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Abstract

In this paper we obtain an integral representation for the relaxation in BV(ft;Rp) of the

functional

with respect to the BV weak topology.
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1 Introduction
i *"() with respect to the BV weak topology of the functional

In this papei we study the relaxation ( )
denned in SBVCft-.R?) by

we study the relaxation *"(•) with respect to the BV

?) by

where [u)(x) denotes the jump of u at x, E(u) is the jump set of u and the distributi
Du is represented by Du = Vudx+M® i/dffN-i\E(u)+C(ti). Assuming that /(x, •) is quasiconvex

has linear growth and that 9 grows at most linearly in the second argument, undei some
technical continuity conditions (see Section 2) we obtain the integral representation

« L I K)(x))dHN1(x)+ I g^dCW) (1.2)

where 9

in g
continuity conditions (see Section )
(«)« Ls(x,Vu(x))dx+ I h(x,WKx),v(x))dHN.1(x)+ I g^dC

is the quasiconvexification of the inf-convolution of / and 90 given by

/V9o(*,A) := inHKx^A- a® k) + 9o(x,a,b) : a € R*,6 € KN}

and h is given by

) :« in! ( f /°°(xo,Vu(x))dx + f

and v is periodic with period one in the directions of p*, • • • ,I/JV_I} ,

{1/1,. •. P N I > ^ } forms an orthonormal basis of RN and Si/ is the strip

In the above J00 (resp. g°°) denotes the recession function of / (resp. 5) given by

and 90 is the positively homogeneous of degree one function defined byof degree

to f
to work within the framework of the BY*

C C such thatThe lack of a coerdvity hypotheses on / forces us to work within th
weak topology. However, if one assumes that there exist constants C, C\ such

then it is possible to relax with respect to the I 1 topology.
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Functionals of the form (1.1) model many problems in Mathematical Physics, for example varia-
tional problems for phase transitions, where the function spaces involved should allow discontinuous,
vector-valued functions u. Minima of the functional £(•), when £"(•) is lower semicontinuous, are
obtained via the Direct Methods of the Calculus of Variations. However, for nonconvex problems
£"(•) is not lower semicontinuous and so, to obtain the effective energy of the system, one studies
the relaxed functional

F(u) = sup{G(u): G is Ls.c, G < E).

Since the BV weak topology is not metrizable it turns out (see [12]) that

F{u) = inf{liminf £ ( u t ) : (*;)»€/ is a net converging to u in the BV weak topology}.

We will restrict ourselves to finding an integral representation for

T{u) = inf{liminf E(un): Un - • ti in BV weak}

since the effective energy can always be obtained by using minimizing sequences.
When no surface energy term is present and assuming an explicit dependence of / on u, Fonseca

and Mfiller [19] (see also [5]) obtained the following representation for the relaxation T(-) in BY
of the functional

u ~ j^/(x,tt(x),Vti(x))dx (1.3)

with respect to the Ll topology:

/
)

Their surface energy density Kj : fi x Rp x Rp x 5N""1 - • [0,+oo) is given by

,a,b,v) = inf | j ,b,v)\

where

A{a,byv) := | v€5BV i o c (5 i / ;R p ) : i<y) = a i f y . i / = - i , t;(y) = 6 i f » . i / = i

and v is periodic with period one in the directions of i / i , . . . ,i//vr-i}

and if / does not depend explicitly on u it turns out that jRT/(x,a,6,i/) = /°°(x,(6 - a) ® v) (see
[5] and [19], Remark 2.17).

Ambrosio and Braides [3], [4] obtained lower semicontinuity and relaxation results for the func-
tional (1.1) in the scalar case and assuming that <p > a > 0 and that / has superlineax growth at
infinity. A similar problem was studied by Bouchitt£, Braides and Buttazzo [10] in the isotropic
(radial), scalar case.The lower semicontinuity of the functional (1.1) in the space SBV(Q;RP)<
under the above assumptions, was generalized by Ambrosio [2] to the vector-valued case.



'without increasing i« total

L 4, using the biow-up mv.M
I for the relaxation J"(u) and in Section 5 an upper DOUUU » w
(fl;Rp). Assuming that <p is positively homogeneous of degree one, in Seel
rious results to arbitrary BV functions and we find an explicit formula for

case where u € b ^
6 we extend our previous

i h namdyfunction h, namdy

Finally in Section 7 we complete the proof of Theorem 2.13 by removing the requirement that 9

be positively homogeneous of degree one.
We remark that when y s ^ o , i.e. in the homogeneous case, the proof of Theorem 2.13 is

simplified since we do not need the blow-up of the Cantor part to relax in BV.

2 Preliminaries. Statement of the Theorem
In what follows ft C RN is an open, bounded set, p, N > 1, {ci, . . . ,c^} is the standard orthonormal
basis of RN and Mp x N is the vector 6pace of all p x N real matrices endowed with the norm

||A|| := {tr{ATA))t.
Given v € SN~l := {x € R : \\x\\ — 1} we denote by Qv an open unit cube centered at the

origin with two of its faces normal to 1/, i.e.
Qv := {x € RN : \x .*| < \,\x • v\ < i , t « 1,.. . ,N - l j

for some orthonormal basis of RN {u\, i/2> • •. > ̂ N-I > ^}.
We briefly recall some fact6 on functions of bounded variation which will be of later use in this

paper. For more details we refer the reader to Ambrosio, Mortola and Tortorelli [7], Evans and
Gariepy [15], Federer [16], Giusti [21] and Ziemer [25].
Definition 2.1 A function u € L^fyR*) is said to be of bounded variation, u € BV(ft;Rp), if
for a/J t G {1 , . . . ,p}, j € {1, . . . ,N) there exists a Radon measure p^ such that

for every 4> € Cj(fl). The distributional derivative Duisthe matrix-valued measure with components

Mij-



Definition 2.2 A set A C fi is said to be of finite perimeter in SI if XA ^ BV(ft), where \A
denotes the characteristic function of A. The perimeter of A in SI is defined by

Pera{A) := sup { jNtt>#x)c*x : 4> €

For u € BV(Sl\Kp) the approximate upper and lower limit of each component txt, for all t €
{!,...*p}, are gjven by

uf(x) := inf < t € R : lim -jjCs [{ui > t} n £(x,c)] =

and
uf(x) := *up < t 6 R: lim -pCs [{u, < t} n B(x,c)] =

where £(x,c) is the open ball centered at x and with radius e. The set E(u) is called the singular
set of u or jump set and is defined by

E(n) = U {x € ft : tir(*) < ti+(x)}.
tsl

It is well known that £(u) is N - 1 rectifiable, i.e.
oo

nrl

where HN-\{E) = 0 and ifn is a compact subset of a Cl hypersurface.

Theorem 2-3 Ifu € BV(a;Rp) tAcn

t̂  for Cs o-c. x € ft

= 0;

ii) for HN-I a.e. x € S(u) tfccre exists a unit vector i/(x) 6 SN~l, normal to E(u) af x, and
there exist vectors tr(x),u+(x) € Rp we* tftat

lim i / |u(y) - u+(x)\rfcdy = 0,

Um 4r / !«(») - «~(z)|T£r<*y = 0;
€ ^ ) + €N y { B ( « ) ( ) l / ( ) 0 } "

«y forHN-\ *e> xoeSl'
1

lim

and for Hpt-i a-*- *o € E(ti)



We remark that in general (u,)* ^ (u±)j. In the following we shall denote by [u)(x) the jump

of u at x defined by

If u € BV(ft;Rp) then Du may be represented as
Du = Vu dx + (u+ - n" ) 0 v dHs-i |E(u) + C(u) (2.1)

where Vu is the density of the absolutely continuous part of Du with respect to the N-dimensional
Lebesgue measure CN, HN-\ is the N - 1 dimensional Hausdorff measure and C(u) is the so-
called Cantor part. The three measures in (2.1) are mutually singular; if # N - I ( B ) < +oo then
|C(u)|(B) = 0 and there exists a Borel set E such that £N(J5) = 0 and |C(u)|(X) = \C(u)\{X n E)
for all Borel sets X C ft, where |/i| denotes the total variation measure of /x. When C(u) = 0 we
say that u is a special BV function and we write u € SBV(ft;Rp). This space was introduced by
Ambro6io and De Giorgi in [6]. The following lower semi-continuity result holds: if un € BV(ft; R )̂
converges to u in JLl(ft;Rp) then

|JDu|(n)<liminf|Dunl(n).

Lemma 2.4 Letu£ BV(ft;Rp) and let p € Cg°(RN) 4c a nonnegative function such that

I p(x)dx = l^suppp = 5(0,1)» p(x) = p(-x) for every x £ R N .

Let pn(x) := nNp(nx) and

un(x) := (u • pn)(x) s J^u(y)pn(x - v)*y-

* 6 B o r c / / w n c t t o n ;

")

andfor

o» n -»+00 .
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The proof of this lemma can be found in [7], Lemma 4.5. The next result is proved in [19],
Lemma 2.6.

Lemma 2.5 For Hjv-i a.e. XQ €

The following version of the BesicovHch Differentiation Theorem was proven by Ambrosio and
Dal Maso, [5] Proposition 2.2.

Theorem 2.6 If X and \i are Radon measures in ft, ft > 0, then there exists a Borel set E C to
such that ft(E) = 0 and for every x € suppfi \ E

dX,

exists and is finite whenever C is a bounded, convex, open set containing the origin.

We remark that in the above result the exceptional set E does not depend on C. An immediate
consequence is given below.

Theorem 2*7 If n is a nonnegative Radon measure and if f £ Xjoc(R
Ar,/x) then

I
Jx+iC

for (x a.e. x £ R N and for every bounded, convex, open set C containing the origin.

Recently, Alberti [1] showed that the density of the Cantor part C(u) is a rank-one matrix (see
also [5]). Taking into consideration Theorem 2.6 we have the following property:

Theorem 2.8 Ifu € £V(fi;Rp) then for \C(u)\ a.e. x 6 fi

At \ - r I>(«X« + dO C(u)(x + eX)

exists and is a rank-one matrix of norm one, for every convex, open set X containing the origin.

The following two results can be found in [19], Lemma 2.13 and Proposition A.I. They will be
used in Section 4 when we treat the density of J*(-) with respect to the Cantor part of the derivative
Du.

Lemma 2.9 Let p be a nonnegative Radon measure on KN. For fi a.e. x0 6 R N and for every
0 < * < 1 one has

e-o* P(£(*))



Proposition 2.10 Let {pk} be a sequence of Kv-valued Radon measures on ft such that \nk\{Sl)

-> 1 and Mfc(ft) -+ <* where \a\ = 1. Then

\nk-<j*ha)a\{n)

In Section 5 we will need to approximate a set of finite perimeter by polyhedral sets and thus

we will need the following theorem which is proved in [8], Lemma 3.1.

Theorem 2.11 Let A be a subset of ft such that PcrQ(A) < +oo. There exists a sequence of

polyhedral sets {Ak} (i-e. Ak are bounded, strongly Lipschitz domains with 6Ak = HiU/^U. . -U JJP

where each Hi is a closed subset of a hyperplane of the type {x € R N : x • i/* = Q»}) satisfying the

following properties:

\

Hi) HN-i(dAk n an) = 0;

iv) £N(Ak) = CN(A).

