02070 (=, g6 @) dCwiE)

where Q(fV ) denotes the quasiconvezification of the inf-convolution of f and .

Remark 2.18 i) Notice that if ¢ = 0 and taking into account (H0), F(u) reduces to the ezpres-
sion that was obtained by Fonseca and Miiller in [19] (see also Ambrosio and Dal Maso [5]),
where it was proven that the relazation in BV (2; RP) of the functional defined in W1-1(Q; RP)

by
- /9 f(z,Vu(z))dz
is given by
F(u) = /Q f(z,Vu(z))dz + ./z o7 142 8 M) dAN () +
+ fo (@ dow).

Since one can approach any u € BV(Q; RP) by a sequence u, € C°(Q;R?)NBV(Q; R?) such
that u, — u € L'(;RP) and |Du,|(R) — |Du|(R) it follows that

F(u) < F(u).

If ¢ > f, which we do not ezpect in general, using the lower semi-continuity of F(-) in
BV(9; RP) we conclude that the above ineguality is actually an equality i.e.

F(u) = F(u).

11



n the surface energy density of F, denoted by

i) We remark also that when f = f(z,u,Vu) the
riant i.e. it is not clear that

K;(z,u',u"',v) (see [19]), may not be translation inva

K,(z,u",u"’,v) = Ky(z,[u],v)-
density of E(-) may be of the form
'p(z'"—"‘+'”) # &(zsl"]’v)'

In this case, the surface energy

which includes both bulk and
of each term separatly. In
ulk term may be altered by

The following example shows that the relaxation of an energy
interfacial energy terms is not equal to the sum of the relaxations
particular, as we will see, the relaxation part corresponding to the b

the initial surface energy.
Example 2.16 Let f(z,A)= Al (2,6v) = alt|. Then if u € BV(Q;RP) we have

i) fora21
£y = [ Il + o AR ICI(@)

i) foro<a<l

Fw)=e { [ + o EARAE) |C(u)|(m] :

Proof. Here f*(z,§® v) = €l
i) By lower semi-continuity of the functional

e (Dul@) = [ V0ol + fo 1)
L(Q;RP) and if a 2 1 one has

\dHN-1(z) + IC()I(D),

€ SBV(Q;RP) such that u, — u in

given tn
[ i + i IR+ ICI(®) <
<timjnf | [ IVun(e)ldz + B uu,.l(z)ldﬂn-l(z)] < imjnf E(un)-
Taking the infimum over all such u, we get

oo + Jo M An-a(e) + OO < F(w).

Conversely, given u € BV(Q;RP) let un € W11(Q; RP) be such that u, = U in L}(;R?) and
E(un) = |Dual() = |\Du|() =

= [ ot + o IENeEN-a() + 1D

12



Then,
F() < imjal Ewa) = [[ IVu(edz + [ u))dHN-(2) + IC@I(@).

ii) Given u, € SBV(;RP) such that u, — u in L(R2;R”), by lower semi-continuity of the
functional

v~ alDul(@) = a [ Jpvuteide + [ tte)amn-(e) + |C(u)|<n)]
and if a < 1 one has

a [ Jolosteide + [ lla@idmnate) + IC(u)l(ﬂ)] <

< alimjsf [ Jooss@le + I[ﬂnl(z)ldﬂn-x(z)] < limjnf E(un).

Taking the infimum over all such u, we get

a [ Jollou@idz + [ sl@)dEn-2() + IC(u)I(ﬂ)] < Fu).

Conversely, given u € BV (2; RP) let u, be a sequence of piecewise constant functions such that
U, — uin L'(Q;R?) and |Du,|(2) = |Du|(R). Then,

< bmint Blu) = fimi )
F() < limjnf B(ua) = Iimjnfe [ [lua)(@)dHx(2)
= alimjnf [Dun|(®) = o| Dul(@) =

=a [ /Q IVu(z)lldz + /2 v 1I@)IdHN-1(2) + IC(u)I(Q)] .
|

Remark 2.17 For simplicity we start by proving Theorems 2.18 and 2.14 under the additional
coercivity hypothesis

o (HY) there ezists a > 0 such that

ing L254) > ol V(z, 4) € 0 x MPR;

ggﬂ-&;ﬁlﬁ > aff| V(z,€,v) € 2 x R? x SN-1,
We shall see in Proposition 7.2 that this hypothesis can be removed.

We divide the proof of Theorem 2.13 into several parts. In the first one, proved in Section 4,
we show that

Fw) 2 [ o Vue)de+ [ b lule),1(@)Hn-1(2) + [ 97 dC(w)
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and in Section 5 we show the reverse inequality for SBV functions. In Section 6 we extend the result
to arbitrary BV functions in the case where ¢ is positively homogeneous of degree one. Assuming
(H8) we prove that h(z,§,v) = g°°(z,£ ® v) and we show that g(z, A) = Q( fV¢0)(z,A) holds even
in the inhomogeneous case. The proof of Theorems 2.13 and 2.14 are obtained in Section 7 and
follow from the previous results.

3 Some Properties of the Density Functions

In this section we prove some properties of the density functions g and A which will be of use in
Sections 4 and 5.

In the following lemma we use the slicing method introduced by Fonseca and Rybka [20] to
modify a sequence near the boundary without increasing its total energy. This lemma will be used
~ in Section 4 to treat the density of F(-) with respect to the absolutely continuous and jump parts
of the derivative Du.

Lemma 8.1 Given u € BV(Q;RP) let n(u,-) be a sequence of measures such that
0 < Gn(u, A) < C(|Dul(A) + Ln(A)) (3.1)

for every Borel set A C Q and for all n. Let u,,v, € SBV(Q;R?) be such that im,_ 4 ||u, —
vnllz1(@;R?) = 0 and sup,, |Du,|(Q) < +00. Then, for every 0 < & < 1 there ezists a subsequence
{vn,} and a sequence {w;} C SBV(Q;RP) such that w; = v,, on 8Q,

Hwe = on,llLr@@iRr) £ ll¥n, = vnllLr(@ir7)
and
liminfGn(un, Q) 2 lﬂ:\g Gni(wi, Q) — Cmeas(Q \ (1-6)Q) -
~Csup|Dvn|(Q\ (1~ 6)Q).

Proof. We follow an argument used in [17]. If necessary by extracting a subsequence, assume
without loss of generality that

l:g‘ilggn(“mQ) = .E{chﬂ(qu) < +00. (3.2)

Define M := sup, |Dun|(Q). Let Qi := Q \ £4159Q, let P, be an integer such that

P
—k_>M

and divide Q; into P; slices of equal width

14



where S*) are of the form 5{" = A,Q\ APQ with 0 <A <1, A = 1= A g we
claim that for every k, n there exists a slice S,-(") such that

1
S IVen(@dz + [ Mual(e)dna(2) < . (33)
Indeed, if this were false there would exist k, n such that for all ¢ € {1,..., P}

1
S WMtz + [ o lsaleNdAn-1(2) 2
and therefore we would obtain

M2 [IVn@lide + [ lsnlE)dEn-(e) 2

Py
ZEUS“)IIW,.(:)H:!: + /sm nz(u,.)"""](’)'w”"(’)]

=1

Py
ZT>M

which is a contradiction. Since we have finitely many slices and infinitely many indices, it is possible
to choose a slice 5(;) belonging to {S,m :i¢=1,...,P,} such that (3.3) with k = 1 is satisfied by a
subsequence {ug)} of {u,}. Since limp—4c0 ||tn = vallL1(@;R») = 0 We may always assume that the
subsequence {us,l)} satisfies

1

L M(2) - vV (2)ld
U, (z) - v,/ (z)ldz < 1
meas(S(y)) gm' (z) - v ()]

for the corresponding subsequence {v,(.l)} of {v,} and for sufficiently large n. Next we choose a
slice §(z) in {S,-m :1=1,..., P2} such that (3.3) with k = 2 is satisfied by a subsequence {ug)} of

{uS;1 )} and so that

1 1
I T @)(z) - v@(z)|dz < &
e Jo, 1400 - o @llde < 3

for the corresponding subsequence {vs.z)} of {vs.l)}. By induction, let S(,,) be a slice in {S,!'") =

1,...,Pn} such that (3.3) with k = m is satisfied by a subsequence {uﬁ"‘)} of {u&"’"”} and so that
1

1 (M) (5 _ yim) 1
Gy Jo, ) - oM@l < (3.4

for the corresponding subsequence {vs."‘)} of {vs.""'l)}. We write Sy = [—ar, ax)¥ \ [-8:, )
where 0 < f; < ax, ax,B; /" }. Let {¢,} be a family of smooth cut-off functions such that
0<¢ <1
¢ =0in Q@ \[-ar,ai]"
¢ = 1in [-5,,8,)"

1
1944 llo= 0 (m)

15



and define N R

o) = (1 - @@+ #(@)P (@)
Notice that wi € SBV(Q;R?) and
w, = o) in Q\ [‘ahak]N

v, = o in BB (3.5)

and in S(x)
Vui(z) = Vol (2) + $u()(Vul(2) - vo(2)) + P(=) - P2) @ Vaua): (6

By (3.3)~3.6) we have

llwn)(@)dHN-1(2) S

N . gy IR <
<14 oupIDeal@\(1-6X); (37)

L, IvaP(@)ldz < 1

j Smnz(w.)

and
() (k) 1
jup (2) — % (z)ldz < e

e )
meas(Sk)) /S

Hence we may write
Gi(wi, Q) = G “y)»("ﬂkaﬁk)N) + Gk vi"’.Q \ ["ahak]N) o (wkas(k)) <

< Gk (“ik),Q) + Ok vﬁk),Q \ [—ag,a,,]N) + G (wk, S(k))

where by (3.1)
G (+0.Q\ [Fawenl”) € 1D (@ \[-aw,anl”) + Cmeas (@\[-ananl") <
< Csup|Duml (Q \(1 - 6)Q) + Cmeas(Q\ (1 - Q)

and by (3.1) and (3.6)-(3.9)
Ok (whs(k)) < C\Dwi (S(g)) + Cmeas (S(,‘)) <

<c ]s“) [Vux()ldz +C j% o T d () + Cmecs (Sw) €
<C .[s(,) ||V,,£'=)(z)\]dz +C ]sm I]Vug‘)(z)“dx + Cmeas (S(k)) +
c YR
Vmeas (s(,,,j /Sw () ob (e + © ls(nnz(w.
< Crup Dol @\ (1= D)+ € 4 Cmeas(@\ (1= 6Q).

Thus the conclusion follows.

)l[w;,](z)ldH RICIRS
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Remark 3.2 Under the conditions of Lemma 8.1, if va = 4o i.e. if ||u, — uol| L(QRrr) — 0 and

if |[Duo|(Q\ (1 - 6)Q) — 0 as § — 0t then considering § = :} and after eztracting a diagonal
subsequence it follows from the above lemma that there ezists a sequence {wi} such that vy = u,
on 80, "u’k - uo”Lx(Q’m) — 0 and

lim inf G (un; Q) 2 lim sup Gp, (wi; Q).
R—+t00 k=400

Consider the density function g as in Theorem 2.13 i.e.

9(z0,4) := inf { jQ f(z0,Vu(z))dz + /E( 1 POEO 8(e) M )EN-1(2) :
u € SBV(Q;RP),u|aq(z) = Az}.
The following proposition establishes some properties of g.

Proposition 3.3 Assume that (H0)-(H7) and (H9) hold. Then
i) assuming that Theorem 2.18 holds for SBV functions, g(z,-) is quasiconvez, for all z € Q;

i)
s(aod) = jaf {timint [ [ f(z0, Vun(a))dz+

N =400

+-/Qn2(u,.) wo(Zo, [“n](z)’un(z))dHN—l(z)] :
Un € SBV(Q;R), 8, — Az in LY(Q;R")} =: g°(20, 4).
Proof. i) We show that if u,, u € WH1(Q; RP) are such that u, — u in W(Q; RP) then

/Q o(z, Vu(z))dz < limjnf /ﬂ o(z, Vun(z))dz.

Since quasiconvexity is a necessary condition for lower semi-continuity this proves that g(z,-) is
quasiconvex. We remark that quasiconvexity of g is not needed to prove Theorem 2.13 for SBV
functions, indeed it will only be used in Section 6 when we extend our relaxation result to arbitrary
BV functions (cf. Lemma 6.5 and Propositions 6.3 and 6.4). Thus, as u, € W1(Q; R?) we may
apply Theorem 2.13 to u, to obtain v, € SBV(Q2; RP) such that

it — tnll <1
n L’(Q;R)) n

and 1
7 (ua) - Eon)| < -

Then v, — u in L}(Q;R?), by (H9) sup,, |Dv,|(R) < +0oc and so
Jj, 9tz Vu(e))dz = F(w) < lmjnf E(vn) =

= 1313123' F(up) = ligm/slg(z,Vu,,(z))dz.

17



ii) For any Borel set BC Q and z0 € Q let
Geu(i B) = [, flzo, Tul@)iz + jmmw(zo,[u](z),v(z»aHN-,(:).

we may use the previous

u,, € SBV(Q;RP) such that un = Az in L}(Q;RP)
€ SBV(Q;RP) such that

Given any sequence
2 to modify it in order to obtain a sequence Wn

Jemma and Remark 3
walsg(z) = Az and
)<

lim sup [jaf(to.vwn(f))dz + jQ . colz0, [0a)(2)s Bn (2N 12

n—+00
ctimat [ [ fensTonte + [ g ool gl

It follows that

g(zo, A)< 1313.},%5 {«/0 f(xo,Vu,.(z))dz + /an(“n) wo(Zo; ["n](x)v Vn(z))dHN—l(T)]

for any such un and so
g(z0,A) < 9°(2o0, A).

Conversely, assume that

z) = Az. Then we may write un(z) = Az + @,(z) Where
RV with period one and define

¢o(zo, [un)(2), vn(=))dH~-x(z)]

where u, € SBV(Q;R?) and unlog(
dalog = 0. Extend ¢, periodically to

Unm(z) = AT+ -'lzd»n(m:).

Then
ﬁ'l‘nli'in ||u,;,,n - At”u QR = 0 (3.10)

since, for n fixed, by periodicity of ¢, and the Riemann-Lebesgue Lemma

tim [ I6a(me)lds = J, n(eids.

On the other hand, since S(tnm) = -‘“:E-,"i'ﬁ, by the periodicity of ¢y, and since o is positively

homogeneous of degree one we have
|, 1(zor Vumm(e)de = J, Stz A+ Véo(mad =

Ao Ll R
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and

'/an(ﬂn,n) 'PO(zo, [un,m](z), "u.m(z))dﬂ)v_l(z) =

= '/Qn&.%ﬂl %(zo’ "ln[¢nl(m)’ Vn(mz))dHN_l (z) =
= ;llﬁ -/"‘Qﬁz(u..) W(zm [¢n](2)1 ”n(z))dHN-l(z) =

= JonSeny P20 (W)@ w(@)AH N1 (2).

Hence, choosing a diagonalizing sequence in (3.10), we obtain a sequence {v;} such that v, — Az
in L}(Q;RP) and

9'(z0,4) < lim [ Jo ootz + [ o golzo (o), m(z))dHN-l(x)] -

n—+400

lim [ /Q f(fo,Vun(z))dz+ /Q Sen) vo(Zo, [u,.](z),u,(z))dHN-,(z)] = g(zo, A).