Let / : fl x M p x N -* [0,+oo) and 9 : fi x Rp x

satisfying the following hypotheses:

• (HO) /(x,«) is quasiconvex for all x £ ft;

• (HI) there exists a constant C > 0 such that

[0,+oo) be continuous functions

fora l l ( x ,A)e f tx

• (H2) for every x0 € ft and for every € > 0 there exists a 6 > 0 such that

I* - «ol < « * l/(*o, A) - /(x, A)\ < cC(l + ||A||)

fora l l (x ,A)€f txAfP x N .

We recall that the recession function of f is defined by

growth (see (HI) above) /°°(x, •) is a quasiconvex, positively
]) W me further that

If / (x , •) is quasiconvex and has linear growth (see (HI) above) / ( x , )
homogeneous of degree one function (see [19]). We assume further that

• (H3) there exist constants c , L > 0 , 0 < m < l such that

for every
(x,A) € ft x MP*N with \\A\\ = 1 and for all 1 > 0 such that t > L\

8



• (H4) there exists a constant C\ > 0 such that

for all (x,f,i/) € ft x R" x SN~l;

• (H5) for every xo € ft and for every e > 0 there exists a * > 0 such that

|* - *0| < * =»

for all (*,(,!/) € ft x R» x S""1;

• (H6) (fi is 6ubadditive i.e.

V(*,»/) € ft X S""1 and V^,e 2 € Rp.

We define the positively homogeneous of degree one function

Under hypothesis (H6) it turns out that (see [10] and [9])

We will also need the following:

• (H7) there exist constants C,/ ,a > 0 such that

<Cta

for every (x,{,i/) € fi x Rp X S^""1 with |^| = 1 and for all t such that t < I.

We remark that quasiconvexity of / (HO) and subadditivity of <p (H6) are necessary conditions
for lower semi-continuity of the functional

(see Morrey [22], [23] and Ambrosio and Braides [3], [4]). Under assumptions (HI) and (H3) it
turns out that the limsup in the definition of f°° is actually a limit. It is an easy consequence of
the definition of the recession function that

Lemma 2.12 Under hypotheses (Hi) and (Hi) it follows that

0 < r(*.A) < CPU;



ii) for every x0 € fl and for every c > 0 there exists a 6 > 0 aucfc that

|x - *ol < 6 * l/°°(xo,A) - /°°(x,A)l < €C\\A\\

Our goal in this paper is to find an integral representation for the relaxation ^"(-) in BV(ft;RP)

of the functional defined on SBV(ft;Rp) by

with respect to the BV weak topology, namely

Notice that we do not allow ** € BV(fi;Rp) because any u € BV(fi;Rp) can be approached
by Cantor-Vitali functions vn for which E(vn) = 0 and this would imply that T(u) s 0.

In what follows, if g is a positively homogeneous function of degree one and if \i is an Rm - valued

measure, we use the notation

I^t (tiv) € Rp x 5N" l , le t {VU...IPN-UV} tOTm *& orthonormal basis of RN and define the

class of admissible functions

v is periodic with period one in the directions of 1/1,... , I>N-I} »
and

where Si/ is the strip

and where the boundary values of v axe understood in the sense of traces. A function v is said to

be periodic with period one in the direction of V{ if

for all it e Z, y e Si/.
The main result of this paper is the following

Theorem 2.15 Under hypotheses (H0)-(B7), if u € BV(Jl;R') then

^(«) = / f t 9{x,Vu{x))dx () j

where

10



and

K*o,M := inf ( / /°°(*o,Vti(x))dx + / ip{xoM^)M^)dHN^(x): ti

In Proposition 6.3 we obtain an explicit formula for the function g involving the inf-convolution
of / and (po defined by

/V<po(*o, A) := inf{/(x0, A - a ® b) + yo(*o,a,6): a € Rp,6 € R N } .

Assuming further that (p is positively homogeneous of degree one i.e.

• (H8) (p(x,\tyv) = Ay>(z,(,i/) for all A > 0 and all (*,(,!/) € ft x R* x SN~l

we show that (cf. Theorem 6.7 and Proposition 7.2)

Theorem 2.14 / / / and <p satisfy (H0)-(H8) then, for any u € BV(ft;Rp),

/og(/V^)(x>Vu(x))dx+ /

denotes the quasiconvexification of the inf-convolution of f and (p.

Remark 2.15 t̂  Notice that if(p = 0 and taking into account (HO), T{u) reduces to the expres-
sion that was obtained by Fonseca and Miller in [19] (see also Ambrosio and Dal Maso [5]),
where it was proven that the relaxation in BV(ft;Rp) of the functional defined in Hrl-l(ft:Rp)

is given by

Jll

5tnce one can approach any u € BV(ft;R'') by a sequence tin € Coo(ft;R")nBVr(n;R'') such
n^ue Ll(Q\W) and |2>un|(n) -> \Du\(il) it follows that

If (p > f°°f which we do not expect in general, using the lower semi-continuity of7(-) in
£V(ft;Rp) we conclude that the above inequality is actually an equality i.e.

i i



density of T, denoted by
hit) We remark also that when f = /(x,ti,Vu) then the surface energy density of T, de

Kf(XiU~yu+iv) (see [19])t may not be translation invariant i.e. it is not clear that

In this case, the surface energy density of £(•) may be of the form

The following example shows that the relaxation of an energy which includes both bulk and
interfadal energy terms is not equal to the sum of the relaxations of each term separatly. In
particular, as we will see, the relaxation part corresponding to the bulk term may be altered by
the initial surface energy.

Example 2.16 Let /(x, A) = \\A\\

i) for a > 1

t»̂  for 0 < a < 1

= a\t\. Then t /u € BV(fl;R*) we have

= " f Jfft

Proof. Here / ° ° ( i ^ ® v) = |fl.
i) By lower semi-continuity of the functional

/ |

given un € SBV(ft;Rp) such that Un -• u in I^ftjRP) and if a > 1 one has

/ ||vu(x)||dx + / IM(*)I«N-I(X) + |C(«)|(n) <

- i (x) | < Hminf £(un).
< Urn inf f / ||Vun(x)||dx + /

Taking the infimum over all such Un we get

Jil J2->(v)

Conversely, given u € BV(fi;R") let «n € H^^Cft;!^) be such that «„ - u in X1 (»;&") and

\Du\(U) =

12



Then,

< Utataf £?(««) = Jn | | ( ) | | + j ^

ii) Given «„ € SBV{U\W>) such that u« — u in L\U\tU>)> by lower semi-continuity of the
functional

u ~ o|D«|(n) = a

and if o < 1 one has

a I / ||Vu(z)||<k + / |[tt]i

' ||V«»(*)||dHVmhd <liminf E(un).
n—•+00n—•+00

Taking the infimum over all such Un we get

*\ L\\Vu(x)\\dx + I Ju](x)\dHN^(x) + \C(u)\(il)]<T(u).

Conversely, given u € BV(il\ Kp) let tin be a sequence of piecewise constant functions such that
Un - u in I^ftjR*) and |2?un|(ft) - |I?u|(ft). Then,

T(u) < liminf E(un) = liminf a / \[un](x)\dHN-i(x) =

= aliin|nf |I?un|(fi) = a\Du\(Sl) =

_!(«)+ K?(«)|(ft)l.

Remark 2*17 For simplicity we start by proving Theorems 2.1S and 2.14 under the additional
coercivity hypothesis

• (H9) there exists a > 0 such that

i n f / ( x j t A ) > a||A|| V(*,A) € ft x Af*xN;

»(*«&") ,ffi/) € ft x R^ x S^-1.

We shall see in Proposition 7.2 that this hypothesis can be removed.

We divide the proof of Theorem 2.13 into several parts. In the first one, proved in Section 4,
we show that

13



and in Section 5 we show the reverse inequality for SBV functions. In Section 6 we extend the result
to arbitrary BV functions in the case where <p is positively homogeneous of degree one. Assuming
(H8) we prove that h{x^v) = $°°(*,£® v) and we show that g(x,A) = Q(/Vv>o)(s* A) holds even
in the inhomogeneous case. The proof of Theorems 2.13 and 2.14 are obtained in Section 7 and
follow from the previous results.

3 Some Properties of the Density Functions
In this section we prove some properties of the density functions g and h which will be of use in
Sections 4 and 5.

In the following lemma we use the slicing method introduced by Fonseca and Rybka [20] to
modify a sequence near the boundary without increasing its total energy. This lemma will be used
in Section 4 to treat the density of F(-) with respect to the absolutely continuous and jump parts
of the derivative Du.

Lemma S.I Given u € BV(Q\TV>) let Gn(iv) 6c a sequence of measures such that

0 < Cn(u, A) < C(\Du\{A) + £ N ( A)) (3.1)

for every Borel set A C Q and for all n. Let un,vn € SBV(Q\KP) be such that limn^+00 \\un -
vn|lLl(QJ^) = 0 and supn |Dun|(Q) < +oo. Then, for every 0 < 6 < 1 there exists a subsequence
{vnk} and a sequence {wk} C SBV(Q\KP) such that wk = vnk on dQ,

IK - «nJ
and

liminf 0n(un,Q) > limsupGnfc(ti>*,Q)- Cmeas(Q \ ( l - 6)Q) -

-Csup|Dt,m l (Q\(l-«)Q).
m

Proof. We follow an argument used in [17]. If necessary by extracting a subsequence, assume
without loss of generality that

Bm Cn(un,Q) <+oo. (3.2)
H'"< j 00

Define M := supn |Dun|(Q). Let Qk := Q \ *^=&Q, let Pk be an integer such that

and divide Qk into Pk slices of equal width

14



where 5Jfe) mre of the form Sjfc) = A&Q \ ^Q with 0 < \[k) < 1, A<*> = * £ = £ , A<*>+1 = l. We

claim that for every k, n there exists a slice S|fc* such that

() <) n J k | [ J ( ) H w i ( ) p (3.3)

Indeed, if thi6 were false there would exist Jb, n such that for all t € { 1 , . . • ,-Pfc}

and therefore we would obtain

M > f IJVun^Hdx + /
JQ JQ

which is a contradiction. Since we have finitely many slices and infinitely many indices, it is possible

to choose a slice 5(i) belonging to {St- ' : i = 1 , . . . ,Pi} such that (3.3) with k = 1 is satisfied by a

subsequence {t*n } of {un} . Since limn-*+oo |(tin - VnllL^Q;!^) = 0 we may always assume that the

subsequence {t*n } satisfies

for the corresponding subsequence {vA } of {vn} and for sufficiently large n. Next we choose a

slice 5(2) in {5J2) : i = 1 , . . . , P2} such that (3.3) with k = 2 is satisfied by a subsequence {«n2)} of

{i&H and so that

1 // | ? ( ) a ) l
J${3)

 2

for the corresponding subsequence {vi } of {t%'}. By induction, let 5(m) be a slice in {St-
m) : t =

l f . . . ,Pm} such that (3.3) with k = m is satisfied by a subsequence { i4w )} of {tti"'^} and so that

! (3.4,

for the corresponding subsequence {4"°} of {©JiT" }̂. We write S{k) = \-ak,ak)
N \ [-0k,0kf

where 0 < (3k< ak, ak,fik V 5. Let {̂ >t} be a family of smooth cut-off functions such that

0 < ^ < 1

15



in HWi"

and 1 _ j \^
meas{S(k)) Jsw

lM(*)Wtf*-i(*) -
Jl4fc>(x)|dHN-i(*) <

(3.7)

(3.8)

, 1 (3.9)

by (3.1) « ( H ,

+J2
meo»(Sw)

Thus the conclusion follows.