Proposition 3.4 Under hypotheses (H0)-(H7) and (H9) it follows that

goo(zOsA) = inf {'/Q f“(zo,Vu(z))dz + ~/an(u) %(30,[u](z)’”(x))dHN—l(z) :
u € SBV(Q;R”), ulsq(z) = Az} =: ¥(z0, A)

Proof. Let w, € SBV(Q;RP) be such that w,(z) = Az on 8Q and

¥(z9,A) = lim [/Q f“(zo,Vw,.(z))dz+/QnE(w )cpo(zo,[wn](z),u,,(:c))dHN-l('z)] .

Ne=t+400

Assume that
¢®(s0,4) = lim HE0ind)

n—400 tn

where t, — +00. Then, as t,wy|sg(z) = tn Az, we have by positive homogeneity of ¢
9“(30’ A) S

< limsup -}— [./Q f(zo,t..Vw,.(z))dz + an(%) %(30,1,,['9.,](1‘), Vn(z))dHN-l(z)] <

n—too tn

< limsup [ /Q T°(z0, Vwn(z))dz + /Q (o) ¥o(Zo, [wa)(2), Vn(z))dHN-l(-T)] +

n—r400

+timenp [ [ X fzo,taVun(e) - (a0, Vo ())dz)

fn—s$00
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— 400 it follows that

By (H3) and since tn
.“-“ F(20,1nVn(z)) j“(zo,Vw"(z))d:] =0

lim sup
n—s+00
so we conclude that
¢™(20,A) < ¥(20,A)-
Conversely, given t > OletveES BV(Q;RP) be such that vleg(z) = tAr and
(3.11)

g(zo0,tA) 2 -[Q f(z0, Vo(z))dz + ]anm cpo(zo,[v](z),v(z))dH N-1(z) — €t

homogeneous of degree one

Ll(e), @ NeBN-1 ()~ €~

Then, using the fact that o is positively

-‘L(_’ﬂt'_‘i‘l > /Q f“(zo,%Vv(z))dz + /Q nE(v)vo(zo,
- jq \%_f(:co,Vv(::)) - f”(zoo %vv(z))‘dz

where by (H3), (H1) and Holder’s inequality

L \%f(zO,VV(z)) - f°°(20, %Vv(x))\ dz <
..C.- 1-m -C—
s jan{uvt:(s)un} V@It o ouensty ¢ 1+ IVe(2)lDdz <

< _f- ( jq ||Vv(::)|\dz)l-m + f’;-

However, by (H9) and (3.11)
([ ietons) T £ CGtenir+ T

‘and
N im CT( /Q |le(z)||dz) - 0.

t=s <00
(z) = Az,
g% (z0,A) = lim sup g (30; tA)

t—>4-00

> limsup [ jQ £ (@0, Vol + ]Q o

=400

> ¥(z0,A) - €.
follows by letting € = o+.
» hypotheses (H0)-(H5) and (H9) the following hold:

Therefore, since ¥laQ

2

oo el AN = €2

The result now

Proposition 3.5 Unde
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$) h(z,£,v) < g%°(z,€® v), for all (3,61’) € 2 x R? x SN-I:'

i) let up be given by
_J) € ifz-v>0
“(’)"{o ifz-v<0,

then

n—++400

h(zo,§,v) = ( {hmmf[/ F=(z0, Vuq(z))dz+

+ /Q xmzm)'P(:l:o,[u'.](:l:), "n(‘))dHN-x(z)] .
tn € SBV(QuiRP), ¥n = v in LH(QuiR?)} =: h*(20,6,v).

Proof. i) It is well known that F(-) is lower semi-continuous in BV for the L! topology.
Indeed, if v,,v € BV(Q;RP) are such that v, — v in L}(Q;RP) then for every n there exists

i, € SBV(S; RP) such that
_ 1
& - ”n”LI(Q;m) < Py

and 1
I (on) - E(@)| < 5

Then @, — v in L'(Q;RP) and so
F(+) < Emiaf E(tn) = bmjnf F().

Now consider an arbitrary u € BV(Q; RP?). By Fonseca and Miiller’s result (see [19] and also [5])
let u, € W1(Q; RP) be such that u, = u in L(;R?) and

JosvueNde + [ o= ue) @ Me)dHN-1(2) + [ 6=(2dC0w) =
= "_l_i.ar_lw /Q 9(z,Vuy(z))dz = ”11'5_1“ F(up).
Then, by lower semi-continuity of F(-), we have
F) = [ oz Vu(@)z + [ o Mo @) AR (2) + Jo=@dcw) <
limjaf F(un) = [ 9(z, Vu(@)iz + /EM 0=(z,[4)(=) @ v(=)dAN-1(2) + [ =(2,dC(w).

Given the arbitrariness of u we conclude that
h(z,&,v) < g%(z,E V).
ii) For any Borel set B C Qv and zo €  let

Gey(u; B) = /B £ (20, Vu(z))dz + /B 5 PE @) NN ).
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L}(Qu; R?) we may use Lemma

uy, € SBV(Qv; RP?) such that u, — uoin
btain a sequence wa € A(6:V) such that

Then, given any sequence
dify it in order to © t
)v(zo,lwd(z).m(z))«iﬂn-l(z)} <

3.1 and Remark 3.2 to mo

li?.i‘:g {-/Qy £ (@0, Veon(2)dz + .loyn).‘.(w,.
< lim jnf [ _/ - £ (20, Vun(2))dz + ij nz(“)'P(to,[“n](’)'vn(z))dHN—l(z)] .

It follows that
h(zOyfv V) S
< limjnf ,Vun(z))dz , ,va(z))dHN-1(2
= u’f-}-‘é[ oy £ (20, Vun(z))dz + QynE(un)‘P(zo [un)(2)s¥n(2))AEN 1( )]
for any such tn and so
h(’Os{vV) < h.(z()sfay)'

Conversely, assume that
h(zOy ev V) =
= lim j zo, Vun(2z))az +
{ o 1220, Vun(@NE t | o u)

Nt 400

) vn<z))dH~-1(z)]

and denote Qu by Q. Since un is

u, € A(§,v). For simplicity of potation we set ¥ = €N
dically with period one to the strip

the directions of €1,..-1EN=1 we may extend it perio
and define

where
periodic in
Sen (see Section 2)

0 ifzn <-—3m°

3 if zn > 5‘;
Unm(2) = un(mz) if lznl < 71@
ty of un(-,2 ~) and the Riemann-Lebesgue Lemma

={z€Q:2N= 0}, by periodici

Then, with Q' :
Lim lim l[tnm — SollL1@:R?)

=0

since
].’I; /Q. |un(mz) - vo(2)ldz =
== /}% ]Q, lua(ma'st) — vo(2)lda'dt ——0-

On the other hand,
J 57 (0 Tenm(ee = [ "; M

= j £ (20, Vin(mz', )ds'dt ——
Q m = 400

2o, mVug(mz))dz =

o 1°(z0, Vin(2))dz
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and
(20, [Un,m)(2), Vam(z))dHN-1(2) =

@(Zo, [un)(mz),va(mz))dHN_3(z) =

~/an(u.,m)

= {:eqzlznk,l,;}n&g.nl

1
= 7T Jontienic $3nT(un) (20, [un)(z),Va(z))dHN-1(2) =

= JonZen) #(z0, [un)(2), va(2))dH N -1(2)

where we have used the periodicity of u, in the first N — 1 variables. Thus, by a diagonalizing
procedure, we obtain a sequence Wy, = U, m(n) Such that w, — g in L(Q;R”) and

h*(z0,€,v) < limjn { Jo o vtz + [ )v(zo,[w..l(z).u..(x))dHN-l(z)] =

= lim [/Q f®(z0, Vun(z))dz +/Qn2(%)¢(zo,[u,.](z), v,.(z))dHN_l(:r)] = h(zo,£,v).

N—+<400
a

The following proposition will be used in Section 5 to obtain an upper bound for the density of
F(-) with respect to the jump part of the derivative Du.

Proposition 3.6 Under hypotheses (H0)-(H6) and (H9) the following hold:

i) h(z,&,v) < CIEl, for all (z,€,v) € @ x R? x SN-1;
i) for every zo € 2 and every € > 0 there ezists a 6§ > 0 such that

lz = 20| < & = [h(20,§,v) = h(z,§,v)| < €C(1 + [£])

Jor all (z,£,v) € 2 x R? x SN-1;
iii) for all (z,£,v), (z,€,v) € 2 x R? x SN-1

lh(z,&,v) - h(z,€',v)| < Cl§ - €'|;
iv) h is upper semi-continuous in @ x RP x SN-1,
Proof. i) Let up be defined as

_) € ifz-v>0
"°(’)"{o ifz-v<0.

Then uo € A(£,v), Vuo = 0 a.e. and Z(uo) = {z € Qv : z - v = 0}. Thus, by (H4)
h(z,§,v) < p(z,§,v)HN-1(Qv N E(u)) < CI¢l.
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ii) Fix 2o € 2 and € > 0. By Lemma 2.12 ii) and (H5) choose 6 > 0 such that |z - zo| < 6 implies
1% (200 A) - 12(2, A)] € €CIIAl (3.12)

and
‘?(309 £' V) - ?(zaf'v)l -<- ¢C|€| (3-13)
For all n € N choose u, € A(€,v) such that

[, o Tueis s [ g He (un)(8), v (NEEN-2() €
< h(zon V) + =
By (H9) and part i) it follows that

[ Wun(a)dz < haob) 1 <o+
Qv

and
L Inal@EN-1(2) € Manb)+2 < o1+ 1D
Quna(un
Hence, if |z — Zo| < 6, bY (3.12) and (3.13) we have

h(z,f,v) - h(xoseou) S
< [ 1= Tun) = SR Vel

¥ (ol [an) () va3)) — (20, )@ v AR () -

QunZ(un)

1
< Cl\Vu, d Cllun dHN- =<
< [ cCllvu@ldy+ [, gy ClenldFna) + 5 <
cC+IED+

Letting n — +00 We obtain

h(z,€,v) — B(z0,6:¥) < e« (1+1€D-

In a similar way we get
h(zo,§s v)- h(zata") <eC(1+4 K€l -

ili) Letu € A(€,v),let G bes smooth cut-off function such that0< 0 <1, 6(t) =0 ift>3,0(1)=
1ift < % and define

u(2z) iflz-vl <}
u(z):= 0(3-v)€+(l-—0(z-v))£' if-}(z-v(%
(] if —y<z-v<—§



Then u* € A(¢,v) and so0
b < [ 1@V @+ [ el [N ) ()
Qu QunI(v*)
where, by Lemma 2.12 i) and periodicity of u

o e ey= [ [ 5G9+

+/{}<y-u<§} Q) 2@¢-€)e ?'(v -v)v)dy +

+‘/{_§<"v<*} Qbfw(zao)dys

2 ; " _
<5 forciy /,% (2, Vu(z))dz + Cl¢ - €] =

= / £*(z,Vu(z))dz + Cl¢ - €|
Qv

and
QnE(*) (2, [v)(¥), v (¥))dEN-1(y) =
= Jiceayiemicing s P AN NN () =
N % /{:ezQu:b-vkg-}nE(u) Pz, [u)(y), (y))dHEN 1 (y) =
" Jaynzw (2, [u)(y), v(¥))dHN-1(¥)
so that

h(z,¢',v) <
< [, roEvaMy+ [ o ele ) )dHN-1(0) + Cle = €1
Taking the infimum over all such u € A(§,v) we conclude that
h(z,€',v) < h(z,€,v) + ClE - €|
and in a similar way we can show that
h(z,&v) < h(z,€',v) + ClE - €.

iv) By iii) it suffices to show that (z,v) ~ h(z,§,v) is upper semi-continuous, for every £ € R”. It
is clear that

h(z,&,v) =
= inf { J e TR+ [ e 400 sMEN-A )

R is a rotation, Reny = v, u € A(§,en)}.
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Let (Zn:¥n) = (z,v) and choose & rotation R such that Ren = v. Given € > 0 let ue € A(§,en)

be such that

\h(39€' v)-— jQ f”(z,Vuc(y)RT)dy -
ty and growth condition) we have

jqn}:‘,(“) oz '["d(V),ue(v))dHN-x(v)\ <e. (314)

As f°(z,°) s Lipschitz (by quasiconvexi
\f2(z,4) - 72 B < cliA - Bll- (3.15)
Let K be a compact subset of  containing 3 neighbourhood of z and for fixed € > 0, choose § > 0
such that Lemma 2.12 ii) and (H5) are satisfied uniformly in Kie.
gy €K ly-vI<o= 1=, 4) - £~ S C||All, VA € MmN (3.16)
and for all (£, 1) € RP X SN-1,
(3.17)

E.p) - ‘P(Vlvfa pl £ eCl¢l.

vy €K, ly=y1<8= e
3.17), by (H9) and for n large enou

Choosing rotations R, such that RaeN = Vn by (3.14) gh, it
follows that

\/q £(a, VR v+ /anz(ue)

- oo T -
jqf (2 V() RE )Y anEM

o(z, [ue)(¥)s pe(y))dHN-1(¥)-

P(Zmr [ue)(¥), BeW))AH N-1(9)] < CelDuel(@) < Ce.

Hence,
h(szavu)s
5] w(z,, Vue(y)RY +]
Qf ( ()R )dy anSse)

50c+/ co(z, Vue(y)RT)d +/
Qf ( ¢(y)R" )dy onSse)

<Ce+ h(z,§,v)
¢ — 0%, we conclude that

i 50p h(En E¥n) < B(E:E0):

‘P(-"m[“e](!l)aPc(!l))dHN-l(y) <

‘P(-"a[“c](!l)»#c(!l))dHN-l(!l) <

and so, letting

n—+400
a
The following truncation lemma will be used in the next two sections to control the error terms
This result was obtained in collaboration with G.

that appear in estimates involving ¢ and @o-
Alberti and L. Ambrosio during the meeting on

held at Cortona on May 2
that was introduced by De

»Calculus of Variations and Nonlinear Elasticity”

4-28, 1993, and its proof relies on a type of averaging slicing method
Giorgi. The idea of truncating on the range rather than on the domain
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is also due to De Giorgi and this argument has been used recently by P. Celada and G. Dal Maso
(see [13]).

We recall that if u € BV(2; RP)NL®(Q; RP) then £(u) is the complement of the set of Lebesgue
points of u i.e. zo ¢ I(u) if and only if there exists g € R” such that

i ]( - goldz = 0.
&, T lu@) - wl

As it turns out, yo is unique and we set

4(zo) := o,

the approzimate limit of u at zo. We recall also that (see Vol'pert [24]) if u € BV(§2; RP) (respec-
tively u € SBV(Q;RP)) and ¢ € C§°(R?; R™) then pou € BV(2; R™) (resp. wou € SBV(S; R™),
D(pou) = Dp(@)Du on N\ £(u), E(p o u) C (u) and (¢ o u)*(z) = p(u*(z)). This result was
generalized by Ambrosio and Dal Maso to the case where ¢ is Lipschitz.

In the following B(S2) denotes the set of all Borel subsets of .

Lemma 3.7 Let G : BV(Q;RP) x B(2) — [0,400] (resp. G : SBV(Q;RP) x B(Q) — [0,+0¢])
satisfy
i) G(u,-) is a Borel measure for every u € BV(2; R?) (resp. u € SBV(Q; RP));

i) G(u,B) = G(v, B) for every B € B(?) and every u,v € BV(Q; RP) (resp. u,v € SBV(Q;RP))
such that Du|B = Dv|B;

#ii)) G(u,B) < Co(meas(B) + |Du|(B)) for every B € B() and every v € BV(Q;RP) (resp.
u € SBV(Q;RP)).

Let ug € BV(;RP) N L®(RP). Then for every € > 0 and every R > 0 there ezists C =
C(e, R,Co, ||uo||eo) such that for every u € BV(Q;RP) (resp. u € SBV(Q; RP)) with ||ul|py < R
there ezists ue € BV(Q; R?) N L=(Q; RP) satisfying

@) |luello < C;

b) G(ue, ) < G(u, M) +¢;

c) llue - “OHLI(Q;m) < |lu- “0”1,1((2;10)»'

d) |Duel(Q) < [Du|(D).

Proof. Fix k € N and let ¢ € {),...,k} where A € N is given by A = [In || uo ||oo] + 1 ([1]
denotes the integer part of t). Let ¢; € Cg°(RP; RP) satisfy

z, |z| < €
‘P‘(z) = { 0: |zl > el'+l’

lIVeillo < 1 and |pi(z)| < min{¢’, |z]}. We define u; € BV(Q;R?) N L°(Q;RP) (resp. u; €

SBV(Q; R?) n L2(2; R?)) by
ui(z) := wi(u(z))-
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Clearly |ltilleo < ¢ arnd as ||[Veillo £ 1 We conclude that
|Duil() < |Dul($)-
On the other hand, by choice of \ it follows that luo(z)l £ lluolleo < ¢ and 50 uo(7) = @i(uo(z))-

Therefore,
lpi(u(z)) — pi(uo(2))ldz <

(i = voll s @R2) = j{ m«‘,}h(z) - uo(z)ldz + /{ e

< |lu = vollr (R>)
equal to 1. Let

where we have used the fact that ¢; has Lipschitz constant Jess than or

Q,:={z€N: lu= (=), lut(@) < e}.

Because §(u;,-) is a measure We have
G(ui, ) < G(ui, ) + G(ui, 2\ )
where, by locality,
G, @ \ E(w)) = 6w, i\ (i)
since Du; (% \ Z(w)) = Di(i(2))Dul( \ E(w)) = Du| (S \ E(u:))- Also,
G(ui, N () = 6w, &N T(ui))

N £(u) and so ei(vt(2)) = %(z). Hence,

because if z € U N T(u;) then 2 € Q;
G(ui,R) < G(u, W) + G(ui, 2\ ) < G(u, Q) + G(ui, 2\ Q). (3.18)
On the other hand
G(ui, 2\ Q) < Co (meas(S \ Q)+ |Duil( \ %)) (3.19)

where, by Chebyshev’s inequality and since Ln(E(w) =0,
(Q\Q:) = meas[(R\ )\ £(u)] = meas ({z € 2: [8(2)] 2 e}) < ﬂ'ﬁﬂb—é‘m < g (3.20)

meas

and

k k
Y IDul(@\ ) < Y |Duil({e’ < l8(2)l < e+1}\Z(v) +
i=A

i=A
|u}(2) - v7 (@)|dAN-(2) S

k
%

:‘; {reTWmaxiut(#)2e D)
k
< |Dul(Q\Z ] Ha) - :
< |Du|(@\ (u))+£ (éz(')wh*(,)‘zé}nwlu. (2) - o7 (@A) (2
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But,

“‘-.-2 - tu(2MWdHN_1(2) =
g-/{;ez(s)mxh*(,)lzei}nz(w)' '( ) |( )I N-1(2z)

:5/

u}t(z) - w7 (z)|dHN-1(z) + 3.22)
{‘EE(%)W“<|u-(z)|<|.+(,)|<ee+:)l (=) (2)|ldHN-1(2) (

¥ .-=E,\‘/{’52(~)=e‘<l~+(=)|<|--(=)|<e-'+') Iuf (2) = 47 (2)ldHN-1(2) + (3.23)
¥ E\/{:ez(u)w‘s|u+(z)|=|u-(=)|<e-+a} luf () - w7 (2)ldHN-1(2) + (3.24)
¥ Z‘:,\ /{seE(u)au-(zn«e«in5...+(,m luf (z) - w7 (z)|ldHN-1(2) + (3.25)
* ,.__Z,\ -/{362('4)4"*(2)!«‘<e‘*!5|u-(,)|} v} () - v (2)ldHN-2(2) + (3.26)
¥ E\ -/{sGZ(u):e-‘gu-(,)k,iu <t (@)]) luf (z) - w7 (2)ldAN-1(z) + (3.27)

Hz) - w7 (z)|dHNn-1(2) + 3.28

+§ /{ s Tt <lut (o)< < <lum()]) luf (z) = u; (z)ldHN-1(2) (3.28)
+ / u}(z) — v (z)|[dHN-1(z) + 3.29
E\ (D@t @iiceny 1 ) T W EIAN() (3:20)
luf (z) — w7 (2)ldHN-1(2). (3.30)

+3 e
E\ {zeD(u):dut (2)ISe <lu—(2)I< e}

where each z € £(u) is accounted for in only one of the above sums and all of these, except for (3.25)
and (3.26), have only one term. In the case of sum (3.25) we must count how many i € {},....k}
satisfy |u~(z)| < €' < e*! < |u*(z)|. Solving with respect to i we conclude that this sum has at

most In :: = terms and so, for these z, we have

): @) - 4 @)l = Lo v @)l < @)l 12N ¢
A @)
5 Iu*'(z)l lu=(2)] £ le*(z) - v (2)I.
Likewise for (3.26), we conclude that there are at most In {:‘T:-EH terms and for these z
k k
Y lut(@) = w7 (@) = X lut(@)] < lut(z) - u(2)l.
i=A =2
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has Lipschitz constant less than or equal to 1, we obtain

Therefore, using the fact that ¢

|u} (z) - v (@)dHN1(2) /2(-.) it (2) - v (AN 1(2)

k
g /{:eZ(u) maxlu ()2 IND(vi)
s from (3.18)—(3.21) it follows that
k
36w ®) € (k= A+ 16N+

i=A
k
+Co (RE% +|Du|(Q\ E(v)) + ./2(“) lut(z) - v (z)ldH N_l(z)) <

<(k-A2+ 1)6(x,9) + CoR (1 + ;x_—l-(le—_'l—))

and thus, by choice of A,

1 k ) CoR 1
o1 2 e SO ol 1+ o= D):

(3.31)

Choose k large enough 80 that
(3.32)

CoR 1 €
fin {juolleo) o lluolleo(e = 1)) <3

k-
es that there exists i € {},... ,k} such that

G(ui, ) < G(u, ) +e€

It is clear that (3.31) impli

with ||uilleo < ¢ < e where k is given by (3.32).
]

r F(u) when v € BV(§; RP)
Theorem 2.13 namely that
@) E)HNAR) + [ 87 dC)

4 A Lower Bound fo
In this section we prove the first part of
F)2 [, oz Vul)dz + k R

RP). It is clear that the above inequality is equivalent to proving

where u € BV(;
u € BV(Q;RP) and suppose

Theorem 4.1 Let (H0)-(H7) and (HY) hold, let un € SBV(Q;RP),
that up, — u in BV(;R?). Then

it | o e+ s ot ) N1 (5) 2
> [ otz vutene + fo WD dEN-AE) ¥ J 5 dcw.
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The proof of Theorem 4.1 makes use of Lemma 3.7 therefore we must ensure that its hypotheses
are satisfied. We start by proving that, defining

n—++400

Fuid) = jof {uminf [ [ e+ [ o v(z,[u,.l(z).u..(z))dﬂn-l(z)] :
: U € SBV(A;R?), u, — u in L'(4;RP), sup |Dun|(4) < +co}

where A C Q is an open set and u € BV(Q; R?), then F(u; A) is a variational functional with
respect to the L! topology i.e.

Proposition 4.2 Under hypotheses (H1) and (H{) the following hold:

i) F(-; A) is local, i.e. F(u;A) = F(v; A) for every u,v € SBV(A; RP) verifying Du|A = Dv|A;
ii) if, in addition (H9) holds, then F(-; A) is sequentially lower semi-continuous i.e. if u,, u €
SBV(A;RP) are such that u, — u in L}(A;RP) then F(u; A) < liminfa_ioo F(un; A);

#ii) F(-; A) is the trace on {U C Q : U is open } of a Borel measure on the set B(Y) of all Borel
subsets of §2;

iv) 0 < F(u; A) < C(meas(A4) + |Du|(4)).
Proof. We begin by showing that
F(u; A) < C(meas(A) + |Du(4)). (4.1)
Consider a sequence u, € SBV(A;RP) such that u, — u in L(4;R”) and |Du,|(A) — |Du|(A).
Then, by (H1) and (H4), we have
F(u; 4) < imjnf [ [ 1@ Vun(@))iz + /Anz(un)v(z,[un](r),vn(z))dHN-x(:r)] <

< limjnf [ JLea+ivm@mnd+ [ CI[uu](z)ldHN-n(z)] <
< Cmeas(A) + lim:up C|Duy|(A) = C (meas(A) + |Du|(A)).

The locality property is clear from the definition of F(u;A). To prove sequential lower semi-
continuity of F(-; A) we use a standard diagonalization procedure. Let u,, u € SBV(A;RP) be
such that u, — u in L!(A;RP), sup, |Du,|(A) < +00 and assume that

ljx_g*i’ng(u,.; A)= ‘_l_llglwf(u,.;A) < +00,

F(uni A) = lim_ [ JREAL-OUEY S ‘P(zs[“:](3)aV:(3))dHN-1(3)]

where uf — u, in L1(A;R?) as k — +00, sup; | Duk|(4) < +00. For all n let p(n) be such that for
every k 2 p(n)
R 1
llun = vallorams) < -
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Choose 8 2 p(n) such that
\r(u..;A) - [ S vusriende + gy BN (z))dHN-x(z)\ <

Clearly uir — uin L(A;R?), by (H9) s9Pa |Dusr|(4) < +0° and so

n—++400

F(w;A) < lim inf ‘ ]A f(z,Vu;"(z))dz + Anz(‘:‘)tp(z,[u;"](z),v;"(z))dﬂ N_.;(z)l =
= l'igi:g F(un; A)-
To establish iii) we use De Giorgi and Letta’s criterion (see [14]):
A set function a: X — [0,400] is the trace of a Borel measure if

a) a(B) < a(A) for every A, B € X with B C A;

b) a(AU B) 2 a(A) + a(B) for every A, B € X such that ANB =9

c) a(AU B) < a(A) + a(B) for every A, BeX;

d) a(A) = sup{a(B): B CC A) for every A € X.

Parts a) and b) follow trivially from the definition of (u; A). To show c) and d) we prove that
if A, B, C are open subsets of with BccCCC A then

f(u;A)sf(u;C)+}'(u;A\'F). (4.2)
Suppose that (4.2) holds. To show d) fix € >0 and let BCC Abe such that

meas(A\B) +Dul(4\B) < %

By (4.1) it follows that F(w; A\ B) < ¢ and so, if C is such that B cC C CC A, by (4.2) we
conclude that
F(u;A) S FwC) + e

thus proving d). In order to obtain ¢), for t € (0,1) we define the sets
A, = {z€AU B :tdist(z,A\ B) < a- t)dist(z, B \ A},

B = {zeAUB:tdiat(z,A\B)>(l-t)dist(z,B\A)},
St = {z€AUB:tdist(z,A\B)=(l-t)dist(::,B\A)}.

Since Ln (UeSt) + |\Dul (UeSt) < +® and the sets {5t} are pairwise disjoint, there exists to € (0:1)
guch that (LN + |Du)) (Se) = 0. Given € > 0 by (4.1) choose K; CC Ay, K2 CC By, such that
F(u;(AUB)\ (F1uK2)) <€ wnd let Ky CC Hi CC Au, KaCC Ha CC By, By (4.2),2)2nd b)
we deduce that

F(u;AUB) < F(ui bV Hy) + Fu(Au B\ (K1 uED) € F(u;A) + F(wi By + €
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We now prove (4.2). We let A, B and C be open subsets of § such that B CC C CC 4 and we
assume that

Fu;A\B)= lim [ f(z,Vui(z))dz + v(z,[ud(z),uk(z))dHN-,(z)] (4.3)

(A\B)NZ(ws)

F(wiC0)= lim_ [ frevnene+ [ Mw(z,[vkl(z),m(=))w~-l<z)] (44)
where u; — u in L(A4 \ B;RP?), sup; |Du;|(A \ B) < 400 by (H9) and vy — u in L}(C;RP) and
(H9) implies that sup, |Dvi|(C) < +0c . In order to obtain an admissible sequence in the whole
of A we will use the slicing method to connect u; to vy across C \ B. We partition C \ B into two

_layers S(z) and 5(2) of equal measure of the type S = {z € C\ B : 0 < o < dist(z,8B) < B}.

Define
M= st;p{lDu;,l(A \ B) + |Dvi|(C)}.

We claim that for every k there exists a layer S € {5(12), S{z)} such that

JIvuneide + [ lle)dn-a(e) +
W ALCTERY N R O AROPE S (45)

Indeed if (4.5) were false there would exist k such that for every S € {5(12), 5(22)}

fiowneids+ [ (fuke)din-e) +
+ [ IvoeC@lde+ [ lodedBnoa() >
Then

M > / v d dHn_y(z) +
> [ V@l [ NG

+ [ I7osCellde + [o@IdHN-1(2) 2

(C\B)nZ(w)
2 [ / IVur(z)lldz + /s, S(wn) ee)(z)dHN-1(z)+

=1 (z)

v

+ ] IVon(a)idz + [ I[vk](z)!dHN-n(z)] >M

(’) E 0&

which is a contradiction. Since we have two layers and infinitely many indices, we conclude that

one of the layers
= {z € C\B: &y < dist(z,8B) < B,} € {5(;), 5%}



verifies
My(z)|dBN-1(2) +

[, 1os@e= 4, s
+ [N [, TN -A ()< 2

for a subsequence {u,‘1 ,09)} of {uk, v} As up— o — 0in L(C \B;R?) the above layer can also
be chosen so that it satisfies
1 @) Q] 1
35T ]s ) - (2)ldz < -
Next we divide C \ B into three layers 5(3), S(s) and S?s) of equal measure. By the same reasoning
as before one of these

Sz:{ZEC\

B : oy < dist(z,0B) < B2} € {Siy:i= 1,2,3}

verifies
[WP)@)NdHN-1(z) +

] (e (2)ldz + j o

+ [ 19N+ op X

P)(z)ldHN-1(2) £
(2)} of {um,vm} and
L [ @ - i@l < 3

for a subsequence {u g
meas(Sg)

Recursively we obtain layers
S;= {z € C\'F:a,- < dist(t,OB) < ﬁJ} € {S‘G-H):i =1, Li+1)

such that
[ ros e + [, g AR E) ¥
+ [, wed@es + L s o NN < e (46)
for a subsequence {u?), Uy of {u G-1), (’ 1} and
4.7)

. ) 1
—E) [, e - o (a)ldz < 77

ons such that 0 € n; £ 1, Vsl = O (m)

Let {n;} be 2 family of smooth cut-off functi

and
n; = 0in A\ {{z eC: dist(z,OB) < ﬁj}]
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n;=1in {z € C :dist(z,6B) < a;} U B.
Define w;(z) := (1 - nj(z))u,(,j)(z) + qj(z)v,?)(z). Clearly w; — u in L!(A;RP) and by (4.6) and
(4.7), sup; | Dw;|(A) < +oo. Thus, by (H1) and (H4)
F(u; A) < lim inf [ /A f(z,Vw;(z))dz + _/mz(w.)v(za[wj](z),oi(z))dHN-l(z)] <
< F(i; A\B) + F(4;C) +
+limsup [ ]S CO+IVuids + /s S Cl[w,-](z)!dHN-;(z)] . (4.8)

j—+o0
Now, £(w;) € Z(u{)) UT(v{) and
Vuj(z) = Vul)(2) + 1;(z) (Vo(2) - Vuf(2)) + (v9)(2) - uf(2)) @ Vi;(2)

so from (4.8) we obtain

F(u; A) < F(u; A\ B) + F(4;C) + limsup [/ C (1 + IIVuﬁ’)(z)H + ||Vv,(")(z)||) dr+

J=+oo

,,,m( 5 / Iof(2) - wi(a)ldz + [ s Ol N@NdH N1 (2) +

+], o CloNNEAN@)] <

< F(u; A\ B) + F(u; C)+hmsup [Cmea.s(S )+ Cl + ;C_-fil <
j=+oo0
< F(u; A\ B) + F(u;C)
where we have used (4.6)—(4.7). ]

We now proceed with the proof of Theorem 4.1.