16



Remark 3.2 Under the conditions of Lemma S.I, if vn s UQ t.e. t/ | |un - ^ol 1^(11;^) "* 0
if \DUQ\(Q \ (1 — 6)Q) —• 0 as 6 - • 0 + tAen considering 6 = i and a/ter extracting a diagonal
subsequence it follows from the above lemma that there exists a sequence {u?*} such that wk = UQ
on dQ, \\wk - t40||Li(n;Rj>) - • 0 and

Hminf Gn

Consider the density function g as in Theorem 2.13 i.e.

g(xOyA) := inf{j£/(*o,Vti(z))d*^

The following proposition establishes some properties of g.

Proposition 3.3 Assume that (H0)-(H7) and (H9) hold. Then

i) assuming that Theorem 2.IS holds for SBV functions, p(ar,«) is quasiconvext for all x e fl:

g(xo,A) = inf

L
jQ

QnL(un) J

un € SBV^jR^^n ^ Ax in L\Q;IV>)} =:g*(xo,A).

Proof, i) We show that if un, u € H ^ f t j R * ) are such that ttn — u in ^" ( f t jR*) then

^ Um|nf ^^(x,Vun(x))dx.

Since quasiconvexity is a necessary condition for lower semi-continuity this proves that g(x, •) is
quasiconvex. We remark that quasiconvexity of g is not needed to prove Theorem 2.13 for SBY
functions, indeed it will only be used in Section 6 when we extend our relaxation result to arbitrary
BV functions (cf. Lemma 6.5 and Propositions 6.3 and 6.4). Thus, as un 6 W lf l(Jl;Rp) we may
apply Theorem 2.13 to un to obtain t;n € SBV(il\Kp) such that

and

Then vn -> u in X^fijR"), by (H9) sopn \Dvn\(tt) < +00 and so

= F(u) < limmf EMlimmf

= liminf /
+
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ii) For any Borel set B C Q and i 0 € fl let

Given any sequence «„ € SBVCQjR") such that Un-+Axin Ll{Q\W) we may use the previous
lemma and Remark 3.2 to modify it in order to obtain a sequence wn € SBV(Q;KP) such that
lemma

= Ax and

limsupt//(xo,Vu>n(i))dx+ / Vo(«o,KK«),M»(*))^N-i(x)U

9o(*o,l«n](*)^n(*))d^N-i(x) •
<limi

n-*+oe>

It follows that

<liminf //(xo,Vu»(x))<ix+
n-*+°° \JQ

for any such un and so

Conversely, assume that

s(xo ,A)= Urn [ / /(xo,Vttn(x))dx+ / Vo(«OfKK*)tM»)^N-i(*)|

where un € SBV(Q\KP) and un|aQ(x) = Ax. Then we may write un(x) = Aar + < n̂(x) where
4>n\dQ = 0. Extend #n periodically to RN with period one and define

ttntWl(x) := Ax + ~-<t>n{mx).
171

Then

limlim ||ttn,m - iUtU,i(Q;B )̂ = 0 (310)

since, for n fixed, by periodicity of ^n and the Riemann-Lebesgue Lemma

Hm JQ \4>n(mx)\dx = jQ K(x) |dx.
On the other hand, since £(un,m) = %ns by the periodicity of ^n and since <po is positively

homogeneous of degree one we have

/
Q

JmQ

18



and

= JL Ei-

Hence, choosing a diagonalizing sequence in (3.10), we obtain a sequence {»*} such that v* —•• Ax
l

*—+00

lim / f(xo,Vun(x))dx

Proposition 3.4 Under hypotheses (H0)-(H7) and (H9) it follows that

g~(xo,A) = inf ( / /« (x o ,V«(x) )d*+/

« € 5BV(Q;RP), u\dQ(x) =

Proof. Let wn € 5BV(Q;RP) be such that wn(x) = Ax on 0Q and

•(xo,A)= lim \[

Assume that

where tn - • +00. Then, as tnton|aQ(*) — *n^*» *e have by positive homogeneity of 90

m s u p l / f(xo,tnVtvn(x))dx

< lim sup

+ lim sup

19



By (H3) and since tn -+ +00 it follows that

limsup [ I ^~/(xo,tnVti>n(x)) - /°°(xo,Vti>n(x))dxl « 0

so we conclude that

Conversely, given t > 0 let t> € SBV(Q;R>>) be such that V\BQ{X) = tAx and

S(*o,iA)> //(xo ,V«(x))dx +

Then, using the fact that 90 is positively homogeneous of degree one

t JQ t JQCi£(v)

-I 7/(*o,Vt<*))-r(*o,7Vi,(x))U
JQ I * I

where by (H3), (HI) and Holder's inequality

±Vv{x)) dx <

^-(1 + HVt>(x)||)d* <
/ 7 / ( o , (

JQ t I

< I %\\Vv(x)\\1-mdz + I

However, by (H9) and (3.11)

( / Q

and so

Therefore, since ^|aQ(x) = Ax,

>limsup|/ riPO'?**'"**^ Jor&W

>*(xo,A)-«.

The result now follows by letting c - 0+.

Pot ion 5.5 **r % , — ^ H ^ and W - #*— ^
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i) fe(x,f,t/) < $°°(x,( ® i/), for all (x,£,v) e f t x R ' x
it) let uo be given by

= inf (liminff/
{ } n̂—+00 j^g

«n € SBV(QV;1V>), «„ - «o in

Proof, i) It is well known that .?*(•) is lower semi-continuous in BV for the X1 topology.
Indeed, if t>n,t> € BV(Sl;Rp) are such that vn -* v in X.1(fl;R>>) then for every n there exists
fin € SBV(Sl;Kp) such that

H f i '«- t 'n | | t . ( n i RP)<-

and

Then fin - • » in I^ftjRP) and so

< liminf £(S n ) = liminf^"(en).
n-»+oo n-»+oo

Now consider an arbitrary u € BV(il;Kp). By Fonseca and Muller's result (see [19] and also [5])
let «n € W^WR?) be such that u« - • u in L^a^W) and

Then, by lower semi-continuity of .F(-), we have

W = Lg(x,Vu(x))dx+ I M*.M(«).»<»)VWAr-i(*)+ L
Jil Jls(u) J\l

Given the arbitrariness of u we conclude that

ii) For any Borel set B C Qv and x0 € ft let
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• H?\ we may use Lemma

for any such un and so

Conversely, assume that

since

< l i m m f | /

It follows that

fN-l(*)]

, w c in the directions of e i , . • • ,«N-i w
(see Section 2) and define

ttn(m») rf
0 if

Lemma

/
m J- \ JQ

On the other hand,

- I / 1 / Mm«',«)-«o(x)ldx'dt—-
m J- \ JQ'

JQ
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and

where we have used the periodicity of un in the first AT - 1 variables. Thus, by a diagonalizing
procedure, we obtain a sequence wn = uAym(n) such that wn —• no in Ll(Q;Kv) and

h'ixoM < Uminf |j^/~(x0,Vwn(x))dx

» lim f//°°(xo,Vtin(x))dx+/

The following proposition will be used in Section 5 to obtain an upper bound for the density of
«F(-) with respect to the jump part of the derivative Du.

Proposition 3.6 Under hypotheses (H0)-(H6) and (H9) the following hold:

i) h{x,M < CM for all (x,£,i/) € li x R* x S*-1;

it) for every xo € ft and every € > 0 there exists a 6 > 0 suc/i

|x - xo| < S =» IMxcf^) - k(*i«^)l

/or aH (x,^i/) e f l x R ^ x

t«; /or all (x,£,i/), (x,e;,i/) e

iv) h w tipper semi-continuous in fixR'X SN-1.

Proof, i) Let t*o be defined as

Then «o € A(M, Vtio = 0 a.e. and E(tio) ~ {x £Qv:xv-0}. Thus, by (H4)

) (Qv n
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ii) Fix *o € ft and c> 0. By Lemma 2.12 ii) and (H5) choose 6 > 0 such that |x - *ol < * implies

| /~(xo, A) - / * ( * , A)\ < €C\\A\\ (3.12)

and
(M\ < C|C| (313)

all n € N choose u* € A(£,v) such that
For

/
Qv

By (H9) and part i) it follows that fc(yn < c (1

Hence
, if | i - xo| < *, by (3.12) and (3.13) we have

< f |r°(x, Vun(y)) -
JQv

< / eCHV^yMldy + / cC|Wnl(y)|dHN-i(y) +
JQv JQvnL(un)

Letting n —• +00 we obtain

In a similar way we get
h(xo,t,v) - h(z,(,*) < cC(1 + Kl)

iii) Let ti € A(t,v), let 9 be a smooth cut-off function such that 0 < 8 < 1, 0(1) = 0 if t > \, 9(1)

1 if 1 < \ and define
«(2x) i f | x - H < i
« ( * - I / ) { + ( 1 - « ( X - I / ) ) { ' if 1 < « • ! / < \

f
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Then u* € A(t\v) and so

where, by Lemma 2.12 i) and periodicity of u

/
JQv

and

so that

Taking the infimum over all such u € -4(£, i/) we conclude that

and in a similar way we can show that

iv) By Hi) it suffices to show that {x,v) *-* A(x,(,p) is tipper semi-continuous, for every £ € Rp. It
i6 dear that

is a rotation, Jtew = i/, u € A(£, CN)} •

25



be such that , A W B . , , J < e . (3.14)

/ r
Q

As /°°(x,-) is Lipschitz (by quasi convexity and growth condition) we have

l/~(*, A) - J~(*,B)| < C\\A - B||. (3.15)

Let K be a compact subset of II containing a neighbourhood of x and for fixed € > 0, choose 6 > 0

such that Lemma 2.12 ii) and (H5) are satisfied uniformly in K i.e.

y ^ € * , ! » - • ! < « • »/°°(v, A) - / ~ ( y \ A)\ < €C\\A\l VA 6 M**N (3.16)

and for all (( ,M) € Rp x S N - \

Choosing rotations Rn such that J^CN = i/ni by (3.14H3.17), by (H9) and for n large enough, it

follows that

/
Q

Hence,

and so, letting e - 0 + , we condude

* « ^ « r i ^ r s a ^
that
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is also due to De Giorgi and this argument has been used recently by P. Celada and G. Dal Maso
(see [13]).

We recall that if u 6 BV(Q\ Rp)nl°°(ft; R») then E(«) is the complement of the set of Lebesgue
points of u i.e. x0 $ £(tt) if and only if there exists yo € Rp such that

lim 4 \u(x) - yo\dx = 0.
£-*o+ JB(XO$)

As it turns out, yo is unique and we set

fi(*o) := 1*>,

the approximate limit of tx at x0. We recall also that (see VoPpert [24]) if u € BV(Q;KV) (respec-
tively t* € S£V(ft;Rp)) and <p € Cg°(Rp;Rm) then <pou 6 BV(Q\Km) (resp. ipou € SBV(il;Km),
D((p o u) ss Z?y>(fi)Z?tt on fi \ E(tt), E(y> o u) C E(n) and (v> o tt)*(x) = y>(tt*(x)). This result was
generalized by Ambrosio and Dal Maso to the case where <p is Lipschitz.

In the following B(fl) denotes the set of all Borel subsets of ft.

Lemma 8.7 Let Q : BV(ft;R»)) x B(il) — [0,+oo] (rtsp. Q : SBV(il;W) x B(Cl) - [0,+oo]j
satisfy

i) (/(«,-) is a Borel measure for every u 6 BVWR?) (resp. u € SBV(Sl\Rp));
ii) G(u,B) = Q(v,B) for every B € B(fi) onrf every tt, r € BV(H;RP) (resp. u,e €

#«cft tftaf Du\B = Dv[B;

Hi) G(u,B) < C0(meas(B) + \Du\(B)) for every B € B(fi) and every u € BV(n;Rp)

Let uo £ BV(Q;KV) D I°°(ft;Rp). Then for every c > 0 on<f every R > 0 fAere eztsfs C =
^ c ^ ^ c H u o l U ) *ticft that for every u € BV^jR") r̂e«p. u € 5BF(fl;Rp); with \\u\\Bv < R
there exists tt€ € BV(Sl; W>) n I°°(ft; Rp) satisfying

a) IKIloo < C;

Proof. Fix ifc e N and let t € {A,...,fc} where A € N is given by A = [In || tto IU] + 1 ([*]
denotes the integer part of t). Let ipi € C?(Rr;R'>) satisfy

/ », 1*1 < e
0, |«| > e'+1,

iHoo < 1 and |^,(x)| < min{eM*|}. We define v< € BV{Q\K>) n Xoo(ft;R»)) (resp. tt,
; R") n I~(fl; R")) by
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Clearly HuiH<» < e' and as HV^Uoo < 1 we conclude that

On the other hand, by choice of \ it follows that |uo(*)l < IMIeo < e' and BO «O(«) = ¥>;(uo(z)).

Therefore,

where we have used the fact that <pi has Lipschitz constant less than or equal to 1. Let

Sli := {x € ft: |tT(*)|, |«+(x)l < c1}.

Because {7(u{,*) is a measure we have

where, by locality,

""" 0 ) = 2>ul(ft A £(«<))• Also,
since DuiKfti \ E(m)) = " w v * / / - -t*

(7(tti,ftinS(u,))

On tie other hand 0 ( t l . 0 \ n j ) < ft,(m«o.(ft \«>) + l"»'Kft \ f t i ) ) ' ^

f xv w - M « m * a S f<x € ft : I«C»)I ^ e'>) -
meo«(ft\ft.) = m c o 5 l

and

s iq

[(ft \ fti) \ E(u)] = meas ({x € ft : |ti(x)| > e4}) < L'f;Rp) < -{ (3.20)
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But,

* t

T,f.

k

,=A

|itt(x)-t»r(*)|<iiTN-i(*)+

Kt(*)-«T(»)l<MrN-i(*)+

\ut(z)-uT(x)\dHN.l{x)+

|«+(x)-«r(«)|dHjv_,(»)+

|u+(x)-tir(x)|dJ5TN-i(^).

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where each z € S(tx) is accounted for in only one of the above sums and all of these, except for (3.25)
and (3.26), have only one term. In the case of sum (3.25) we must count how many t € {A,.. . , /:}
satisfy |u~(x)| < c* < c t+1 < |IA+(X)|. Solving with respect to i we conclude that this sum has at

most In |p£t terms and so, for these x, we have

52 wt(x) - u-(x)\ = 5 ; i«-(x)i < i«-(

likewise for (3.26), we conclude that there are at most In r . o l terms and for these x

52 i«+(x) - uz(x)\ = 52 i«+(x)i < i«+(x) -
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Therefore, using the fact that 9,
i has Iipschitz constant less than or equal to 1, we obtain

so from (3.18H3-21) »* follows that

< (Ik - A

V i=Ae

< (fc - A + W«,ft) + Co* ( l + e\_ne _ {•))

and thus, by choice of A,
t Cnfi (, . x - V (3.31)

Choose fc large enough so that . N , { 3 3 2 )

It is dear that (3.31) implies that there exists t € {A,... ,fc) such that

C(«i,ft)<(?(u,n) + €

with HttilU <€*<€* where fc is given by (3.32).

4 A Lower Bound for F(u) when u € BV(Q;RP)

on we prove the first part of Theorem 2.13 namely that

(«)> L g{x,Vu(x))dx+ I Mx,[u]{*)M*))dHN-i{x)+ Lj»(x,4C{u))

where u £ BV^iR11). It is dear that the above inequality is equivalent to proving

Theorem 4.1 let (H0)-(H7) and (B9) hold, let «„ € SBV(n;R>), v € BV(n;R") and suppose

that «n — ti in BV(n;R"). Thtn

1

In this section we prove

where u £

Uminf f /

{xV<*))dx + J^
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The proof of Theorem 4.1 makes use of Lemma 3.7 therefore we must ensure that its hypotheses
are satisfied. We start by proving that, defining

;R*), tin -• u in L\A\KP), rap \Dun\(A) < +oo\: un €

where A C ft is an open set and u € J?V(ft; Rp), then T{u\ A) is a variational functional with
respect to the Ll topology i.e.

Proposition 4.2 Under hypotheses (Hi) and (H4) the following hold:

i) T(-; A) is local, i.e. F(u; A) = T(v\ A) for every u,v € SBV(A;RP) verifying Du[A = Dv[A;
ii) if, in addition (H9) holds, then T{*\A) is sequentially lower semi-continuous i.e. t/txn, u €

SBV(A;KP) are such that un-*u in Ll(A;Kp) then T{u\A) < liminfn-,+oo^(tin; A)\
Hi) F(-;A) is the trace on {U C ft :U is open } of a Borel measure on the set B(il) of all Bortl

subsets of ft;

it;; 0 < ?(u\ A)<C (meas(A) + \Du\(A)).

Proof. We begin by showing that

^(u;A) < C(meas(A) + \Du\(A)). (4.1)

Consider a sequence un € SBV(A\KP) such that Un -+ u in Ll(A;Kp) and |Dun|(^) -* \Du\(A).
Then, by (HI) and (H4), we have

f(u;A) <Uminff / /(x,Vun(x))dx + /

< lim inf f / C(l + HVunWIDdz + / C|l«J(x)|«rN-i(«)] <

< Cmeas{A) + lim sup C\Dun\(A) = C (mcc«(A) + \Du\(A)).

The locality property is dear from the definition of T(u;A). To prove sequential lower semi-
continuity of ?(*\A) we use a standard diagonalization procedure. Let t^, u € SBV(A;KP) be
such that «n -* ti in Xl(A;Rp), supn |jDun|(i4) < +oo and assume that

lim ^(un?i4) < +oo,

lim
* - *+oe>

where «* -» u« in L1(A\Kt>) *sk-+ +00, sopk |Du*|(i4) < +00. For all n let p(n) be such that for
every fc > p(n)

1_
n'
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Choose «m > p(n) such that

Clearly «*• — ti in IHA.R"), by (H9) snpJDufKA) < +00 and so

To establish iii) we use De Giorgi and Letta's criterion (see [14]):
A set function a : X -* [0,+oo] is the trace of a Borel measure if

a) o(B) < a{A) for every A,BeX with B C A;

b) a(A U B) > o(A) + a(B) for every A, B € X such that A n B = fy

c) a(A U B) < a(A) + a(B) for every A, B € X;

d) a(A) = sup{a(B) : B CC A} for every A € X.

Parts a) and b) follow trivially from the definition of ̂ (u; A). To show c) and d) we prove that

if A, B, C are open subsets of ft with B CC C CC A then
^(«; A) < ^(tt;C) + F(u\ A \ B"). (4.2)

Suppose that (4.2) holds. To show d) fix c > 0 and let B CC A be such that

meas(A \ B~) + \Du\(A \B~) < £ .

By (4.1) it follows that T{u,A\~E) < c and so, if C is such that B CC C CC A, by (4.2) we

conclude that
n«;A)<^(tt;C) + €

thus proving d). In order to obtain c), for 1 € (0,1) we define the sets
At := {x € A U B : 1 dtsl(x, A \ B) < (1 -1) dist(z,B \ A)} ,
Bt := {x€ AUB:t<*wt(x,A\B)>(l-«)dwt(x,B\A)},
St := {x€AUB:tdwt(x,A\B) = (l-t)dtal(x,B\A)}.

*" ** "'"*>ixtux (lisioint, there exists to € (0,1)

raMiMvSttSs^a£SK
^ ( t t ; ( A u ) \ (
we deduce that

;AUB) < ̂ (tt;HiU H2) + ̂ (tt;(AUB)\0?TulQ) < ̂ (u;A)
f .
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We now prove (4.2). We let A, B and C be open subsets of ft such that B CC C CC A and we
assume that

[ ^ f ( * ) ] (4.3)

= lim f//(x,Vt*(x))dx+/ vKs.KKx),^)^.,^)] (4.4)
**+oo \JC JCr\2j(vk) J

where ti* - • ti in X 1 ^ \1F;R*), sup* |2?ti*|(A \"E) < +00 by (H9) and t% - • ti in X ^ C ; ^ ) and
(H9) implies that sup* \Dvk\(C) < +00 • In order to obtain an admissible sequence in_the whole
of A we will use the slicing method to connect ti* to e* across C\~E. We partition C \ 2? into two
layers 5 ^ and 5(2

2) of equal measure of the type 5 = { s € C \ 7 ? : 0 < a < dist(z.dB) < /?}.
Define

M := sup{|I?u*|(A \ 7 ) + |D%|(C)}.

We claim that for every it there exists a layer 5 C {S)2\, S?2A such that

/ | | * ( ) | | / I W W I w t W ^ (4.5)
s JsL() 1

Indeed if (4.5) were false there would exist k such that for every S € {£(2)1

\[vktx)\dHN.x{x) > M-.

Then

(x)l > MJ
which is a contradiction. Since we have two layers and infinitely many indices, we conclude that
one of the layers

Sx = {x € C \ E : oj < dist(x,dB) < /*,} € {5^,5(
a

2)}
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verifies

J.R^ the above layer can also
rf {•*.*>. A. • * - • » - « » * - ^ J -

be cho^n so that it satisfies
1

T * S- »d5?3)ofe<,almeasure.BythesainereaSoning

Next we divide C \S into three layers S}3), S(3) » d >(3)

JLR before one of these # «>

verifies

— /

and „ — 0 ii_
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rjj = 1 in {x € C : dist(x,8B) <

Define wj(x) := (1 - tyC*))*]^*) + tyC*)*?^*)- Clearly tc,-
(4.7), sup, \DWJ\(A) < +oo. Thus, by (Hi) and (H4)

H* A) < ljmmf |jf / (x .Vt^x))*: +

U B.

« in X1(>*;R'>) by (4.6) and

+limsup
i-+oo

Now, £(«;,) C E(u^) U E(»Ji)) and

so from (4.8) we obtain

^(t*;A) < ?(«; Umsup f /;C) + Umsup f / C

tneas(Sj) L

< /•(«;,4 \ 7 ) + ^(tt;C) + limsup \cmeas{Sj) + ^ - + ^ 1 <

where we have used (4.6)-(4.7).