Proof. Step 1. Assume, without loss of generality, that
timjnf [ RO 'P(-‘h[“n](z)’l'n(z))dHN-x(z)] =

= “_1_1:1_.1_100 [./Q f(z,Vun(z))dz + ‘/2(“-) Pz, [un)(2), ”n(z))dHN-l(z)] < 400 (4.9)
and define the sequence u,, of Radon measures by

<t >i= [[ W@ Vin(@Nz + [ Hedole [l ), (D) (2)
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and so there exists 2 subsequence (still

). By (4.9) we have 8P, () < +00
- ge of measures i.e. for every

for every ¥ € Co(R
measure g such that pp = M in the sen

denoted p,) and 2 Radon
v € Co(®)

[y e T s e e

= jQ W(z)dp(2)-

By the Radon-Nikodym Theorem we
ponnegative measures

g = poln +pylut = v | HNA|E
Fonseca and Miller (18], we

:(’)'Vn(-"))dHN-x(z)] _

may decompose p 85 the sum of four mutually singular

(u) + B JC (W) + Ho:

-up method introduced by reduce the problem to

Using the blow
alities

verifying the pointwise inequ
po(zo0) 2 g(zo,Vu(zo)) for Ly a.e. Zo € Sy (4.10)
py(zo)lut(zo) — v (20)l 2 h(zo, [u)(z0),¥(20)) (4.11)
for Hn-1 8.e. Zo € QN I(u) and
(4.12)

pe(z0) 2 9% \ %0 2%:%1(20))

d, consider an increasing sequence of smooth

€ Q. Assuming (4.10)~(4-12) hol
y=1in Q. Then

for |C(u)| a.e. Zo
cut-off functions ¥k € Co(Q) with 0 < ¥k < 1 and sup; ¥k(z

Jim [ [ e vunende+ oy sp(z,lunl(z),un(z))dHN-l(z)] >
[ [ 9ute) (e DuntaDie + fes 'l’k(1)¢(3a[“n](t),l’n(x))dHN-l(I)]

> lim
n—+00
= [ wern=) 2

> [ trema(eds + [ MA@ w* (@) AN-(2) +

+ jQ Wu(@)p(2)ICWI() 2

> [ wula)ota,Vule)is + fp, MDA+ J ()™ (zdC 0
otone Convergence Theorem we concl
2.3i) and 2.6 for LN a.e. Zo € § the

using Lebesgue’s Mon ude the result.
following hold:

Letting k — +0© and
(4.10). By Theorems

Step 2. We prove
(4.13)

i, L fue) - wea) - Vo) =zl =0
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lm ”(0(309 ))
-0* Ln(Q(zo,¢))
Select a point zo € N2 such that the above properties hold. Let 0 < < 1 and let ¢ € C$°(Q) be
such that 0 < ¢ <1 and ¢ =1 on Q. Using (4.14) we have

-1 “(Q(xO’ 6)) . 1 T =20 -
uc(zo)—ag% TN 2h;n$p3ﬁ/‘°+w¢( 3 )du(z)—

ey ) z -2z
=i i [ ¥ (557 S Tenteens

#a(Z0) = exists and is finite. (4.14)

T—-2Z9
* /(3-'o+6Q)f\E(u») v ( ) Az [unl(=), ”"(‘))dHN—:(z)]

> lim sup lim sup [ / J(zo + by, Vun(zo + 6y))dy+
§—o+ n—too |INQ

1
+= ¢ (2o + 8y, [un)(Zo + 6y), va(zo + by)) dHN-l(y)] . (4.15)
6 mnzgu..z-sn
Defnine (zo + 63) - (z0)
Un(zo + 0y) — u(z
u, 5(y) = . s >
and

wo(y) := Vu(zo)y
it follows by (4.13) that

lim lim ||u ¥ wo”L:(B(o']);Ry) = |u(2‘o + Gy) - u(zo) - 6Vu(::o)y|dy =

§—0t+ N+
— 1 B(eo ) lu(z) - u(:o) - Vu(zo)(z - zo)ldz =0.

lim =

b—o+ 6 JB(0,1)
= lim
Y e

Also, as Vu_ 5(y) = Vua(zo + 8y) and D(un)-so _ Z(u,, §), if we define v, 5(y) := vn(zo + by) we
obtain from (4.15)

#o(zo) 2 limsuplimsup [ [ Feo+ 83,90, )iyt

d—0t n—+oo

1

+ Z NAN(u 6

¢(20 + 6”: 6["“,6](”)9 V“.J(y))dHN—l(y):I 2 (4.16)

2 lﬁgf lim inf [ / f(zo0, Vu, 5(y))dy+

* ./ﬂQnE(u Nk {P(zo’ 8lu, 5)(¥): v 6(¥))dHN 1 (y)]
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+ th inf hm inf \ l f(zo+ Gy,Vu,,.g(v)) -f (%,V",.'s(y))dy\ +

+ h&&f Lim ug \ .[anE(u. 9 -61?(30 + by, 6lu, 5](1’)"’ 6(9))

S PO ) O v SN

(H9), (4- 16) and for § > 0small enough
oo 61:75n6)
< [ € (14 Va5 49 <

<O [ Cltaot 0 TagDY

Fix € > 0. Then by (H2),
)= f(z0, VgD &

= 0(6)

and by (H5), (H9) and (4.16)
| I ko + B, Blun gl ¥a80D 7 (0,6l 519 s O 4EN-10) <
c éllu,,s](v)\dﬂn—x(v) <

jlrQn
E(u .6)
n,é(y ))dqu—l(y) - 0(().

_<_5C/ : 20+ 0V, 8, R
nanE (“.,6’50( o+ by, [u, 51¥)

Therefore we obtain
tainf i inf ‘ / §(z0, Vi, 6+

ﬂQﬂE(u.'6) —‘P(z(h 6[“1;,6](!’)3 V“ﬁ(y))dHN_l(y)X 4+ O(()

"a(zo)
+

choose a sequence 6 — 0 such that

lim inf ‘ /no £(20,Vun5,(1))V

n—+o00
""“2(".5,) “I‘P(zo,‘&[uua JW)vas (y))dHN_l(y)X +0(e) <

< th inf hm inf ‘. j f(z0, Vg, 5(y))dy+

We can

+ honTie_g) '5“’(“’ 5[ﬂ.,6](!),v"6(y))dﬂ N_,(y)] +0()+ _1,;
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Choose ny large enough so that ||u,, 5 — wol|L1qrs) <  and

lim inf [ /no f(z0,Vu, 5, (¥))dy+

N—++400

+ /r,QnZ(., 5.) 31;90(30’ 6"[“..5.](”)’ f n,6,(y))dH N -1(3’)] 2

> [ /w f(z0,Vu,, 5, (v))dy+

+/an(u s )%V’(zo,Gk[uu'g“](y),Vnhgh(y))dHN-l(V)] - %

Thus, defining vi(y) := v, g, (v) and vi(y) := v, 5, (v) it follows that forall 0 < n < 1

1

(z0) > i / ,Vo(y))d
#4(20) k_}fm[ mf(zo vi(y))dy + nE(os) 55

¥(zo, 6k[”k](!l)’"k(!/))dHN-l(!l)] + O(e)

(4.17)
where v; = Vu(zo)yin L}(Q; R?). By (H9) and (4.17) it follows that sup, | Dvk|(nQ) < +0o0 and so
by Lemma 3.7 there exists a sequence &y € SBV(9Q; RP) such that ¥ — Vu(zo)y in L*(nQ;RP),
sup; | |9kl (nq;R») = C(€) < +00 and

1

(z0)> i / ,Vo(z))d /
pal20) ,hrgw[ [ Seovataist g [

lzor84(5:](2), m(z))dHN-,(z)] +0(0).

(4.18)
For k large enough so that 8;|[5x])| < 1 (H7) yields

po(z0) 2 limjaf [ IR CALOLE )‘Po(zo,[f’k](r),f/k(-’f))dﬂn-n(r)] -

QN (v

T 8o atlggy.
:ﬂ:‘:op nnTes) ) ()| N-1(z) + O(e¢)

where by (H9) and (4.18)

60 = a+1dH _ <
Jransiy NI 1dHN-(2) <

a
< §¢ ( v ) / v dHn_ — S .
< & 5"1‘1’“”&”» anE(es) l[B)(z)ldAN-1(z) — 0 as k — +o00

Thus

)‘PO(zO:['-’k](y)s‘—’k(y))dHN—l(!l)] +0(¢) (4.19)

wte 2 i [ S vnonars [ o

where ©, — Vu(zo)y in L(nQ;RP). To compare po(z0) With g(zo, Vu(zo)) we must modify the
sequence ¥ so that it satisfies the boundary condition and in such a way that the total energy does
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not increase. This is achieved by using Lemma 3.1 and Remark 3.2 applied to 7nQ instead of Q and
to the functional

Genlir ) = [ S0 Tul))dz + [ Pz o(z))dHN-1(Z)-

‘We obtain a sequence {€&} in SBV(Q;R?) guch that §; = Vu(zo)y on Q \n@, & — Vu(zo)y in
L}(Q;R") and

limsup [ R J mnm.)w(zo,1:.-1(:),0.-(z))dH~-a(z)] <

i—+00
< liminf { /ﬂ . f(z0, VE(2))dz + ]mnz(m.po(xo,{m(:),v,,(z))dHN-,(z)] (4.20)

where 8;(z) is the normal to T(§;) at z € nQ N B(¢;). From (4.19) and (4.20), using the fact that
QNnI(&)= 7nQ N (&), it follows that

po(z0) 2 lim inf ‘ jQ f(:co,Vfg(z))dz + ‘/an(fl)cpo(zo, [f‘-](x),o.-(z))dH N-1(2)-

t—++00 i

- / f (zo,Vu(zo))dz] +0(€) 2
Q\nQ
> g(z0, Vu(zo)) + 01 =M + o(¢)-

The result now follows if we let first e — 0% and then n— 17
Step 3. We now prove (4.11). By Lemma 9.5 and Theorems 2.3 ii) and 2.6 we know that for
ae. zo € Z(v)

1
lim j u(z)-ut(z dHn-1(z)= v (= - ut(z0)l 4.21
L ST JSneots QV(..,))| (=) (2)ldHNn-1(2) = v 0) (zo)l (4.21)
1

lim —x — wH(zo)|P1dz = 0, 4.22
6-?01+ N {363(20.6):(:-20)-11(:0))0} ‘u(z) u (30)‘ z ( )
Iim - lu(z) - v (@) P dz = 0, (4.23)

§—0+ 6 {sGB(:o.6):(s-so)-V(zo)<0}

6Qu(=
ps(zo) = lim pzot Qu( °)) exists and is finite. (4.24)

bt [t —u~|HN | Z(u)(Zo + 6Qu(z0))
Choose a point Zo € 1N T (u) such that the above properties hold. For simplicity of notation write
Q :=Q,,(,°),Q' = T-%—'ﬁQ with 0 < 9 < 1andlet¢€C3°(Q)besuchthat0_<_1,b$ 1,¢y=1on
Q°. Then, by (4.24) and (4.21)

o p(zo + 6Q) =
“J(zO) - sl_l::‘., ‘u-i' -_u" ‘H N-1 [E(u)(to + 60) -
1 o1
= o) = o)l 4ot T Jemsbe )2
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1 1 zZT-2Zp
2 ¥ (z0) - - (zonl‘g‘li‘.‘, a‘h’-—*/,.ua"’( ; )“ ()=

1 1 z-z
= W (o) — w0 LR eup lim owe U ¥ (—6—°) f(2, Vun(2))dz+
+'/(0o+50)""2(uu)¢ (z zo) oz, [""](‘)"’"("‘))"HN-x(z)]

1
= lu*(z0) - u=(20)| lim sup]:f:‘:? [6 Q° f(20 + by, Vun(zo + 8y))dy+

/Q,ng.,,,_,n ¥(zo + by, [un)(z0 + 8y), va(zo + Gy))dHN-x(y)] . (4.25)

Define v, 5(y) := un(zo + 69), v, §(¥) := va(zo + 6y) and

= ] vt(zo) ify-v(z0)>0
vo(¥) "{ w(z0) if y-0(z0) <0.

As u, — u in L(Q;R”) by (4.22) and (4.23) we obtain

Jim tim [ o, 5(0) - ooy =
1
= lim - — wt el

+fm v ) - u(z0)ldz = 0.
6£+Fﬁ {z€z0+6Q:(z~z0)-¥(z0)<0} lu(z) = u” (zo)}de

On the other hand from (4.25), taking into account that E(u, 5) = Eﬁ%m’ one gets

1 s eyt s
p#y(zo0) 2 [ (z0) — v (20)] lim inf lim inf [/Q. T (zo0 + 6y, Vu, §(y))dy+

§—0+ M—too

+ /Q°n2(u.' 5 P(zo + 6y, [u, 6)(¥), v, (¥))dHEN-1(¥)+

1
+ /Q 8 (2o + 6y, 5Vu, 5(¥)) = f=(20+ 6y,Vu..,5(y))dy] . (4.26)
Now,

6!(30 + 6y, zv“u 6(”)) - f“(’o + by, vunﬁ(y))l dy=

ke

- /a-n{uv-‘,,gusm

6f(z0-+ 9, 3Vu 5(0) — F=(0+ b3, Y, 5(0))| dy +

1
') 6 ,-V - 6 ,v dy =: I L.
+-/Q‘ﬂ{||Vu.'6||>6L)| f(zo+ 6y, 5Vu, 5(¥)) = = (20 + by u“,J(y))| y=:L+1

41



By (H1) and the growth condition on f*°
ns | 5C1 + 2C1|IVt, 5@)lldy < €6 = 00
S IV, s@)lldy ®

Holder’s inequality and (H9) we have

and by (H3) with t = 3
1-m
ClIVu, s 8"y < CE L. (Pu sy =

L <

2= /Q‘n{ltvﬂ,'gibﬁb}
1-m

—com| [ aIvuneot als] <

<o [ co+Ciseot 5y, Vun(zo + 69))
+ Gy))dy} remains bounded. Therefore (4.26)

1-m
,,] = 0(6)+0(s™)
since by (4.25) { Jo- 8f(z0 t 8y, Vua(Zo reduces to

1 P
pleo) 2 [z =GN B T

nsW)dHN1 )

o (20 + 83, Ve, s(¥))dv+

(4.27)

6 ] 9
a~nz(u..s)¢(z°+ b o g1

1 NPT T
> v . 7o Tena Y

@z, [u, §)(¥)s v, §W)HEN()]| +
[ 5=(eo+ 617 %0g ) - (20, V0] +

+

+
Q'nE(u_.g)

1 e e eVt
T o P

P20+ 69, [t 51(¥) ¥ 6(V))-

1 e ewes
+ [u* (zo) — v~ (o)l l%-‘-‘-:»&{ iminf L/Q-nE(u_.G)
-v(zo,lu,.,al(v),vn,s(v))dHN-x(v)] :

Fix ¢ > 0. It follows from (H2), (H9) and (4.27) that for § small enough

lq. ‘foo (z0+ by, Vu 5(¥) - ~ (zo,Vu,,'g(y))‘ dy <

< jq CiliUn, s0lldy <

< || cCr=teo+ b1, Tun g}y = 0L

Also by (H5), (H9) and (4.27) we have

‘so(zo + 69, (v, 510),Va sV — ¢(=o.lu..,51(v),V..,a(v))\dﬂn-:(y)

/"‘"E("..o)
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< s (wecuu..,sl(v)lwn-,(y) <

< Q*nZ(u, 5) €Cp(zo + by, [u, 5)(v) v, s(¥))dHN1(y) = O(e).

Hence,
1

(60 2 ey ey piatimint [ [, 1= o Vs

+o/0°n2(u.,5) "’“°'.["--61(”)’"-ﬁ(v)MHn-.(v)] +0(9

where u_ 5 — %o in L'(Q;RP) as n = 400, 6§ — 0% and s0, by a standard diagonalization argument,
as used in Step 2, we obtain

1

py(zo0) 2 @) = Go)] Jm UQ. I%(z0, Vur(y))dy+

+ /Q.nz(m‘P(to,[vk](v),m(v))dﬂn-n(v)] +0(¢)

where v, — ug in L1(Q; R?). Making the change of variables y = ﬁﬁ, setting wi(z) := v (-1-:—,7)
and using the invariance of up under the above change of variables we have w; — ug in L}(Q:RP)
and

1 1 N-1 . -
#y(z0) 2 fut(zo) — u=(zo)| (1 + 1;) k-l-l.Teo [/Q 7 (@0, Vun(z))dz+

s 90(::0,[wk](z),'lk(z))dHN-x(z)] +0(0) 28)

where 74(z) = i (17 - To compare uy(z0)|u*(z0) — u™(zo)| With (o, [u)(zo),¥(20)) we must
modify the sequence {w;} in such a way that it meets the boundary condition and the total energy
does not increase. This is done by using Lemma 3.1 and Remark 3.2 applied to the functional

Goo(u, A) = /A (20, Vui(z))dz + /.4 5 P [N 2),

We obtain a sequence {{;} € SBV(Q;RP”) such that §; — uo in L'(Q; RP), §; = up on 8Q and

lim sup /Q (20, VE(2))z +

s )

s, PEo 6. 01 (2)] <

<jmnt [ [ oo vmutens+ [ ctonlmlhmeina)] o2

QnZ(wa
where 6;(z) is the normal to £(§;) at z € Q N Z(§;). From (4.28) and (4.29) we get

(Rl
(7o) - v (o)l i UQ 12(20, VEi(z))dz+

By(zo0) 2 [u*
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¥ janzte.-)"(""l“l(’)”*(’))ﬂ'ﬂn-a(ﬂ] +0(e) 2

a+a)"
2 “u+(3o) —u- (zo ‘h(zo, {u](xo),v(zo)) + 0(‘)
Letting € — 0 and 7= 0+ we conclude that

1
“J(ZO) 2 “ll"'(Zo) —u- (zo)‘h(zo’lu](xo)’ V(zo))-

Step 4. Finally, we obtain a lower bound for the density of the Cantor part, pamely (4.12).

N
LetQ = (—%, %) and fix t € (0,1) with ¢ close to 1. By Proposition 2.8, Lemma 2.9 and Theorem
9.6 we know that for |C(u)| .. 20 € Q the following hold:

_ |\Dul(zo+€Q) _ .
1, (G Q) (430
 \Dul((zo+ €@\ (o +3@) _ o1 - 1)
liminf [Dul(zo + €Q) =0(1-1) (4.31)
clixg+ !_I_)E‘_(:.ﬁo:-:——c—@ =0, Gli%]+ M%iiq—)' = +400; (432)
Ao = bim, %"%% exists and || Aol = 1,40 = a @V (4.33)

T ety Mt Q)
he(z) = I, (et Q) oot IDul(Eo + @)
Choose a point Zo € Q such that (4.30)-(4.34) hold and without loss of generality assume that

v=en,Ao=aQ®EN with || = 1. Letvl)eCo(Q)besuch that0< Y <land v = 1 on tQ. Then,

(4.34)

I p(zo+€Q) _ i 1
) = i e S 5, T ) s
) 1 z -2 _
2 Uz P Dul(eo + Q) [ () -
T 1 . z-20
- s e g () 7

z—-%0
+'/(30+€Q)nz(ﬂn)¢ ( € ) "’(z’lu"](z)”’“(x))dH N—l(-‘t)] 2

1
Jim supli .___—-—--U Vun(@))d
m sup it 899 {1501z, + €Q) Usotea f(z, Vun(2)dz+

+ ./(zo+t€Q)ﬂ2(u..) ‘P(z’ [un](Z), Vn(t))dHN_l(z)] . (435)
Also,

-1 1
i _ _
Jim Nm 15ul(zo + Q) ]q \f‘"(‘° +ez) =N ],,m un(¥)dy

- [u(::o +ez)- ;1;, Lm u(y)dy“d:: —0. (436
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By (4.31) choose a sequence r; — 0% such that

|Dul ((z0 + Q) \ (20 + 2r2Q)) _
[Dul(zo + r:Q) =o-9

and by (4.35) and (4.36), using a standard diagonalization argument, choose a subsequence {u;}
(not relabelled) such that

(4.37)

z9) 2 limsu
#e(zo) 2 Lmeswp rmr i) Unsensa

f(z’ v“k(z))dz"'

* -/(eo+mo)n‘3(n) #(2, [ur)(z)va(2))dHN 1 (= )] (4.38)

and
e - zk“p(q;m) -0 (4.39)

where
rf -1

_ i 1
“k(z) = IDuI(-‘L‘o +1:Q) ur(zo + 1iz) - ;kN/’-‘O'l"kQ uk(y)dy] ’

N-1
Tk

— 1
zk(z) = IDu'(z'; + er) “(zo + rkz) - ? '/:04"&0 u(y)dy] .
By (H2), (H5), (H9), (4.32) and (4.38)

1
d D
|Du|(zo + rQ) /-o+¢n.o( =+ [Duil)

is bounded and so we obtain

; 1
#(z0) 2 l:,lf::f |Dul(zo + Q) ['[l‘o-!'ter f(zo,Vui(z))dz
¥ /(aoﬁr.o)nz(u.) (2o, [us)(z), v4(2))dHN-1 (z)} '

Changing variables and setting

8 = [Dul(z0 + Q) _,

rf oo
|Du|(zo + r:Q)
0; := — -0
e

we conclude that

pe(z0) 2 limeup [;‘; [ feotva@ms+ 5 [ el ok[ﬁk](t),Vk(t))dHN-x(z)] :
(4.40)
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Now,

dz =

_/'Q \'t};f(zo,thﬁk(:c)) - fw(zo,Vﬁk(z))

1 ] -
= '/tqn{“thﬁk“SL} \;;f(zovtkvuk(x)) - j (30,Vuk(z))\ dz +
1 7 i —
+ -/th{||t,.Vﬁ,,“>L} Ef(zo’t"v“*(z)) -/ (30,Vuk(t))‘dx =L+

where, by (H1) and Lemma 2.1211)
L< l ol venl<D -t-lzc (1 + 2LVl dz < 21:0(1 +2L)—0
and, by (H3), Holder’s inequality, (H9) and (4.40)
< SpN—A L I
t@n{||tx Vixll>L} i U
Thus, from (4.40) we obtain

”’c(zO) > lim sup [/Q fw(zOsVﬁk(z))dx + "ol—k' QNI (@k) ‘P(zo,ok[‘_"kl(z)vVk(z))dHN—‘l(r)] .

k—<400 t
(4.41)
Since

sz(t)dz = /Qﬁk(:c)d:c =0
and
|Du(Q) = 1Dz:l(Q) = 1

by (4.39) there exist subsequences (not relabelled) {zx} {@} and there exists up € BV(Q;R7) such
that
Zk, Gk — Uo ID LY(Q;RP). (4.42)

Now,

_ Du(.‘to + er) _
Dz(Q) = [Dul(zo + Q) —~ Ap=a®eN

where |a| = 1 and |Dz|(Q) = 180 by Proposition 2.10 it follows that
|Dzk — (Dzk - Ao)Aol(Q) = 0
from which we conclude that
\Dz - €](Q) — 0 for i=1,...,N-1

Since
|Duo - &|(Q) < liminf | Dz - &l(Q) =0
k—+o00
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we obtain 11 11
uo(z) = do(zN) € BV((-3,3)R)NL®((-3, 5): R?). (4.43)

Consider the smooth mollifications of ug, £x(z) = p; * uo(z) = £4(zn). By (4.43) we have

kllL=(@;rr) < const.
and (4.42) implies that

Ik = &l @mr) — O
Thus, fixing € > 0, by Lemma 3.7 there exists a sequence iy € BV(Q; R”) such that ||t|| e« (q;rr) <
C(e), lluk = €kllLr(@irr) — 0 and

/tq (20, Viix(z))dz + 51; (2o, 0x[8)(2), vi(z))dHN-1(z) <

‘/‘an(ak)

< /tq f“(zo,Vﬁk(z))dz+% /:an:( (0, Bula)(2), () dH 1 (2) + .

g
Then, since for k large enough 8||[ux]||co < I, (H7), (H9) and (4.41) yield

1

7, 70 OxlTi)(2), vi(2)) = po(20, [Ek)(2), vi(2))

OFI[E() dHp-1(2) S O2C() [ o IEal(e)idHrr(z) = O

dHn_y(7) <

~/ tQNL(%)

<)
QNI (i)

so from (4.41) we get

1QnE (5) %(301 [ak](z)’ Vk(z))dHN_](I)] —€ (4.44)

#.(z0) 2 limsup [/ f®(zo, Vui(z))dz +
k=400 {J1Q

Since for a.e. T € (t2,t), |Duo|(07Q) = 0 and V£,(7Q) — Dzi(7Q) — 0 choose one such 7 and
choose 6 > 0 such that |Duo|(6(1 — 6)7Q) = 0 and (1 — §) > t2. Then, by Lemma 2.4 and (4.37)
we have

Jim_[VEI(rQ\ (1= 6)Q) < IDuol(rQ \ 7(1 - 8)Q) < lim_[Dzl(rQ \ 7(1- $)Q)

. 1Du|((zo + Q) \ (2o + ?riQ)) _ . _
< lim_ DulCeot 120) =0(1-1t). (4.45)

On 7Q we have £;(z) = Axz + pi(z) where py(z) = pr(zn) is smooth, pi(t) = 0if t = =7 and

£.(T)-&.(-I
a=8E-bCD

We claim that
Ak — Aol =01 - 1). (4.46)
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Indeed,

1
lim sup || ~ Aol < limsup |4, - NII +11- —xl=

k=t 400
= lilf.i':f ,—vafk(’Q) - Agl+0(1-1t)=
= lim sup -—lI-V-IDzk(TQ) —A]+0(1-1) <
k=400 T

< lim sup ;IW [1D2x(1Q) - Dz1(Q)| + [Dzx(Q) - Aol] + O(1 - 1) =
, [Pu(zo + 774Q) — Du(zo + 7:Q)|

=
= Fv“l’.‘ii‘; IDul(zo + 74Q) rou-n=
_ 1Dyl (20 + @\ 20+ 71:@)) . 11 _ 1) 001 -
- N‘ifi‘; IDul(zo + 1xQ) tou-n=0-1

where we have used (4.37) and the fact that t? < 7. Since limg—4 oo ||tk — &kllz1(Q:Rp) = O by
Lemma 3.1 there exists a subsequence {{,,} and a sequence {wi} € SBV(rQ;RP”) such that
wilorg(z) = £,,(2) = An, T + pn,(2), |lwk = €4, llL1(@;Rr) — O and by (4.44) and (4.45)
pe(zo) 2 lim inf [ '/; 0 (20, Vwi(z))dz + A an(w,)%(xo’[w"](z)’ Vk(z))dHN-l(x)] -
—Cmeas(rQ \ 7(1 - 6)Q) = Csup [V{, |(TQ\7(1 - )Q) ~ € =

= liminf [ / (20, Vi (2))dz + /

k=400

¥o(zo, [wk](z)aVk(x))dHN—l(z)] -
TN (wy)
—e+0(1-1). (4.47)

Write wi(z) = Ap, 2z 4 Pn,(2) + qx(z) Where gilorq(z) = 0. Since p,, is also 7Q periodic we may
extend p,, and ¢; TQ-periodically to RY and define

w, §(2) 1= An,2 + 6%¢5(2) |Pns ( 52) + & (‘:_2)]

where 5 : Q — [0,1] is a smooth cut-off functxon satisfying suppys CC 7Q, ¢5(z) = 1ifz € {y €
7Q : dist(y,07Q) > 6} = Qjp and [IVysll < < . Then w, glorq(z) = An,z and for every k

Jim, llwe § = Anszllyroirr) < < jim & /T 0 (Prx + 9x) (fﬁ) dz =0
by periodicity of p,, and gx. On the other hand
oGV s@s+ [ o el gl@, s )ily-1(e) <
< ]T o [z Vun(@))de + rarsio,p o(20, [0, §1(2), v, 5(2))dHN-1(z) +
+ rova; F®(zo, Vwi(z))dz. (4.48)
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Since

t 4
“ons =t 4 [ (3) 50 ()] o () (3)] 55

we have by Lemma 2.12 i)

I AL

< Cmeas(1Q \ Qj) + 6° ra\a; ip (6’) o ( )

+f gy #6 (T + ¥ (%)

dz

where

meas(rQ \ Q) ——

# fangy () +2: (3)
ra\osp" 7) T\

since, by periodicity,
z
-[rQ (pm‘ + Qk) ('6—2)

and finally, due to the equi-integrability of the sequence {Vp,, + Vgi},

6—»"‘

[ a0 (%)

dz

6—>O+

dz —— n dy,
ot 1_QIP.‘+¢1:=I(3/) v

Vom, + Va0l (3) de ——0.
/TQ\%II( pos + Vel (57) d2 —

Hence we conclude that
I*=(zo,Vw, g(z))dz —— 0.
Ji e

Also, the periodicity of g yields

-/'ronz(wh 5 wo(zo, [wy §)(2), v, 5(2))dHN-1(2) =

= [ onssie, P00 @) (53) i gD N (@) =

2 /T 8’ Sian) ¥5(z)eo(zo, [ax] (:—2) Wi 5(2)dHN(2) <

<& /%?nz(n) o(z0, [gk)(2), vi(z))dHN-1(2) =

= TQNX(q1) wo(zo, [g)(2), vi(z))d HN-1(2).
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Hence, for every k choose § = 6(k) so that "’k.6(k)|81'0("’) = An, 7,

1
llwe sxy — AmeZllirraiRn) <

and by (4.47)(4.49)

pozo) 2 timoup | [ 1(an, Vo gzt

1
+/ Zo, |W z),v NVdHn-1(z)— T —e+0(1-1).
’Q”E('”.,s(.))%( o[ k.5(k)]( ) k.&(k)( ))dHN 1(2) k]

Extending w; §(x) 38 Aoz on Q \ 7Q we obtain a sequence ). such that Dilag(z) = Aoz and by
(4.46)

po(zo) 2 liminf [ [, o Tautane + [ eolenlB@ DN
- / | 4olldz - C / |Ap,z — Ao:cldHN_l(z)] e+ O(1-1)2
Q\TQ aTQ

> g% (2o, Ao) — CO(1 - T)—€e+0(1-1).