We now proceed with the proof of Theorem 4.1.

(4.8)

Proof. Step 1. Assume, without loss of generality, that

liminf / / ( :

[to
lim /_ /(x,Vun(x))dx

and define the sequence fin of Radon measures by

>:==

< +00 (4.9)
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r^t^"-^

= / *(x)4i*(x).
•'ft M t v e 81im of four mutually singular

B J ft. » * » « » * . Theorem - ~V « — » « " " * t'"Q

Using the blow-up method introduced by Fonseca and Muller [18], we reduce the problem to

verifying the pointwise inequalities
( ) ) for Cs a.e. x0 € ft, (4.10)

«o)) (4.11)

for HN-\ a.e. a?o € ft n E(tt) and
^ ) (4.12)

for |C(u)| a.e. xo € 0 . Assuming (4.10)-(4.12) hold, consider an increasing sequence of smooth
i V € C(fi) with 0 < V»fc < 1 *»d supfc V>fe(*) = 1 in D. Thenfo | ( ) |

cut-off functions Vfc € Co(fi) with

lim [/ /(x,Vun(x))dx+/lim
n—+oo
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Mo(l0) = & WQl*o% ***** •"* k finite' (414)

Select a point * 0 € ft such that the above properties hold. Let 0 < tj < 1 and let ^ € Cf?(Q) be
such that 0 < V < 1 and V> = 1 on I7Q. Using (4.14) we have

> lim sup lim sup / /(xo + Sy, V«B(*o +

" 4 / nS(.n)-.o »(«o + *y.M(«o + <y).y»(«o-Ky))^y-i(y) • (4.15)

Defining

and
too(y) := Vu(xo)y

it follows by (4.13) that

lim lim ||u * - WO\\LHB(O,I)-RJ>) = J i» T

B(xofi)

Also, as Vtin^(y) = Vun(*0 + Sy) and £<"^~T0 s E(un^), if we define i/n 6(y) := fn(x 0 + «y) we
obtain from (4.15)

Ma(*o) > lim sup Hm sup / f(x0 + «y, V«n g(y))dy+
_̂»o+ »-»+•» L̂ W

ns(« )
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Therefore we obtain

W c can choose
x .n+ such tfcata sequence Sk - 0

38



Choose nk large enough so that ||«nfc ̂  - WOIIL^Q-RP) £ £ *»<*

Thus, defining vk(y) := ttnfci$k(y) and vk{y) := ̂ ^ ( y ) 5 t follows that for all 0 < 17 < 1

**«(*o) > lim / f(xo,Vvk(y))dy + / 7-vK*o,«fcK](y),^(y))dJ7N-i(y)| + 0 ( 0

(4.17)
where vk -* Vu(*0)y in L*(Q; Rp). By (H9) and (4.17) it follows that sup* \Dvk\(r)Q) < +00 and so
by Lemma 3.7 there exists a sequence 5* € 5BV(ITQ;RP) such that vk -*• Vu(xo)y in X1(»?Q;RP),

0,Vvk{x))dx + ^- / vK*o,«*N(»)^*(*))^N-i(x)| + 0(0-
«t Jt)Qn2(i) J

(4.18)For ik large enough so that 6k\[vk]\ < / (H7) yields

fta(x0) > Uminf / f(xo,Vvk(x))dx

- Urn s u p /

where by (H9) and (4.18)

Thus

f/ ,Vvk{y))dy + j^nE(e)V*(*o,l5*](y),i>k(y))^N-i(y)j + 0(c) (4.19)f/ /(*o
where 5* -> V«(*0)y »* X1(»7Q;RI>)- T o compare /i.(*o) with g(xo,Vu(xo)) we must modify the
sequence vk so that it satisfies the boundary condition and in such a way that the total energy does
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not increase. This is achieved by using Lemma 3.1 and Remark 3.2 applied to rjQ instead of Q and

to the functional

We obtain a sequence {&} in SBVXQjR1*) such that & = Vu(xo)y on Q \ *iQ, & -» V«(io)y in

d

limsup { / /(
[ / (l«](*)^*(*))d^N-i(*)| (4-20)

J
where 0j(x) is the normal to E(&) at a; € i?Q n £(({)• f̂0111 (4-19) ^ (4.20), using the fact that

Q E(^) »t fo
wh ( )
Q n £(&) = IJQ n E(^)» »t follows that

Ma(x0) > Uminf

> s(xo,Vu(xo)) + 0(1 - IJ) + O(e).

The result now follows if we let first c —» 0+ and then IJ —•• 1".
Step S. We now prove (4.11). By Lemma 2.5 and Theorems 2.3 ii) and 2.6 we know that for

a.e. xo € E(u)
lim - ^ I . |«-(x) - «+(x)ldHw.1(x) = Itt-(xo) - «+(x0)|, (4.21)

^ 0, (4.22)

e K)
^ = 0, (4.23)

£S+ F A*€B(«o,«):(*-*o)»/(«><O>
fi(x0 4- 6Qiw«.O exists and is finite. (4-24 ̂

uj(xo) = 1»» T«+ - tt-li/N-iLE^K'o + ^^^l**)^

Choose
Q *•= Qi/(*o)» Q* '•- I+^
Q\ Then, by (4.24) and (4.21)
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- U (Xo) I* / -ft *v))dy+

>i(y) . (4.25)

Define ung(y) := tin(x0 + Sy), + *y)

>0
ify.|/(xo)<0.

As «„ -* « in I^fiiRP) by (4.22) and (4.23) we obtain

+ Jimim / |tt(x) - u~(xo)|rfa: = 0.

On the other hand from (4.25), taking into account that S ( t t ^~ J o , one gets

WteS U

Sf(x0 + «y,|v«n^(y)) - /~(x0 + «y, (4.26)

Now,

, Jv«w f(y))- rfy =
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By (HI) and the growth condition o n / ~

l - m

fii»taf

F i x , > 0. It Mows fro* (H2), (H9) and (4.27) that for , sn^l enough

/ ())|

Also by (H5), (H9) and (4.27) we have
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Hence,

where ti $ - • tio in i 1 (Q; Rp) as n -> +00, * - • 0 + and so, by a standard diagonalization argument,
as used in Step 2, we obtain

where v* —• Uo in X1(Q;RP). Making the change of variables y = ^™, setting tu*(x) := v̂  ( i f « )
and using the invariance of UQ under the above change of variables we have to* -* UQ in X1(Q;RP)
and

(^r J&.
(*)|+0(€) (4.28)

J
where 17 (̂1) = /*t ( f f ^ ) • To compare /*j(x0)|u+(*o) - «~(*o)| with A(xo,[u](zo),!'(*o)) w e m u s t

modify the sequence {wk} in such a way that it meets the boundary condition and the total energy
does not increase. This is done by using Lemma 3.1 and Remark 3.2 applied to the functional

A

We obtain a sequence {^} € 5BV(Q;R'>) such that & -» no in I 1 ^ ; ! ^ ) , ^ = uo on dQ and

limsupf/

/ / O o , * ( ) ) p ( l K ) . % ( ) V ^ i ( ) | (4.29)

where «,(») is the normal to E(fc) at x € Q n £((,). JVom (4.28) and (4.29) we get
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^ s f f U ^ ass.n.e that

+ A«0+€Q)nL(«n) V « /

1 / / (x/
lim sup lim sup j p u ^ 0 + €Q) U«o+tcQ -i

. / v<x,l«n](x),^(x)y^.i(x) • «-35>

- I ' dx«0.
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By (4.31) choose a sequence r* —• 0+ such that

and by (4.35) and (4.36), using a standard diagonalization argument, choose a subsequence
(not relabelled) such that

/ ^ vK».M(»)^*(*))^N-i(*)| (4.38)

and

w h e r e

By (H2), (H5), (H9), (4.32) and (4.38)

is bounded and so we obtain

/ic(x0) > limsup [/

+ /

Changing variables and setting

** : = ZF

we conclude that

)**ff*-i(*) •J
(

** Q ) J
(4.40)
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Now,

-L
+ ^«Qn{||ik

i/(xo,tfcV«fc(x))-r(*o,V«fe(x)) dx =: h + h

where, by (HI) and Lemma 2.12 i)

IC (1 + 2||tfcVufc(x)||) dx < }-C(l + 21) - 0

and, by (H3), Holder's inequality, (H9) and (4.40)

~ JtQn{\\tkVak\\>L}

Thus, from (4.40) we obtain

l - m

o.

J
(4.41)

Since

and

J
\Duk\{Q) =

by (4.39) there exist subsequences (not relabelled)

that

= 1

{«*} and there exists tio € BV(Q;W) such

(4.42)

zk,

Now,

where |a| = 1 and |Dzk|(Q) = 1 so by Proposition 2.10 it follows that

from which we conclude that

\Dzk -e,|(Q) - • 0 for » = 1 , . . . ,JV - 1.

Since
\Duo • «

= 0
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we obtain

«o(*) = *)(**) € BV(( - i , | ) ;RP)nX~( ( - i , i ) ;R") . (4.43)

Consider the smooth mollifications of «o, (k(x) = pk * t*o(*) = £k(xN)- By (4.43) we have

IK*IIL«(Q;RJ) < cowh-

and (4.42) implies that

ll«* ~ tk\\v(Qfr>) -* 0.
Thus, fixing c > 0, by Lemma 3.7 there exists a sequence 5* € BV{Q; W) such that
C(e), \\uk - ^ | | L . ( (J ; IIP) - * 0 and

Itq' * - ^ " 9kJtQri£i*k)

<[ f°°(xo,Vuk(x))dx + ̂  I (p(xoM^k)(x)^k(x))dHN^(x)^e.