Now it suffices to let € — otandt—1". ]

5 An Upper Bound for F(u) when u € SBV(Q; RP)

In this section we continue the proof of Theorem 2.13 by obtaining an upper bound for the relaxation
F(u) when u € SBV(Q; RP), namely

Proposition 5.1 Let u € SBV(S; RP) be given and assume that hypotheses (H0)-(H17) and (H9)
hold. Then

Fw) < [, o(e, Vulz)dz + fi. B [ul(@) RN

Q Y(u)
We follow the ideas presented in Ambrosio, Mortola and Tortorelli’s paper [7] (see also [10)).
Proof. Step 1. We claim that if u € SBV(Q; RP) then

F(u; 2\ (W) € /Q\z ATO | (5.1)

By Proposition 4.2 F! (u;-) is a Radon measure, absolutely continuous with respect to Ly + |Dul.
Thus (5.1) holds if and only if for Ly ae. Zo € Q2

%‘:"')(zo) < g(zo, Vu(20))- (5.2)
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Writting Du = Vudz + D,u, by Theorems 2.6 and 2.7 and for Ly a.e. zo € Q we have
|D,u|(B(20,4)) _

T (5:3)
IVu(z) - Vu(zo)|dz = 0, (54)

6-»o+
d}d-g - )(zo) exists and is finite. (5.5)

Choose a point zo € £ such that (5.3)—(5.5) hold. By Proposition 3.3 ii) let u, € SBV(Q;RP?) be
such that u, — Vu(zo)z in L}(Q;R?) and

9(z0,Vu(zo)) = lim [ J S0 vuntends+ [ )%(20»["n](z),"n(x))dHN—l(z)] .

This, together with (H9) implies that sup, |Du,|(Q) < 400 so by Lemma 3.7, given € > 0 there
exists a sequence #, € SBV(Q;RP) such that &, — Vu(zo)z in L}(Q;RP), sup, ||in|lec < +0o¢
and

nEn+1°° [/Q f(z0,Vin(z))dz + /;nz(ﬁ")qpo(zo,[ﬁ,,](z),x'/,.(z))dHN-l(z)] < 9(z0,Vu(zo)) + €.

(5.6)
Choose a sequence of numbers é € (0, dist(zo,00N)) and consider the sequence given by

w, 5(z) = (pp*u)(z) + 6 [‘7" (z 3 ) Vu(zo) ( “0)]

where p € C°(R") is a nonnegative function such that

[ P@)z = 1, suppp = B(0,1), plz) = p(-2) ¥z € R¥

and p,(z) := nVp(nz). For each fixed § > 0 it is clear that LAY Sgrons in LY(Q(zo.6); RP)
WYn—
and hence
‘ d}-(u? )

( ) f(u;3(20’6)) S

< %ﬁgn'{x_n.ig [ /Q RACY OLS

+ /Q (cod (o5 <P(z,[wn'5](z), vﬂ'g(z)dHN_l(,,)} -

= l%m 121' hm inf [/ f(zo + 6y, V(p, * u)(zo + 8y) + Vi (y) — Vu(zo))dy+
-0+ n—+

+/Qn2(u )-6-¢p(zo + Gy,J[ﬁ,,](z),l‘/,.(:)dHN-l(z)] . (5.7)
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Since f(zo+ 6y,")is 2 Lipschitz function (by quasiconvexity and (H1)) we have

|f(zo + 63, V(P * u)(Z0 + 5y) + Vin(y) - Vu(z0)) — f(zo+ 8y, Vaa(W)I <
< C|V(pn * u)(zo+8¥) — Vu(zo)l

and so from (5.7) we obtain

!1_'7:_(_'.‘.;_'2(30) < lim sup lim sup [ / C |V(pn * u)(Zo + 8y) — Vu(zo)| dy+
dCnN f—0t n—t® Q

+ /Q f(zo+ 6y, Via(¥))dy + o) %w(:o + 6y, 8[En)(¥), Pn(¥))AH N-I(II)] <

< lim suplim sup {[/Q f(zo, Viin(y))dy + /QnE(u )tpo(:o,[ﬁn](y), l'/u(y))dHN—l(y)] +

§—0t n—++00
+ /Q f(zo + 6y, Vin(y)) — f(z0, Viia(y))dy + /QC |V(py * u)(Zo+ 6Y) — Vu(zo)|dy +

+ JonSen %‘P(Zo + 6y,8[@n)(¥), 7n(¥)) — %¢(zo, 8iin)(¥), a(y))dHN-1(¥) +

+ i 3 (0, Sl (1), 7n(¥)) = sPo(-'co,[ﬁn](y),l'/n(y))dHN-x(y)} =:
QnE(@n) &
—:limsuplimsup[h + 2+ Ii+Ii+1s).

§—ot n—t®

By (5.6)
im I < g(zo,Vu(zo)) +¢€

n—+00

and by (H2), (H) and (5.6), we have for § small enough
[ < [ s + 63,9 5a(0) = Slao V()10 <
< [ cCa+Ivawiy <
< G+ Ce [ f(z0,9a0))dy = 009
Also by (H5), (H9) and (5.6)
€ [ 5, 500 881007200~ (20, 8n)(8), PO A1) €
< [, oy ClBI@IHN-A0) <
<o [ o onlen i) PaAN-A(8) = O

For § small enough, so that §lla.))l < b (H7) yields

TP N O O R [3a)(8). Pa(9))| dHN-1(9) <

52



< C&%|[u At1d N 1(y) <
< forsie,y OB+ dHN19) <
¢
< C6® ( i c,‘,) iy, (y) = a
< C8% (swllaalle) [ IEWIdEN-2(3) = C(e)o
by (H9) and (5.6). Finally, by Lemma 2.4 i) and by (5.4), setting wo(z) = Vu(zo)z we have

c
lim sup lim sup I3 = lim sup lim su / Vp, * (u — wo)(z)|dz <
L im sup I3 6_.0+P im sup -5 oteo, )| Pn*( 0)(z)ldz <

c
< limsupli / D(u - <
< n Sup i SR 5 Jpgeo b2y D8~ w0N@) £

< limewpC ][ [V4(2) ~ Vu(zo)lds + esslimsup NlD,ul(B(zo,6)) =
§0

’0,
by (5.3) and since for a.e. § |D,u|(B(zo,6)) = |D,u|(B(z0,6)). Thus we conclude that

d}'("’ )(20) < g(z0, Vu(zo)) + O(¢)

and the result now follows by letting € — 0%.
Step 2. We claim that for any u € SBV(; RP)

FBw) € o be, ol v(@)dHna(2). (5.8)
The proof of (5.8) will be done in several steps according to the limit function u:

1) u(z) = €xp(z) with Perq(E) < +o0, £ € R?;

2) u(z) = T, aixg,(z) where {E;}., forms a partition of € into sets of finite perimeter,
a; € R?;

3) general case u € SBV(Q; RP).

1) Suppose first that u(z) = €xg(z) with Perq(E) < +oo. We show that for every open set
Q* C 2 we have

Fu) < [ f@0dz+ [ 6 u(@)dEN-(). .
R < [ S0zt [ heu()dHn-a2) (59)
The proof is again divided into several cases, depending on the interface of u and on the set Q*.

a) Assume that we have no explicit dependence on z on either f or ¢ and that Q* = ag + 7Q,
for some agp € RN, > 0. We claim that for

_J) & if(z—a0)-v>0
"(’)‘{o if (o 20).v <0

we have

F(u; @) < fO)" + h(E,v)n" . (5.10)
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Notice that (5.9) reduces to (5.10) under these assumptions. For sxmplicity we assume that v = en
and we denote Qu by Q. Let Q' be the projection of Q on RN-

:={z€Q:z~=0}

and let
={3€Q32N20}, Q'=={I€Q:3N$0}.

Suppose first that ao = 0 and n=1s0that ° = Q and

u(z)={e ifzn >0

0 ifzn <0.

Then by proposition 3.5 ii) there exists un € A(&,v) such that up = ¥ in L}(Q;RP) and

h(E,v) = Lim [ j £ (Vun(2))dz + / [u,,](:c),v,.(z))dHN-l(:c)] . (5.11)
Define the sequence vn i 38 follows
£ ifzy > m
vn'k(z) = u,l((2k + l)z) if |IN| < —(—m

0 ifzy < m
Then, for n fixed

Hon i — vl @iR?) = ji‘z’hﬂ / lua((2k + 1)z) = u(z)|dz'dzN =

2k+1/ / lun((2k + 1)z, )ldz ‘“+2k+1 / Jun((2k + D)2',1) - Elde'd

where by periodicity of u,, in the first N —1 variables and the Riemann-Lebesgue Lemma

f% /Q' {un((2k + 1)z',t)|dz'dt — /-0% jQ' |un(z)\dz'dzN as k — +©

and
H
[ [ (@t + 1)z - Elasfat = /: |, lon(e) - €lda'deny as k= +oc

so that
lim hm ||v,.,k u"Li(Q RP) = =0.

n—+00 k=4

Hence, by a standard diagonalizing argument

—+400 k—+400

F(u;Q) £ hm sup lim sup [ ./Q f(Vvu,k(z))dz + /Q S )cp([v,.,k](a:),u,.,k(z))dH N-l(z)] .
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Now

Jy 7Ttz = [ [ siopes +

+ / / £(0)dz + / b / F((2k + 1)Vun((2k + 1)z)dz

2k+l

where by periodicity of uy,

Tt
/_m ,/Q, F(2k + 1)Vun((2k + 1)2)dz =

N 1
- (-2_kl+_1) ./ ) ./ (2k+1)Q’ J(@k+ DY)y =
2k+ - j £((2k + 1)Vun(y))dy =

= [ = (Vuniy + [ e Sk + DV(0) - (Tun(w)ely
so by (H3)
lim sup /Q f(Vonu(z))dz = £(0) + jQ £ (Vun(y))dy.

On the other hand, again using the periodicity of u,

'/an(un,k) P([vnk)(2), Vnk(z))dHN-1(2) =

- /{zeo=lz~l<ﬂﬁm}n#ﬁz(un) Pl[un)((2F + 1)2),va((2k + 1)z)dHN-1(z) =

1 )N— /
= U ) dHn_ =
(2k +1 {:€(2k+l)Q:|zn|<%}nE(u,.) (P([ n](y) Vn(y)) N l(y)

= JonZien P[un)(¥), vn(y))dHN-1(y)

hence, by (5.11)

F(u;Q) < l.iff.i‘:f [f(0)+ /Q Fo(Vun(y))dy + /Q Sen) ‘P(["n}(!/),Vn(y))dHN—l(y)]

= f(0) + h(,en).
Now let ag € R" and 5 > 0 be arbitrary. Define

fniay=1(%)
and let

Fawar) = jat {umint | [ muntees +2 L olune) et
un € SBV(Q*;R?), u, — u in BV(Q";R?)}.

55



Setting ¢ i o
ifzn >

"°(’)={ 0 ifzn <0
by the first case it follows that
Fp(uoiQ) £ fn(0)+ hq(§,en)-

Given any sequence tn — U0 in BV(Q;RP) we define for z € @°

- a9
va(Z) := tUn (i—'-?—-) .
we have v, — uin BV(Q‘;R’) and thus

Then, since u(ao + 7y) = vo(¥)
F(u; Q) < liglilg { /Q' f(Von(z))dz + /Q‘nE(u,.

= mjnt | f(},Vun@:,,ﬂ-»dw
‘P([uﬂ](‘x_%g)s Vn(x—:#"g))dHN_l(z)] =

)w(lvnl(z),u,.(z))dﬂn-l(z)l _

+ / ]
Q" (a0 +NZ(un))

= n" lim inf [ jq fn(Vua(y))dy + -:-’ /an(un) «P([un](y),vn(y))dHN-x(y)l .

we conclude that

Given the arbitrariness of tn
)< oV Fn(ua @) S 7 [n(0)+ hy(Eren))

F(u;

where 1
fn(0) = £(0) and hp(§,en) = -,;h(&en)

feis positively homogeneous of degree one. Hence

Fu@) < f(O+ 7 h(€, en)

since

and (5.10) is proved.
¢ have an explicit dependence on 7 and we

We now turn to the general case where f and
proceed with the proof of (5.9).

b) Assume first that u has planar interface i.e.

_f € if(z-a0) >0
w={§ 0%

e RV, 6> 0. Asin part a) without loss of generality we

andlet @*=a+ 0Qy CC for some @
by Q and we let

ao = 0 and v = €N, W€ denote Qu

assume that
Q= {zEQ‘:zN=0}, Q := {er:zN=0}.
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Clearly () N Q* = Q'. Since Qs a compact subset of ©, fixing € > 0, it is possible to find a
6 > 0 such that properties (H2) and (H5) and Proposition 3.6 ii) are satisfied uniformly in Q" i.e.

z,y €, |z - y| < & = |f(z,4) - f(y,A)| < C(1 + [|A]l), VA € MP*V, (5.12)
z,y €N, |z -y < & = |p(2,£,v) - p(1,€,v)| < €ClE, V(£,v) € R x SN2, (5.13)
T,y € ﬂ.’ I-'L' - yl <é=> Ih(z,f,v)- h(%fs")l < ‘C(l + |£|)’ v(fa”) € R? x SN—I' (5-14)
Let m € N be such that ¢
n::;(& _(5.15)

and partition ' into m™¥~! (N-1)-dimensional cubes aligned according to the coordinate axes and

with mutually disjoint interiors
mN=1

= | (ai + nQ"). (5.16)

=1

We write Q! := a; + 7Q’ and Q; := a; + 7Q. Foreach i = 1,...,mN"! Jet v = win LY(Q;i;RP)
be such that

n-+co

[ / f(ai, Vul)(z))dz + / T (-)) (i, [uD)(z), v (z))dHNn_1(z)| <

< f(ani) + "n—{]V_"l‘ S r]Nf(a.-,O) + nN-lh(a‘,f,eN) + ;'n'—N—_—l

by part a). Using the slicing method as in Lemma 3.1 and Remark 3.2 applied to
Fw @)= [ feVu)de+ [ o plan 4](e),v(e))iHN-(2)

we conclude that there exists a sequence {f )} € A(&,en) such that, setting v = p,,, * u. el PR
on 0Q;, Eg) — uin L}(Q;; R?) and

lim sup [/ 1@ V@ + [ o oo le)o)n0 @) eEN- (z)]

k—400

@S ) "‘“*'l"ﬁ"’l(z),vs:"(z))dﬂn-lw]

< hm inf [/ f(ai, Vul)(z))dz +
so we conclude that

lim sup [ f(auvfk (z))dz +

k=400

e wlai, e"’l(z),u"’(z))dHN_l(z)] <

< 7™ f(ai,0) + 0V h(a;,,en) + ;m- | (5.17)
Define the sequence wy ¢ as follows
£9(z) ifzeQ;
¢ ifzy >3

0 ifzy < -3
vi(z) otherwise.