JtQ 0* JtQnE(nk)

Then, since for * large enough 0*||[5*]||oo < /, (H7), (H9) and (4.41) yield

/ 1
/ 7T<p(xo,0k[uk](x),vk(x)) — <PO(XQ,[uk](x),vk(x)) dHw-i(x) <
< I 0%\[uk)(x)\a+ldHN-i(x) < 0%C(€) f \[uk](x)\dHN^(x) -+ 0

JtQn£(uk) JtQnE(uk)

so from (4.41) we get

Mc(xo) ^ limsup / /°°(xo,Vuk(x))dx + / ¥>o(^oJ5ik](^)^ik(a:))rf-ffAr-i(^) - *- (4.44)
k—++oo [JtQ JtQCuj(uif) J

Since for a.e. r € (t2 ,t), \Duo\(drQ) = 0 and V^(rQ) - 2?^(rQ) - • 0 choose one such r and
choose 6 > 0 such that |Z?uo|(*(l - *)rQ) = 0 and r(l - £) > t2. Then, by Lemma 2.4 and (4.37)
we have

Urn \Vtk\(TQ\T(l-6)Q)<\Duo\{rQ\T(l -6)Q)< Urn \Dzk\(rQ\r(l-

_ lim . .. prr = C/(l — i j . (4.45)

On TQ we have £k(x) = A^x + Pik(x) where pk(x) = pk(xs) is smooth, p*(0 = 0 if t = ± y and

We claim that
\\Ak-Ao\\ = O(l-t). (4.46)
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Indeed,

limsup \\Ak - Ao\\ < Hmsup \\Ak - 4 j | | + |1 - \ \ =
*-*+oo ib-H-oo T Tp

ib-H-oo

= lim sup -^|V{fc(r<?) - Ao\ + 0(1 - 1 ) =

= Urn sup ̂ DzkirQ) - Aol + 0(1 - 1 ) <

< lim sup 4 r [\Dzk(rQ) - Dzk(Q)\ + |Dzit(Q) - Ao\) + 0(1 - t) =
fc

where we have used (4.37) and the fact that t2 < r. Since lim^+oo ||fijt — (fcll̂ tQ-.Rp) = 0 ̂ >r

Lemma 3.1 there exists a subsequence {{nk} and a sequence {wk} € 5J5V(rQ;Rp) such that
wk\dTQ(x) = fnfc(x) = Ankx + pn,(x), | K - C»Jta(Q;«>) -^ 0 and by (4.44) and (4.45)

/ic(xo) > liminf / f°°(xo,Vwk(x))dx + / V>o(xo,K](x),i/ik(x))dffN.i(.T) -
/c-*+oo \JTQ JTQr\2j(wk) J

-Cmea5(rQ \ r(l - «)Q) - C sup |V{m|(rQ \ r(l - 6)Q) - € =
m

= liminf / f°°(xo,Vwk(x))dx+ [ <po(xo,[wk)(x),vk(x))dHN-i{x) -
fc»+oo [JrQ JrQnS() J

- c + O ( l - t ) . (4.47)

Write «?jt(x) = Antx + Pm,(*) + 9fc(̂ ) where qk\arQ(x) = 0. Since pnk is also TQ periodic we may
extend pnk and qk rQ-periodically to TLN and define

g* (^)J
where ^ : Q -• [0,1] is a smooth cut-off function satisfying s t t p p ^ C C T Q , V ^ ( X ) = l i f x € { y €
TQ : <fi«t(y,drQ) > «} = : QJ and | | V ^ | | < j . Then ty t ^| 9 T Q(x) = Ankx and for every fc

by periodicity of pnfc and §jt- On the other hand

(Pn* + 9k) (JyJI dx = 0

jk r )

/~(xo,Vi*fc(z))dx+ /

TQ\Q'S

(4.48)
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Since

we have by Lemma 2.12 i)

< Cmeas(rQ \ Q's)

where - --.
o —• 0"*"

L
since, by periodicity,

L
and finally, due to the equi-integrability of the sequence {Vpnfc +

Hence we conclude that
/

Also, the periodicity of ?* yields

0

(4.49)
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Hence, for every fc choose S = S(k) so that wk^(fc)|arQ(*) = ̂ nkx,

WWk,S(k) ~ Ank*\\lA(TQjU>) < £

and by (4.47)-<4.49)

> lim 6up I / /°°(i0 , VwkS{k)(x))dx+

w )^(xo,K,/5(fc)K*)^*,«W(*))^JV-i(*) - I - € + 0(1 -1).

Extending tofc j/fcv as Aox on Q \TQ we obtain a sequence tDjt 6uch that Wk\dQ(x) — AQX and by

(4.46)

Mc(x0)>liminf / /°°(xo,Vu;fc(x))di + / ^(xoJtDitKxXi/^x^dHAr.^x)-

- f \\A0\\dx -C I \Ankx - ^ox|<f^N_1(x)| - c + 0(1 - t) >
JQ\TQ JdTQ J

> </°°(x0, Ao) - CO(1 - T) - € + 0(1 - t).

Now it suffices to let € —• 0 + and f —* 1~. •

5 An Upper Bound for F(u) when tx G 5BV(f2; Rp)

In this section we continue the proof of Theorem 2.13 by obtaining an upper bound for the relaxation

T(u) when u G SBV(Jl\ W), namely

Proposition 5.1 Let u € SBV(Sl; Kp) be given and assume that hypotheses (H0)-(H7) and (H9)

hold. Then

Hu)< /o<Kx,Vu(x))dx+ /_ fc(x,[u](x),Kx))dffN-i(*).
Jll J2J(U)

We fcdlow the ideas presented in Ambrosio, Mortola and Tortorelli^s paper [7] (see also [10]).

Proof. Step 1- We claim that if u 6 5J?V(fi;Rp) then

(5.1)

By Proposition 4.2 ?{u\-) is a Radon measure, absolutely continuous with respect to £jv + |Dti|.

Thus (5.1) holds if and only if for Cs a.e. «0 € SI

(5.2)
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Writting Du = Vudx + Dfw, by Theorems 2.6 and 2.7 and for CN a.e. x0 € ft we have

•))
21 = 0, (5.3)

lim / |Vu(x) - Vu(xo)\dx = 0, (5.4)

d?(u\ •)
—r^—-fao) exists and is finite. (5.5)

Choose a point x0 € ft such that (5.3)-(5.5) hold. By Proposition 3.3 ii) let un € SBV(Q;KP) be
such that un -• Vu(xo)x in Ll(Q;Kp) and

ff(xo,Vu(xo)) = lim / f(xo,Vun(x))dx+ f

This, together with (H9) implies that supn \Dun\(Q) < +oo so by Lemma 3.7, given c > 0 there
exists a sequence 6n € SBV(Q;KP) such that fin -• Vu(xo)x in £1(Q;RP), supn ||wn||oo < + « J
and

lim / f(xo^un(x))dx + / fpo(xoAun](x)^DnM)dHs'-i(x)\ < g(xo,Vu(xo)) + c.
n-*+oo y Q JQnZ(un) J

(5.6)
Choose a sequence of numbers S € (0,dist(xo,dQ)) and consider the sequence given by

wn 6(x) := (pn • u)(x) + 6\un[ —j— ) - Vu(xo)

where p e C^(RN) is a nonnegative function such that

/ p(x)dx = 1, suppp = f*(0,1), p(x) = p(-x) Vx € R N

and pn(x) := nNp(nx). For each fixed £ > 0 it is dear that wn$ •w in
and hence

^ ( x 0 ) = lim

«fSsl»i

= lim inf lim inf / / ( x 0 + Sy, V(p n • u)(x0 + Sy) -

jQnL(un) * ' J
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< C |V(pn * u)(*0

and so from (5.7) we obtain

< Um sup lim sup f / C |V(,n * «)(x0 + * ) - V«(xo)| dy+
6-0+

+
=: lim sup lim sup [I\ + I2 + h + I* + / s ] .

Km Ji <
f l f

By (5.6)

and by (H2), (H9) and (5.6), we have for 6 small enough

|/2| < j Q |/(«o + «y, Vfin(y)) - /(*o, Vfin(y))| dy <

[ f{xo,Vun{y))dy = 0(e).
Q

Also by (H5), (H9) and (5.6)

For small enough, so that J|[ttn](y)| < ', (H7) yields
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< Cl" (sup ||S.|U)° / IW(»)|Mj»-i(») = C(<)ta

by (H9) and (5.6). Finally, by Lemma 2.4 i) and by (5.4), setting XDQ(X) = Vu(xo)x we have

C f
lim sup lim sup 1$ = lim sup lim sup - ^ / |Vpn • (u -

< lim sup lim sup -«• / \D(u -
f^o+ w-̂ +oo * JB(XO,O+±)

f C
< lim sup C f \Vu(x)~ Vu(xo)\dx + esslimBTip —JT\DSU\(B(XQ,6)) = 0

f o + JB(XO6) S+ o
f \Vu(x) Vu(xo)\dx + esslimBTip

JB(XO,6) S^Q+ o

by (5.3) and since for a.e. S \Dgu\(S(x0,6)) = l^uKB^o^))- Thus we conclude that

dCN

and the result now follows by letting e —*0+.
Step 2. We claim that for any u € SBV(Sl;W)

(5.8)

The proof of (5.8) will be done in several steps according to the limit function u:

w i t h ^ r f i ( £ ) < +°°. £ € Rp;

2) u(x) = SILi atXft(x) where {JE,}^! forms a partition of ft into sets of finite perimeter,
a, € Rp;

3) general case u € SW(ft;Rp) .

1) Suppose first that u(x) = ^XE( X ) w*th -Pcrfi(-^) < +0 0- We show that for every open set
ft* C ft we have

I / ^(x). (5.9){u;QT) < I /(x,0)rfx + /
Jll J\l r\2j(u)

The proof is again divided into several cases, depending on the interface of u and on the set ft".
a) Assume that we have no explicit dependence on x on either / or <p and that ft* = CQ + rjQ

for some OQ € R N , t? > 0. We claim that for

v>0
"v~' ~ \ 0 if (* - ao) v < 0

we have
^(tt;fi*) < / (O)T^ + hiMrj"-1. (5.10)
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Q' := {x € Q : *N = 0>

andlet Q + : = { x € Q : * N > 0 } , Q - : = ^ € « : X J V ^ 0 } '

Supposefirstthatoo = Oand,= lsothatfi- = Qand

. f ( if*N>0
" C 1 ) 3 5 ^ i fx N <0.

such that ttn-«mlHQ;RP)and

Then by proposition 3.5 ii) there exists «n € -«l€,i

r , f /r l/_\ .. {~\\iJITxi-*(x)\ . (5.11)

r I / )= lim \ r{Vun(x))dx +

Define the sequence vn,fc as follows

if xN >

1)X) if |XN|

Then, for n fixed

/ ^ / |un((2fc + l)x

where by periodicity of un in the first N — 1 variables and the Riemann-Lebesgue Lemma

|un(s)|dx'dxN as fc - +00

and
* / f dt^ / /

JO JQ'Jo JQ*

so that

Hence, by a standard diagonalizing argument

?(u;Q) < limsupUmsup I / /(Vt;n,fc(x))dx + / v([vn,k){x)^nik(x))dHN^(xyi
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Now

/ /(V«n
JQ

j ^ /(0)dx + / ^ I f((2k + l)Vun((2ib + l)x)dx

where by periodicity of tin

J
so by (H3)

= J /°°(Vun(y))dy + j ^ 2)T

limsup / f(Vvn,k(x))dx = /(0) + / r(Vun(y))dy.
fc—+oe> JQ JQ

p / f ( n , k ( ) ) / ( ) /
+oe> JQ JQ

On the other hand, again using the periodicity of un

hence, by (5.11)

r(u;Q) < Hmsup f/(0) + / /°°(Vun(y))dy

Now let oo € R" and 17 > 0 be arbitrary. Define

and let

«„ € 5BF(fi*;Rf)), «„ - ti in BV(fi'R")}
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Setting ( ( if IN > 0
«o(*) = \ o if *N < °

by the first case it follows that

Given any sequence un - «o in ^ V ^ , « - ;

Then, since «(oo + yy) = «o(y), we have vn

^(«;$r) < liminf I / /(V«n(x))dx + /

«n(x) := u

—• u in JBy(Q*;Rp) and thus

= Urn inf t / /(Ivun(

= 1^liminf I
n-*+°° [JQ

Given the arbitrariness of un we conclude that

where
/i?(0) = /(0) and

6ince /°° is positively homogeneous of degree one. Hence
N F

and (5.10) is proved.
We now turn to the general case where / and <p have an explicit dependence on x and we

proceed with the proof of (5.9).
b) Assume first that u has planar interface i.e.