Wi e(2) ==
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Clearly wi,e € SBV(Q*;RP) and Z(wke) = Uz (g)). As ||l < comSt. and since

meas ((n n {\ zn I< g}) \ (MU Q;)) =0

=1
we have -
llwre - @R = 2 1Y - ulli @ir»)
=1
and so
kE‘fw“wk,c —ullpx (Q°;R») =0.

Hence,

F(u; ) £

< mjnf [ [ f@ TonelaNdz+ Joresiono w(z,lwk.d(z),w.c(z))dHN_l(x)] <

Slimsup 3 [ [, Sas e @+ ]Qinz(é:))v(ae,ld"l(z),u&"(z))dHN-,m}

k=t =1

simewp X | [, S I @) s 9E @)iz] +

k—+0o0 =1

mN-1 .

+lmsup 3 { /sz(ﬁ.-))sp(z,[fg)](z)»ﬂg)(f))-‘P(ae,[ﬁg)](z)»Mg)(I))dHN-l(I)] +

=1

+ j . f(z,0)dz
Q n{lzn1> 1} (

where by (5.17)

™S [ ST+ mm&a))‘P(ai»lf@l(z)»uf’(r))dHN-x(z)} <

k=t =1
mN—) m"’l
< ")N—l 21 h(a;,{,eN)-i'ﬂN 21 f(di,0)+€.
i= i=

Also, by (5.12), (5.15) and (H9)

mN-1

imeup 3 |, f& Ve @) (o0, VED @)z <

<lim supmi _[ o, ec(1 +IVEP (@)IDd= <

k=400 =1
mN-1 _
<limsup 3 ]Q. (1 + (@ VED )z = 0(9)

k=400 =1
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since by (5.17) { Jo, f(a,-,V{f:) (z))d::} remains bounded and by (5.13), (5.15) and (H9)

limsup 3 [ ) D) w(x,lff)l(z)mf’(z))—s°(a.-,lff’](z),nf)(z))dﬁzv-n(z)] <
Stimep 3= [ o0, CUENDdHN-(2) <
<limsup 3 eCoplai, [60)(2), 1 (2))dHN-1(2) = O(e),

k—too 1=y JQinZ(ELY)

where we used the fact that, due to (5.17), { ) e ‘P(ai,[fﬁ")](z), #f)(z))dH N-;(a:)} remains
s k
bounded. Finally we note that by (5.14)—(5.16)

mN=1

/Q.nz(u)h(z,f,ew)dﬂzv-x(z)-17"" Z; h(ai,§,en)| <
<X / |h(z,€,en) - h(ai,€,en)| dHN-1(z) <

i=1 Y9

mN=1
<X /,‘C(l“‘lfl)dHN—l(I):O(c)

i=1 Qi '

and by (5.12)
_ _lmn-x |
'/Q.n{lxnkg}f(z’o)dz " Z; f(ai,0)] <
,0) - i,0)|dz < Cdz = O(e).

€T Jo 0 feolis < 3 [, i =000

Therefore we obtain
F(u; Q%) < ,/Q' f(z,0)dz +/Q'n2(u) h(z,€,en)dHNn_1(z) + O(¢)

so to conclude (5.9) it suffices to let ¢ — 0.
c¢) Take u as in part b) but now let 2* C Q2 be an arbitrary open set. Let II be the plane

II:= {zERN:z-eN=0}=E(u).

It is clear that

n=1

Q= U (UA4,)

+0o

where A,, is an increasing finite collection of non-overlapping (i.e. with disjoint interiors) cubes Q
of the form a; + €@ with edge length bigger than or equal to 1 and such that

Hn_1(8QNT) =0. (5.18)
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Thus, applying part b) to a decreasing sequence of open cubes whose intersection is the closed cube
Q one has

FQ) < J e 0)e+ [ o Wartemfin-i(2)
NS (u)
and so by Proposition 4.2 iii)

Fu@) < lim F;U4a) < Lm 6‘2 F(wQ) <

slnigpga}ji [ Af(z,oyzn jznz(u)h(z,e,en)dﬂn_l(z)].
€An

By (5.18) and Lebesgue’s Monotone Convergence Theorem we conclude that

F(8;97) < limjnf [ / f(z,0)dz + h(z,f,eN)dHN_l(:r)] =

UAn (uA..)nE(u)
= ,0)d / h(z, €, en)dHN-1(2)-
Jo S0+ fo 5 b Eoem)HNA)

d) Now suppose that u has polygonal interface je. u= fxg where Eisa polyhedral set (i.e.

E is a bounded, strongly Lipschitz domain and 8E = HyU...U Hy, H; are closed subsets of
hyperplanes of the type {z € RN :z-v; = ;}). Let Q° be an open set contained in  and let

I:={i G'{l,...,M}:HN_l(H,'ﬂﬂ')>0}.

QO NnI(u) =0, ie if card] = 0, then u € wi(Q*;RP) and it suffices to consider u; = u to
obtain

Fu @) < [ 1,0z

The case card] = 1 was studied in part ¢) where E is a large cube so that N T(u) reduces to
the flat interface {z €Q:z-Vv= 0}. Using an induction procedure, assume that (5.9) is true if
card] = k for k < M — 1 and we prove it is still true if card] = M. Recall that

BENQ" = (HiNQ°)U...U(AMND).

Consider the sets
5 := {z € RN 1 dist(z, Fa) = dist(z, Hz U ...UHm)}

and
Q:={z€eN": dist(z, Hy) < dist(z,H2U...U Hum)}.

Notice that Hy-1(S N T(u)) = 0 because Hy-1(H; N Hj) = 0 for i # j. Also ; is an open set
and an(ﬂzu...UHM)=0- Fix § > 0 and let

Us = {z e RN : dist(z,5) < 6} '

UE = {z e RV : dist(z,5) < &, dist(z,H1) < dist(z,HzU...U HM)} ,
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U} = {z € RN : dist(z,5) < 8, dist(z, Hy) > dist(z, B2 U...U Hn)}.

Since ©; contains only one interface and ; := Q* \ ©; contains at most M — 1 flat interfaces we
can use the induction hypothesis to obtain sequences u, € SBV(Qs;RP), v, € SBV(Q2; R?) such
that u, — u in BV(9;; R?), v, — u in BV(2; R?) and

lim /Qx f(z,Vup(z))dz + /Qx )tp(z, [u,.](z),u,,(z))dHN_l(z)] <

n—+400

< ./Q, f(z,0)dz + /Q,nE(u) h(z,€&,v(z))dHN-1(z) + g;

NZ(un

r

tim | f, S VoueNiz+ [ )v(z,[vul(z),pn(z))dﬂn-l(x)] <

n—+oc0 | JQ)

< fo S@OMe+ [ o b €D dHNA(e)+ 5.

As in Lemma 3.1 and Remark 3.2 we use the slicing method to connect u, to w, across U 6_ noy

where w,(z) = (p, * u)(z). We obtain a sequence &, — u in L}(Q;;RP) such that @, = w, on
091 NS and

ET:_‘:? [A’ f(z,Viy(z))dz + /("llnz(ﬁ,.) ¥(z, [ﬁﬂ](z)’pn(z))dHN—l(:)] <
< fo f@0ds+ [ o b€ N () + 5+
+Cmeas(2; N U6’) + CHN_l(Ug N2 NI(u))

where we have also used Lemma 2.4 ii). Similarly, we may connect v, to wy across Ug N Q2 and
we obtain a sequence ¥, — u in L}(Q;;RP) such that 3, = w, on 82, N S and

lim sup [ '/Q (2,95 (2))dz + /Q s ¢(z,[s,,](z),p,,(z))dHN_,(z)] <

n=—+400

)
< ,0)d / h(z,€,v(z))dHN- 2
< fo @0zt o b))+ 5 +
+Cmeas(Q N US) + CHN-1(UFf N Q2N E(u)).
We set
€.(2) = in(z) fzenNQ°
M= ta(z) ifzeHNnQO
Clearly £, € SBV(Q*;RP) and
n_‘-_‘;’fw"fn - u”L’(Q';R}) =0.

Hence, as Hy-1(S N Z(u)) = 0 and Q* = N, U N U (S NQ*), it follows that

F(u; Q%) < ET_"}OIS [,/Q' f(z,Vf,,(z))dz + /Q‘nE(f )‘P(z’[tn](z)»on(z))dHN—l(z) <
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< limsup [ /Q; f(z,Via(2))dz + /ﬂ,nz () @2, [8n)(2), Pn(2))dH N-x(z)] +

n—+<400

+lim sup { jﬂ, f(z, Vin(2))dz + jQ,nz ) @(2, [Bn)(2)s Ba(2))AH N—x(x)} <

n—+400

< o S0+ [ g M EAENINAE)
+Cmeas(* NUgs) +CH N-1Ugn " N T(w))

so letting § — 0 we conclude the result.
e) Finally, if E is an arbitrary set of finite perimeter in Q, by Theorem 2.11 there exists a
sequence of polyhedral sets E, such that Xg, — XE in L'(§?) and Perq(En) = Perq(E). By

Proposition 3.6 jv) there exists a sequence of continuous functions Ry : 2 X RN — [0,400) such
- that
h(z,€,9) < hm(z,9) S Clyl, ¥(=9) € R X R"

and
h(z,£,v) = inf hn(2,9)

where we extended h(z,§, .) as a homogeneous function of degree one. Setting

n(z) := EXE.(2)
it turns out that u, — u in L}(Q";RP) so by Proposition 4.2 ii) and iii) we have

F(u; Q) < lim inf Flun; ) £

n—++00

< lim [/Q' f(:’o)dz+./9'n2(u )h(a"’E’Vn(z))dHN—l(z)] <
< [ f@0d= + lim foragy oo N2(2) =

= [ fe 0z + Jor o B NN

where we have used the fact that meas(E,AE) = 0, Per(E,) — Per(E). Letting m — +oc and
using Lebesgue’s Monotone Convergence Theorem we obtain

Fu) € [ f(e0dz + /MM h(z,€,v(z))dHN-1(2)

and this concludes the proof of (5.9).
Inequality (5.9) together with Proposition 4.2 iii) yields

F(u;(u)) < inf {F(u;A): AC Q, Ais open ,EZ(u) C A} <
< inf { L f(z,0)dz + /A . bz, £, v(z))dHN-1(z) : A C 0, A s open , E(v) C A} =

= /z(u)h(z,f,v(z))dHN-x(z)

and therefore we conclude (5.8) in case 1). The proof of cases 2) and 3) follow exactly as in [7]
Proposition 4.8 Steps 1 and 2 respectively. .
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6 Characterization of the Density Functions and Relaxation for
BV Functions in the Homogeneous Case

We now extend our relaxation result of Theorem 4.1 and Proposition 5.1 to arbitrary BV functions
in the case where ¢ satisfies (H8) i.e. ¢(z,-,v) is positively homogeneous of degree one. Recall
that we consider an energy functional of the form

E(w)= S Vuleie + [ ole, o) v(e))dHn-1(2)
and we obtained the following integral representation for the relaxation
F(u) = {hm inf E(u,) : u, € SBV(Q R?), u, — v in BV(Q; R”)}
when u € SBV(Q;RP):
Fu) = /Q o(z, Vu(z))dz + /z o M @) @) o), (6.1)

Now consider

Fu) = /9 o(z, Vu(z))dz + /z o M (@) )N+ (2) +

oo dC(u)
+ oo (= a5 @) o)
We will show that for u € BV (); RP)
F(u) = F(u)

and we will characterize the densities g and h (see Propositions 6.3 and 6.4). This is done in a
series of lemmas.

Lemma 6.1 For every (zo,A) € @ x MPXN
9(z0, A) < f(20,4)
and for every (zo,€,v) € @ x RP x SN-1
h(zo,§,v) < min{p(z0,&,v), f7(20,§ ® v)}.
Proof. Define £(z) := £(z - v) + §. Then & € A(,v) so that
bz, < [ f°(20,VEo(@)Mz = [*(20,£ BY).
Qv
Now consider £, € A(§,v) defined by
_) € ifz-v>0
G(=)= { 0 ifz-v<O.

e
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1t follows that
o) S fo e le0lIENEN-A(E) = plo0 b

On the other hand, letting £(z) = Az for every Z € Q, we have
gz A) S [, fleo,VE())z = S(z0:A)

. MP*N — [0,+00) and let

onnegative Borel measurable function G
is positively homogeneous of

Lemma 6.2 Let G be a n
function such that H (V)

H:RPx SN-1 = [0,+00) bea continuous
degree one. Define

Go(A) = inf{meals(m [ /QG(Vu(x))dz+ ]an(u)H([u](z),u(z))dHN_l(z)]:

u € SBV(S:RP), ulpyq(z) = Az}.

1

Then Gq(A) = Go(A) where @ = (-3, 1)

Proof. By Vitali’s Covering Theorem we may write

Q= D(a;-{-eiQ)U N

=1

eas(N). Let u € SBV(Q;RP) be such that u|go(z) = Az

where meas(N) = 0 and 352, N =
and define
wg(e)={ AZ+a= A (z2) ifzea+aQ
Az otherwise.

Since H(-,v) is positively homogeneous of degree one, uqlyq(z) = Az and T(uq) = Uz (ai +

Q)N (ai + €;Z(u)) it follows that
601 S sy 5 v ® (7 (527))
+ «/(c;+€.'Q)n(a.~+€.'E(u)) o (“M (2 :.-ai) v (z :.-ai)) dHN "(z)] =

o [ [, cosiana+ [ o MH([u](y),u(y))dHN_l(y)] -

= meas()

= [, Gouti+ [, 5, BN,

=1

Taking the infimum over all such u we conclude that
Gq(A) < Go(A)-
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A similar construction yields
Gq(A) < Gq(4)

and so equality holds. s

In the next proposition we find an explicit formula for the function g. Precisely, we show that
9=Q(fVyo)
i.e. g is the quasiconvexification of the inf-convolution of f and g given by
fVeo(z,4A):= inf{f(z,A -a®b)+ po(z,a,b):a €ERP, b€ RN} .
Proposition 6.3 Assume that hypotheses (H0)-(H7) and (H9) hold. Then
9(z0, A) = Q(fVio)(z0, 4)

for every (zo,A) € @ x MP*N,

Proof. To show that g(zo,A) < Q(fVo)(zo, A) it suffices to prove that

9(z0, A) < fV (20, 4) (6.2)

for any (2o, A) € @ x MP*N since g(zo,-) is quasiconvex (cf. Proposition 3.3 i)). We must show
that for any a € R?, f € RV

9(z0, A) £ f(z0,A - a ® B) + po(zo, @, B).

Assume without loss of generality that || = 1, let {8,,...,8x5_1,8} be an orthonormal basis of
RY and consider

1
Qn'—-{ZERN:lZ'ﬂ,‘l(;‘, |z-ﬂ|<§}

N. n 1 _

S,.={z€R e Bl < 5= |z~ﬂl_0}.
We denote by Q; the trapezoid with bases Sn and {z € Qn : z-f = 1} and Q;; the one with
bases S, and {z € Qn : z- 8 = —}}. Let R, = Qa \ (Q; UQ}) and let IR denote the common
boundary of R, and QZ, respectively. Then

meas(Qn) = n¥-1, Hy_a(Sa) = n¥~1 4 0(2) (63

meas(R,) = O(nV—4), HNy_1(8RE) = O(nN-2). (6.4)
By Lemma 6.2 (with G = f and H = o) we have

oa0,A) € s [ [, f@ovetanaz+ [ soo(zo,lv}(z),u(z))dHN-x(z)]
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for every v € SBV(Qn;RP) such that v]sg.(z) = AZ — &. Define
(A-a®p)z ifz€Qy
va(z) =

(A-a®p)z-a ifz €Qn
Az - § if € Rn.

Then vn|og.(2) = AZ — 2 s0
L
_— - - d
oz0r ) < oy Loy e A= 8A |, f(zoA - a @Dz
+ [ fleo, )z + [, wolaoraBiAN-s(2) +
+/ ‘Po(x09 (a ® ﬂ)$ - g,V)dHN_](z) +
8R} 2
NN 2 )ily-(2)] - (6.5)
3R,
By (H4) and since |z - B| < 1 for every z € Q,, we have
wo | 2o, (a®B)z %,u) <C
so from (6.5) using (6.3) and (6.4) we obtain

o(50,4) € ooy Lo, S0~ @ P + JGeo AN+

+ (n”" +0 (-1';)) o(z0,a,8) + CO(nN-2)] =

= f(z0,A—a®f)+ f—(f’%-‘ﬂ + po(z0,@,8) + O()-

Letting n — +00 we conclude that
9(z0, A) < f(zo, A—a® )+ wo(z0, @, B)-
Conversely, for any (z,4) € Q x MP*N
FV0(z,A) < f(2,A) + #o(2,0,0) = f(z,4)

where we have used the fact that vy is positively homogeneous of degree one and so @o(z,a,b) =0

if a = 0. Thus
Q(fVepo)z,A4) < fVeo(z,A) £ f(z,A) (6.6)

On the other hand
V(2,6 ® V) < f(2,0) + wo(z,€,v)

and this implies that
QU Vo) (z,E @) < f(z,0) + wo(2,£,v)
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and thus, since g is positively homogeneous of degree one

Q®(fVeo)(z,€ ® v) £ o(,&,v). (6.7)
Defining for u € SBV(Q; R?)

Fo(w):= [ QU Vo), Va(z))dz + k o UV, [4)(2) & ¥(=))dHN(2)

and
F(w:= [ f(@ Vu())ds + /EM ¢ofz, [4](z) ® ¥(z))dHN-1(z)
it follows from (6.6) and (6.7) that Fo(u) < Fi(u) and so
Fo(u) £ Fi(u) (6.8)

for any u € SBV(§); RP), where Fo (resp. F1) denotes the relaxation in SBV of Fy (resp. F}).
However by Fonseca and Miiller’s result (see also [5]) Fp is lower semi-continuous in SBV so it
coincides with its relaxation i.e.

Fow) = [, QUV)z Vulaz + [, @<([Vpo)(a,[ul) ©4(x))dHn-1(2)
and, by Theorem 4.1 and Proposition 5.1
Fi(w)= [ 3z, Vul@dz + [ bz, [u)(z) 8 v()dHN s (2)
where.
§(z0,4) = inf{ /Q f(z0,Vv(z))dz + /Q n5_:(")(&;’0)0(:0,[v](ﬂf),V(-’C))ﬂlﬂz\r-l(ﬂl‘)=
v € SBV(Q;RP), v|sq(z) = Az}
and

h(zo,£,v) = inf { /Q , [ (20, Vv(z))dz + /QynE o wo(zo, [v)(2),¥(2))dHN-1(2) : v € A(E,V)} :

Since ¢p is positively homogeneous of degree one, (p)o = ¢p s0 it follows from (6.8) that

Q(fV‘PO)(an A) S 5(30’ A) = g(z(h A)
a

To prove the following proposition we assume that (H8) holds i.e. that ¢(z,-,v) is positively
homogeneous of degree one. Under this assumption ¢ = .
Proposition 8.4 Under hypotheses (H0)-(H5) and (H8)-(HY)
h(z,£,v) = ¢%(z,{ V)
Jor every (z,£,v) € 2 x RP x SN-1,
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Proof. Since F(-) is lower semi-continuous in SBV it must coincide with its relaxation in SBV.
Therefore since g satisfies (H0)—+(H3), (H9) and h verifies (H4)-(H5) and (H8)-(H9), by Theorem
4.1 and Proposition 5.1 we have for u € SBV(Q; RP)

Fu) = /Q o(z, Va(z))dz + /Q 50 M )R (2) =
= [ V@)= + /an(u)ﬁ(z,[u](z),v(z»dnn-l(z)
where
3(z0,4) = inf{ /Q 9(zo, Vo(z))dz + /Q 5y Mo (@) (2)

: v € SBV(Q;RP), v|sg(z) = Az}

and

(zo,€,v) = inf { /Q §(z0,Vole)iz + /Q 50 1) NN (@) 0 € AL ,,)} _

’ This implies that ¢ = g and h = k. Let £o(z) = €(z - v) + % Then &, € A(§,v) so

h(zo,€,v) = F(zo,€,v) < /Q 9%(20, VEo(2))dz = (20, £ @ v).
14

Using Lemma 6.2 we will now show that

9(2096 ® V) S h(-"o,fs V)' (69)

Since h(z,-,v) is positively homogeneous of degree one (6.9) will imply that
yw(zo»f ® V) < h(zo,f,V)

and this will conclude the proof. We now prove (6.9). Fix £ € R? and v € SV-1. Assume without
loss of generality that » = enx. Note that, by Lemma 6.2

9(z0,€ ® en) = G(z0,{ ® en) <
< meals(Q) [/Q 9(zo, Vo(z))dz + _/an(v) h(zo,[v)(z), v(z))dHN-1(2)

where v € SBV(Q; R?) is such that v|,q(z) = ((@en)z + ; We use a construction similar to the

one in the previous proof. Let
n n\N-1 11
%=(-33) *(-73)

and



‘We denote by Q3 the trapezoid with bases Sy, and {z € Qn : znv = 1} and Q;, the one with bases
Snand {z € Qn : 2N = —1}. Let Ry = Q. \(Q5 UQ;) and let 8RE denote the common boundary

of R, and QZ, respectively. Then
meas(@a) = oV, Hy_1(S.) = n¥1 4+ 0(3)

meas(R,) = O(nN=*), Hn_1(8RE) = O(n""?).

£ if ze Q}
0 ifze Q.

{ (E@en)z+§ ifzeR,
v,.(z) =
Then valoq.(z) = ({ ® en)z + ; and so
g(zO’E ® eN) <
1
S meas(Qn) [ /;” 9(z0, Vvn(2))dz + /q,.nz(,,,.)h(“' [va)(z), vn(z))dHN-1(z)| =
= mea.:(Q,,) /R,. 9(z0,{ ® en)dz +/s h(zo,§,en)dHN-1(z)+
+-/8RZ h(zo,(§ ® en)z - g,l’)dHN-l(z) +

+ /aR; h(zo, (£ ® en)z + g,u)dHN_l(z)] )
By Proposition 3.6 i) and as for every z € Qq, |z-en| < _;_’ it follows that

h(zo,(§ @ en)z £ -g,u) <C
so from (6.12), using (6.10) and (6.11), we obtain
g(anf ® eN) S
< 3 [9(20£ @ em)O(N ) + han,g.ew) (n¥ 1 +0 (1)) + €O (¥2)] =
= 9(3‘0,5 ® CN)"% + h(zOsfaeN) +0 (%) .

Letting n — 400 we conclude that

9(z0, € ® en) < h(zo,§,en).

(6.10)

(6.11)

(6.12)

Lemma 8.5 If h(zo,&,v) = g%°(Z0,£ @ V) for every (zo,€,v) € 2 X RP x SN-1 then F(u) = F*(u)

for all u € BV(Q; RP).
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Proof. Under the above assumption, by Fonseca and Miiller’s result (see also [5)), F~ is lower
semi-continuous in BV. Given any 4 € § BV(Q;RP), Lemma 6.1 yields

F(ﬁ) = /Qg(z,Vu(z))d:c + /2(“) h(z,[u)(2), ¥(z))d Hy(z) <
< /Qf(z,Vu(z))d:c+ /2(%)ﬁP(z,[u](z),v(z))dHN_l(z) = E(x)

g0 if u, is any sequence in SBV(S; RP) converging to u in L1(S;RP) with sup, |Dun|(Q) < +o0
by lower semi-continuity of F*(:) it follows that

F*(u) < limjnf F*(u) < limjnf E(un)
Taking the infimum over all such u,, we get
F*(u) € F(v).

Conversely for smooth u by 6.1)

Fla)= F(u) = [ ola Vel

so by lower semi-continuity of F(-) in BV, F(u) must be less than or equal to the relaxation in
BV of the functional

u— ./Q g(z,Vu(z))dz.

Taking into account that g satisfies hypotheses (HO)—(H3) and (H9) (cf. Proposition 3.3 i)) and
Fonseca and Miiller’s result (see also [5]) we obtain

F(u) £ F(v):

Clearly Lemma 6.5 and Proposition 6.4 yield

Theorem 6.6 If f and ¢ satisfy (HO0)-(H5) and (H8)-(HY) then
F(u)=F(v)

for every u € BV (Q;RP).

Finally, by Propositions 6.3, 6.4 and the above theorem, we obtain
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Theorem 6.7 If f and ¢ satisfy (H0)-(H5) and (H8)-(H9) then

Fw) = QU Vu(e)de + [ Q=(Ve)(e: u(e) © v(z))dHn-s(z) +

+ f,0°UV0) (2. 65 (@) dCE) =

= f,QUve)z,Vu)sz + [ @=(fVe)z, Diw)
for every u € BV(Q; RP).

7 Relaxation for BV Functions : The General Case

Using the results obtained in the preceeding sections, we are now ready to prove Theorem 2.13,
precisely we show that if (H0)~(H7) hold and if v € BV(2; R?) then

Flu) = /Qg(z,vu@))dw /zm h(z, [u](z), v(z))dHN -1 (z) + jﬂg“’(z,dcu)) =: F*(u)

where g and h are as defined in Section 2. Under hypothesis (H9), we begin by extending the result
of Theorem 6.6 to functions ¢ which are not necessarily positively homogeneous of degree one and
in Proposition 7.2 we show that (H9) can be removed.

Proposition 7.1 Assuming (H0)-(H7) and (H9) hold it follows that
F(u) = F(u)
for any u € BV(Q; RP).
Proof. By (H6) ¢ < ¢o so given any u € BV(Q; RP)

E(u) < /Q f(z,Vu(z))dz + ./Q 5y P )N () = Er(w).

It follows that
F(u; A) < Fi(u; A) for every A € B(Q?) (7.1)

where F;(u) is the relaxation of E;(-) from SBV to BV. On the other hand, as ¢ is positively
homogeneous of degree one, by Theorem 6.6

Fi(u) = /9 9(z, Vu(z))dz + /ﬂ 9%(z, D, 1) (7.2)
for every u € BV(2; RP). Hence, since F(u,-) is a measure (cf. Proposition 4.2) and as by (5.8)
F(u,2NE(w) < / h(z,[u)(z), (z))dHN-1(z)
2nT(u)
we conclude that

F(u) = F(u,9) < F(u,2\ S(u)) + /an o P [ @) (2)
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which, together with (7.1) and (7.2), yields
Fw< [ o@VueNis+ [ o @Dt [ bl )EN-1() = F(w)
The converse inequality was obtained in Theorem 4.1. ]
Proposition 7.2 Under hypotheses (H0)-(H7) it follows that
F(u) = F*(u)
for any u € BV(Q; RP).

Proof. Consider an energy E(-) satisfying the initial hypotheses (HO0)-(H7) and let v €
BV(9; RP), u, € SBV(; RP) be such that C = sup,, |Du,|() < +00 and 4, — u in L}(RP).
Fix € > 0 and let

Ee(w)= [ [f(z Vu@) + dVu(@llde + [ (e, @), v(2)) + elfule)) dHn-a (e

Clearly E¢(-) satisfies (H0)-(H7) and (H9) and so, by Proposition 7.1,
Fe(w) = Fe(u) < limjnf Ee(va) = mjn [E(un) + €l Dun|(9)] <

< 1'{!_1‘.!41.22 E(u,) + €C. (7.3)
We claim that
Fe(u) 2 F*(u) + €| Dul(). (7.4)
To prove (7.4) it suffices to show that
9¢e(z,A) 2 g(z,A) +€|A]| (7.5)
he(z,§,v) 2 h(z,§v) + €. (7.6)

Given v € SBV(; RP) consider the following functional, for which (H9) holds,
Vo(z)lldz + [ dHN_(2).
JoIve@lide + [ ifle)dAn-1(2)
By Example 2.16 i) its relaxation in BV is given by

JoIvotElidz + [ lsl@NdEn-2(2) + ICE)(9)

and so, by Proposition 7.1, we conclude that

||A]] = inf {/Q IVu(z)||d=z +/2(“)nq l[u)(z)ldHNn-1(z) : u € SBV(Q;RP), ulag(z) = Az} (7.7)

and

€l = inf { PRLCOTEY S O OB A(e,u)} .oas
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On the other hand,
ge(z, ) = int { [ 11z, V() + eI Vatolay+
+ L g 0 1,73 + @) dEN-1(3) :u € SBV(@:R?), wloa(@) = Az}
so, by (7.7) and if v € SBV(Q;RP?) is such that u|sg(z) = Az, then
fQ[f(z,Vu(y)) +ellVu@)llay + [, g [0 1) ) + i) -1 (9) 2
> jq £z, Vu(y))dy + /z:(.,m ol [u)(¥), (¥))dHN-1(3) + ellA]] >

2 9(z,4) + €| A]].

Taking the infimum over all such u we obtain (7.5). (7.6) is proved in a similar way using (7.8).
Thus, by (7.3) and (7.4),

Fi(u) £ F(u)+¢lDul(R) < Fe(u) <
< l'{_r_ni*l_xg E(uy) + €C.

Let € — 0% to get
F*(u) £ liminf E(u,)
n—400

which, taking the infimum over u,, yields
F*(u) £ F(u).
| To qbtain the reverse inequality we recall that F(u,-) is a measure and
F(u,A) < C(meas(A) + |Du|(A))
(cf. Proposition 4.2), hence F(u) < F*(u) if and only if

d;:c(u) (zo) € 9(zo, Vu(zo)) for a.e. zo € N, (7.9)
N
dF(u) h(zo, [t)(z0),¥(20))
d —w H W lu-(zo) “ut(zg) O HEN-12e 20€QNI(y), (710
d7(u) oo (g, 9C(¥)
d|C(u)| (20) < 9%(=0 diC(x )l("’ 0)) for |C(u)] a.e. zo € Q. (7.11)

For every € > 0 E(-) < E¢(-) so by Proposition 7.1
F(u) £ Fe(u) = Fe(u).
Therefore, for every € > 0

""“’( )<“’"‘“)(zo) ge(z0, Vu(z0)). (7.12)
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Given & > 0 let & € SBV(Q;R”) be such that #(z) = Vu(zo)z on 8Q and
a0, Vu(ao)) +5 2 [ flzo, Viledz + [ o . eulzo, [#](e), ()N (2).
Then, for every € > 0,
ge(z0,Vu(za)) = inf { /Q (20, Vo(z)) + €l|[Vo(z)|ldz+

+ [ 0LZ0 (&) (@) + o)1) :
v € SBV(Q;R?), vlag() = Va(zo)z)} <
< 9(z0, Vu(20)) + & + €| Dul(Q)

and so, from (7.12) one gets

dF -
dﬁ(:)(zo) < lim inf ge(zo, Vu(20)) < 9(20, Vi(20)) + 6.

(7.9) now follows if we let § — 0*. (7.10) and (7.11) are proved in a similar way.
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