"Kx) ~ \ 0 if (x - 00) v< 0

and let Jl* = a + BQv CC ft for some a € R N , 9 > 0. As in part a) without loss of generality we

assume that OQ = 0 and i/ = e^, we denote Qi/by Q and we let

ft' := {x € ft* : xN = 0}, Q' := {x € Q : x N = 0}.
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Clearly E(u) flfi' = ft'. Since ft* is a compact subset of ft, fixing e > 0, it is possible to find a
6 > 0 such that properties (H2) and (H5) and Proposition 3.6 ii) are satisfied uniformly in ft* i.e.

*,y € ft', |* - y| < 6 =» \f(x,A) - f(y,A)\ < eC(l + ||,4||), VA G M'*", (5.12)

*,y € ftM* - y| < 6 =» |v>(*,{,i/) - y<y,e,»/)| < eC|£|, V(£,»>) G R* x 5N"1 , (5.13)

x,y € ft*, |x - y\ < S => |M*,f,^) - %,f,»')| < cC(l + |fl), V(f,^) € Rp x S^"1. (5.14)
Let m € N be such that

TI:= — <6 _(5.15)
m

and partition ft' into m^"1 (N-l)-dimensional cubes aligned according to the coordinate axes and
with mutually disjoint interiors

We write Q\ := at + ijQf and Qi :=
be such that

lim

fi'= U (°.
t=l

^ + r/Q. For each t = l,...,mN-1 let in

im \f /(a,,VttW

by part a). Using the slicing method as in Lemma 3.1 and Remark 3.2 applied to

we conclude that there exists a sequence {$ } € •A(Z,ept) such that, setting v* = pnt • v,
on 8Qi, $ -> u in X^Q.jR") and

limsupf/ /(a,,vri')

< Um|nf | j ^ /(a,, Vu£>

so we conclude that

limsupf/ f(ai,

uW + if"

Define the sequence 10*̂  as follows

(5.17)

> vk(x) otherwise.
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< const, and since

. N - l

Urn

Hence,

^

fc

where by (5.17)

Also, by (5.12). (515) "•><»

fc-+oo i s i

fc->+OO is
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since by (5.17) {fQ. /(a;,V$\z))dx} remains bounded and by (5.13), (5.15) and (H9)

^l i m s u p ^

m
<limsupE

fc-*+oo , _ j

where we used the fact that, due to (5.17), {

bounded. Finally we note that by (5.14)-(5.16)
remains

/

s E L
and by (5.12)

^ - 1

" " 1

t = l

Therefore we obtain

«;fi')< / /(x,O)dx+ /
C\2J(U)

so to conclude (5.9) it suffices to let e —• 0+.
c) Take tx as in part b) but now let ft* C Jl be an arbitrary open set. Let II be the plane

II := {x € KN : x • eN = o} = E(u).

It is dear that

+ 0 0

where An i6 an increasing finite collection of non-overlapping (i.e. with disjoint interiors) cubes Q
of the form a, + eQ with edge length bigger than or equal to £ and such that

in) = 0. (5.18)
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Thus, applying part b) to a decreasing sequence of open cubes whose intersection is the closed cube

(J one has

and so by Proposition 4.2 iii)

Urn ^(u;UAB)< Km

By (5.18) and Lebesgue's Monotone Convergence Theorem we conclude that

:F(u;$r)<liminf 1 / / ( x , 0 ) d x + / ^ h(x,£,eN)dHN-i(x) =

\l C\2J(U)

d) Now suppose that u has polygonal interface i.e. u = (XE where £ is a polyhedral set (i.e.
E is a bounded, strongly Lipschitz domain and BE = Fi U •.. U HMI H\ a*e closed subsets of
hyperplanes of the type {x € RN : x • V{ = a,}). Let ft* be an open set contained in ft and let

/ : = { t € { l , . . . , M } : J f f N . 1 ( ^ n f t * ) > 0 } .

and it suffices to consider uk = u to
If ft* n E(u) = 0, i.e. if card/ = 0, then u € W ^ f P j

obtain
•̂(ft-)

The case card/ = 1 was studied in part c) where £ is a large cube so that ft n S(ti) reduces to
the flat interface {x £ ft : x • v = 0}. Using an induction procedure, assume that (5.9) is true if
card/ = Jb for k < M — 1 and we prove it is still true if card/ = M. Recall that

BE n ft* = (H i n ft*) u . . . u (EM n ft*).

Consider the sets
S := {x € RN : dist(x, Hi) = dist{x, H2U...\J

and
fti := {x G ft* : dist{x, Hx) < dist(x,H2 U . . . U

Notice that HN-I(S n E(u)) = 0 because Hs-i{Hi n Hj) = 0 for t / j . Also ft! is an open set

and fti n (JT2 U . . . U HM) = 0. Fix f > 0 and let
U6 := {x € KN : dist(x, S)<s}y

UJ := {x € R N : dist^x.S) < 6, dist(xyHi) < dist(x,H2 U ...U HM)} ,
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+ := {z e KN : dist(x, S) < 6, dist(x, Hx) > dist(x, H2U...\J HM)} .

Since ftj contains only one interface and ft2 := ft* \ H7 contains at most M — 1 flat interfaces we
can use the induction hypothesis to obtain sequences un € 5BF(fi1;Rp) , t?n £ S£V(fi2;Rp) such
that un —• u in £Vr(fti;Rp), vn — u in 5V(n 2 ;R p ) and

lim
n

im f/ /(x,Vun(x))dx

< / f(x,0)dx+ I h(x,t
Jlli J\IIC\1J(U)

As in Lemma 3.1 and Remark 3.2 we use the slicing method to connect un to wn across UT n fli
where wn(x) = (pn • tx)(x). We obtain a sequence un - • ti in £1(fii;Rp) such that un = wn on

H 5 and

limsup / f(xyVun(x))dx+ I <p(x,[un](x),i>n(x))dHN-i(x)\<

(C/J n fti n E(tt))

where we have also used Lemma 2.4 ii). Similarly, we may connect vn to wn across U^ n ^2 and
we obtain a sequence vn - • u in I1(ft2;Rp) such that vn = wn on 5Q2 n 5 and

limsup I / /(x,Vi;n(x))dx+ /

We set

cn(x) := | ^n(x) if x € HIn ft*.

Clearly ( n € SBV(Q*;RP) and

Hence, as HN-i(S D £(«)) = 0 and $T = fti U fi2 U (S n fi*), it follows that
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<limsup
n->+oo

+ limsup
+

* n uf) n $r n

d = 2 » ' ^ - r ^ " * JrtL ̂ ;ft x R lo'+
tna* . . * - - . . / - « } < C|y|,V(x,y) eft x R N

and

where we extended as a

(

homogeneous function of degree one. Setting

6Oit turns out that «„ -• u in ^(J l jR 1 ) 6O by Proposition 4.2 ii) and iii) we have

^(u; ft*) < lim inf ^(un; ft*) <

^ JSRo[/ft-

= / /(x,0)dx+ / V /

where we have used the fact that mcas(£nAE) -> 0, Pcr(£n) —• Pcr(JE). Letting m — +00 and

using Lebesgue's Monotone Convergence Theorem we obtain

JX«;in< / /(x,0)dx+ / M x f € , K ( )

and this concludes the proof of (5.9).
Inequality (5.9) together with Proposition 4.2 iii) yields

^(u;E(ti)) < inf {T(u; A): A C ft, A is open ,E(n) C A } <

< inf 1 / /(x,0)dx + / ^ fc(x,(,i/(«))d^N-i(^) : A C ft, A is open ,E(ti)

fc,K
and therefore we conclude (5.8) in case 1). The proof of cases 2) and 3) follow exactly as in [7]

Proposition 4.8 Steps 1 and 2 respectively. •
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6 Characterization of the Density Functions and Relaxation for
BV Functions in the Homogeneous Case

We now extend our relaxation result of Theorem 4.1 and Proposition 5.1 to arbitrary BV functions
in the case where <p satisfies (H8) i.e. <p(x,-,v) is positively homogeneous of degree one. Recall
that we consider an energy functional of the form

£(«)= Lnx,Vu(x))dx+ f «<z,[u](*),!,(*))dffN-i(*)
•'it J2J(V)

and we obtained the following integral representation for the relaxation

T(u) = inf (liminf E(un) : u* € SW(ft;R*), «„ - u i
{t*n} l»»-»+o©

in

n « ) = [a(x,Vu(x))dx+[ M«,H(*).K»)^N-i(«). (6.1)
Jll J1J(U)

Now consider

* » = /o(x,Vu(x))dx+/' fc(*.W(«
Jll J2J(U)

+ Jk*"('-^li«) **«•>•
We wiU show that for u 6

and we will characterize the densities y and h (see Propositions 6.3 and 6.4). This is done in a
series of lemmas.

Lemma 6.1 For every (xo,A) € SI X MP*N

g(xo,A)<f(xo,A)

and for every (xo,Z,v) € fi X W x ^

Proof. Define ^0(«) := {(* • i/) + | . Then fo € A(t,v) so that

Now consider ( , € ^(^jv) defined by
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It follows that

On the other hand, letting ((x) = Ax for every x € Q, we have

Lemma 6.2 Let G be a nonnegative Borel measurable function G : MpxN -+ [0,+oo) and let

H : Rp X SN~X -> [0,+oo) fe a conlintious function such that H(-,!/) ts postttve/y homogeneous o/

degree one. Define

U|8Q(X) = Ax) .

TAcn Gft(il) = GQ(A) where Q = ( - | , | ) N .

Proof. By Vitali's Covering Theorem we may write

«i

where mcos(JV) = 0 and £ £ i € f = meas(Q). Let u € SBV(Q;RP) be such that u\dQ(x) = >l.r

and define
u o ( l ) = ( Ax + «(« - A) (£=fi) iixeai + c,Q

11 \ Ai otherwise.

Since H(;v) is positively homogeneous of degree one, «ft|aQ(x) = Ax and S ( « Q ) = 1^(0 , +

€iQ) n (a, + €iS(u)) it follows that

< — ^ T E [ / G (Vu (^=^)) dx+

+ /

JQ JQC\IJ(U)

Taking the infimum over all such u we conclude that

< GQ{A).
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A similar construction yields
GQ(A) < Ga(A)

and so equality holds. •

In the next proposition we find an explicit fonnula for the function g. Precisely, we show that

9 = Q(fV<Po)

i.e. g is the quasiconvexification of the inf-convolution of / and <po given by

fV<Po(x,A) := inf {/(*, A - a ® 6) + ipo(x,a,b): a € Rp, 6 € KN} .

Proposition 6.3 Assume that hypotheses (H0)-(H7) and (H9) hold. Then

for every (xo,A) € ft x AP>xN.

Proof. To show that g(xo,A) < Q(fV<po){xo,A) it suffices to prove that

) (6.2)

for any (xo, A) € ft X MpxN since g(xo^) is quasiconvex (cf. Proposition 3.3 i)). We must show
that for any a € Rp, P e KN

g(x0, A) < /(x0 , A - a ® &) + V>o(̂ o, a, /?)•

Assume without loss of generality that |/?| = 1, let {/?i,...,/?#_!,/?} be an orthonormal basis of
RN and consider

We denote by Q+ the trapezoid with bases Sn and {x £ Qn : x • (3 = %} and Q~ the one with
bases 5 n and {x € Qn : * • 0 = -\). Let ft, = Qn \ (Q~ U Q+) and let 5i?^ denote the common
boundary of Rn and Q*, respectively. Then

meas(Qn) = nN'\ JTN-I(5B) = nN-» + O ( i ) (6.3)

= O(nN~% HN-t(dR$) = O(n^-2). (6.4)

By Lemma 6.2 (with G — f and H = yo) we
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for every . € SBV(Qn;R") • « * * * ** .<«) = A * " * '

-a®/?)x

Then t>n|9QB(x) = Ax - § so

f(xQ,A)dx + Jsj
-Z,v)dHN-i(x) +

(6.5)

By (H4) and since \x-fi\<\ for every x e <?«, we have

so
from (6.5) using (6.3) and (6.4) we obtain

0 (i

Letting n-*+eowe conclude that

S(xo, A) < /(xo, A - a

Conversely, for any (x, A) € fi x Mpx

/Vv>o(x,A) < /(x,A) +

.here we have used the fact that * is p.itively homogeneous of degree one and so * „ . , » - 0

i f a = 0. Thus Q ( / V V ) O ) ( X , A ) < / V V > O ( X , A ) < / ( X , A ) . <«•«>

On the other hand ^ ^ ^v)^ / ( ^ Q ) +

and this implies that Q ( / v ^ ) ( X i ( 0 „) < / ( , , 0 ) +
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and thus, since <po is positively homogeneous of degree one

Q°°(/VvoX»»C ® ") ̂  ¥*(*,£>*'). (6.7)

Defining for u € 5J?F(J2;RP)

*b(«) := £ Q(/V^,)(x, Vu{x))dx

and
(«) := L / (x , Vu(*))dx

it follows from (6.6) and (6.7) that F0(u) < Fi(u) and so

(6.8)

for any t* € SBV{il;Kp)y where To (resp. ^ i ) denotes the relaxation in SBV of Fo (resp. F^.
However by Fonseca and Miiller's result (see also [5]) Jo is lower semi-continuous in SBV so it
coincides with its relaxation i.e.

and, by Theorem 4.1 and Proposition 5.1

Ji(u)= [ g(x,Vu(x))dx+ f
Jil J2J(U)

where

^(xo,i4) = infl / / (x o ,V»(x))dx+

V€5BV(g;R"), «|aQ(x) = Ax}

and

/°°(xo,Vt;(x))dx+/ -i(*): v €

Since ^D is positively homogeneous of degree one, (<po)o = 90 so it follows from (6.8) that

o, A) < g(xOiA) = g(xo,A)

To prove the following proposition we assume that (H8) holds i.e. that <p(x,;i/) is positively
homogeneous of degree one. Under this assumption <p — ipo.

Proposition 6.4 Under hypotheses (H0)-(H5) and (H8)-(H9)

for every {*,M € ft x R" x SN~l.
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Proof. Since ?(•) i6 lower semi-continuous in SBV it must coincide with its relaxation in SBV.
Therefore since g satisfies (H0)-(H3), (H9) and h verifies (H4)-(H5) and (H8)-(H9), by Theorem
4.1 and Proposition 5.1 we have for tt € SBV(fi;R |))

[
\l

where

\lr\2j(u)

g(x,Vu(x))dx+

,A) = mil [ g(xOyVv{x))dx+ [ _ fc(*o,

and

E(*o,€,i') = inf ( / g°°(xo,Vv{x))dx + / /i(xo ,H(x),i/(x))d^N .1(x): t; 6

This implies that 5 = 5 and /i = 7i. Let fo(x) = f (x • v) + f. Then £0 € ^4(^, v) so

Kx0, £, 1/) = E(*o, f, v) < / fl°°(xo, Vfo(x))dx = S°°(xo, { ® 1/).

Using Lemma 6.2 we will now show that

M. (6.9)

Since /i(x,-,i/) is positively homogeneous of degree one (6.9) will imply that

and this will conclude the proof. We now prove (6.9). Fix £ € Rp and 1/ e 5 N - 1 . Assume without
loss of generality that v = epj. Note that, by Lemma 6.2

where v € SBV(il\Kv) is 6uch that v|ajj(x) = (£®etf)x + ^. We use a construction similar to the
one in the previous proof. Let

n n
2 ' 2
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We denote by Q+ the trapezoid with bases Sn and {x € Qn • xs = 5} and Q~ the one with bases
Sn and {x £ Qn : XN = - £ } . L e t #» = Qn\(Q» UQJ) and let 0#± denote the common boundary
of Rn and Q*, respectively. Then

meas(Qn) = n N ~\ HN^(Sn) = nN"1 + O(-)
n

Define

( if * € Qt
0 i f«€Q~.

Then

-meas(Qn)
1

+ | and so

g(x(hVvn(x))dx+

By Proposition 3.6 i) and as for every x € Qn, \x • ejv| < \, it follows that

i,v)<

so from (6.12), using (6.10) and (6.11), we obtain

(6.10)

(6.11)

(6.12)

"̂1 + 0 (± ) ) + CO (nA'-2)] =

O (i) .

Letting n —• +oo we conclude that

Lemma 6.5 J//i(a:o,(,«') = S°°(*o,(® v) /or every (*0,{,«') € ft x R" x 5 N - 1 «Aen ̂ "(w) =
/oraZ/«€BV(ft;R").
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- " ' " ' "

<emi.conti.mity of *•(•) It foUows that

r(«) < limtof ?"(».) < BSJ

Taking the infimum over all such un we get

Conversely for smooth u by (6.1)

6o by lower semi-continuity of ?(-) in BV, ^(ti) must be less than or equal to the relaxation in

BV of the functional

Taking into account that g satisfies hypotheses (H0)-(H3) and (H9) (cf. Proposition 3.3 i)) and

Fonseca and Miiller's result (see also [5]) we obtain

Clearly Lemma 6.5 and Proposition 6.4 yield

Theorem 6.6 If f and <p satisfy (H0)-(H5) and (H8)-(H9) then

for every u € BV(ft-,Rp).

Finally, by Propositions 6.3, 6.4 and the above theorem, we obtain
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Theorem 6.7 If f and <p satisfy (H0)-(H5) and (H8)-(H9) then

O°°(/Vv)(x,I?.«)

for every u £ BV(Sl;Kp).

7 Relaxation for BV Functions : The General Case

Using the results obtained in the preceeding sections, we are now ready to prove Theorem 2.13,
precisely we show that if (H0)-(H7) hold and if u € BV(Sl; Rp) then

f t t
FM = / g(x*Vu(x))dx+ I h(xJu](x).i/(x))dHN-i(x)+ I g°°(x,dC(u)) =: ?*(u)

Jil JE(u) Jil

where g and h are as defined in Section 2. Under hypothesis (H9), we begin by extending the result
of Theorem 6.6 to functions (p which are not necessarily positively homogeneous of degree one and
in Proposition 7.2 we show that (H9) can be removed.

Proposition 7.1 Assuming (H0)-(H7) and (H9) hold it follows that

for any ueBV(Q;Rp).

Proof. By (H6) <p < (po so given any u € BV(Sl;Rp)

E(u) < f f{x,Vu{x))dx + f ipo(x,[u)(x)M

It follows that
T(u\ A) < 7i(u; A) for every A € B(Q) (7.1)

where T\(u) is the relaxation of E\(-) from SBV to BV. On the other hand, as v?0 is positively
homogeneous of degree one, by Theorem 6.6

~(xyD,u) (7.2)

for every u € BV(fl\Rp). Hence, since «F(t*,«) is a measure (cf. Proposition 4.2) and as by (5.8)

F(u, Q n E(u)) < / h(x9 [u)(x)y
J\IC\2J{U)

we conclude that

/•(«) = ^(«,ft) < ^(«,fi \ S(u))
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which, together with (7.1) and (7.2), yields

•F(«)< (g(x,Vu(x))dx + [ o~(x,.D.«)+/0
Jil J\l\L(u) J\ln2j(u)

The converse inequality was obtained in Theorem 4.1.

Proposition 7.2 Under hypotheses (H0)-(H7) it follows that

for any u € BV(fl;Rp).

Proof. Consider an energy £(•) satisfying the initial hypotheses (H0)-(H7) and let u £
BV(J);Rp), tin € SBV(£l\Kp) be such that C = supn |Dun|(ft) < +00 and un -+ u in 1

Fix e > 0 and let

£c(*):= L [/(x,
Jil ()

Clearly J5€(-) satisfies (H0)-(H7) and (H9) and so, by Proposition 7.1,

(ti) < Uminf E€{un) = liminf [E(un) + £|Dun|(Q)] <
n-^+00 fi—••4*00

eC. (7.3)
n—>+oo

We claim that
^ (7.4)

To prove (7.4) it suffices to show that

(7.5)

> fcCx^.O + eiei. (7.6)

Given v € SJ3V(fl;Rp) consider the following functional, for which (H9) holds,

I \\Vv(x)\\dx+ I Mix^dH^ix).
J\l J2J(V)

By Example 2.16 i) its relaxation in BV is given by

\\Vv(x)\\dx + / \[v)(x)\dHN^(x) + \C(v)\(il)
J2J(V)

and so, by Proposition 7.1, we conclude that

||A|| = inf { / ||V«(x)||dx + / |[«](x)|rfffN.a(x) : u € 5W(Q;R»), u|8Q(x) = Ax) (7.7)

and

= Ax) (7.

)|d^N-i(*) : « € A& u) I .

J
= inf | / ||V«(x)||dx + / |tu](x)|d^N-i(*) : « € A& u) I . (7.8)
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On the other hand,

* ( * , A) = inf

+ L , „ l^°(x' M<»). Ky)) + «M(V)I) dFN-i(») :« € SBV(Q; R"), «|«,(») = Ax)

so, by (7.7) and if it € SBV(Q;KP) is such that «|«j(x) = Ax, then

f [/(*,

lj(u)nQ

Taking the infimum over all such u we obtain (7.5). (7.6) is proved in a similar way using (7.8).
Thus, by (7.3) and (7.4),

(u) + €\Du\(Sl) < J7(u) <
< liminfJE(un) + eC.

n-»+oo
Let € -+ 0 + to get

which, taking the infimum over un, yields

To obtain the reverse inequality we recall that T(u, •) is a measure and

T(u, A) < C(meas(A) + \Du\(A))

(cf. Proposition 4.2), hence F(u) < f*(u) if and only if

xo) < 5(xo, Vu(x0)) for a.e. x0 € fi, (7.9)

(xo) < yo ;[u](xo) ,(xo)) for a e >w
v ; ~ |«-(x0) - ti+(xo)|

*0" for | C W I " • I o € n - ( T 1 1 )

For every c > 0 £(•) < E€(-) so by Proposition 7.1

JF(«) < T({u) = ^ ( « ) .

Therefore, for every € > 0

§ ^ ^ )). (7.12)
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Given 6 > 0 let it € SBV(Q;RP) be such that i (x ) = Vt*(xo)« on dQ and

g(xo,Vu(xo)) + 6> I f(xo,Vu(x))dx+ I
JQ JQC\L,(u)

Then, for every c> 0,

) = Vu(*o)x}<

and so, from (7.12) one gets

ro) < liminfp£(xo,

(7.9) now follows if we let 6 -* 0 + . (7.10) and (7.11) are proved in a similar way.
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