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Abstract

In this paper we deal with energy functionals depending on elastic strain and chemica] composi-
tion and we obtain lower semi continuity results, existence theorems and relaxation in the spaces
Hl'r(Cl}K

n)xL9(ft;R*) with respect to weak convergence. Our proofs use parametrized measures
associated with weakly converging sequences.
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i. Introduction t

1. Introduction

Systems depending on both deformation and auxiliary parameters such as concentration arise in several

applications. These systems lead to the introduction of energy densities of the form

with functional

J(tx,m) = /^Vti,m)dx, u€fflj>(n;Rn), m€l«(fi;Rd), Q C RN.
Jti

We study the lower semicontinuity of such functional in the case l < p < o o , l < g < o o . When lower

semicontinuity fails, a sequence {u* ,m*} which drives 7 to a minimum develops oscillations, generally on

successively finer scales. To study these oscillations, we shall examine the Young measures generated by

sequences {Vti*, mk } . The novel feature of I is that u and m have no special relationship, like u = m, which

ensures regularity or tameness in the second variable. Relaxation in the Vu variable alone or separately in

the Vu and m variables does not produce the relaxation. Moreover, we may require the range of m to be

constrained in some manner.

The relaxation question was motivated by the analysis of coherent thermochemical equilibria in a

multiphase, multicomponent system [AJ], [JA], [LCI], [LC2]. Consider a binary alloy of components A and

B which may exist in phase a (matrix) or in phase 0 (precipitate) and let pA (respectively ps) denote the

molecular density per unit volume of the component A (respectively B). Then the network constraint is (see

[LCI], [LC2], [JM])

PA + PB = PO,

where po is the density of lattice sites of the reference volume, and the caloric equations of state on phases

a and 0 become

Wo = Wo(F,pA,p%)

and, respectively,

where all other thermodynamical quantities are held fixed, F denotes the deformation gradient,

and the composition (concentration or mole fraction of component -A) ih phase a (respectively 0) is defined

by

c o := — (respectively cp := — ) .
Po po

( p y p
Po po
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Assuming conservation of mass of each species gives rise to the condition

for fixed F, or, cquivalently

/ / = 0meas(Q)

for some fixed 0 £ [0,1].

Equilibria are interpreted as minima of the energy functional

x),c^(x))] dx,/
n

where <p : fi —• {0,1} denotes the characteristic function of phase a, c : Q —• [0,1] is the chemical composition

of the system and

c o := <pc, op := (1 - <p)c.

Minimizing first in >̂, we see easily that we are reduced to examining the functional

/
Jo,

where

and
/ c(x)dx =

Jo,
Kohn [K] obtained a formula for this relaxation in the case where composition is uniform, i. e. \p(F,c) :=

V>*(F), and for two linearly elastic phases with identical elastic moduli. We note, however, that in the systems

discussed in [AJ],[JA],[JM],[LC1],[LC2] composition is not uniform (see [LC2]) and so we must address the

problem of finding the effective energy in the case where it depends on the chemical composition c.

A second example is from magnetostriction. In the theory of linear magnetostriction [C], the stored

energy density is assumed to depend on the linearized strain and direction of magnetization,

and a, |a | = 1,

and has the form

where (fei(t) is a linear elastic strain energy with cubic symmetry,

and <Pan(<*) is the anisotropy energy, often a fourth order or higher degree polynomial in a. Owing to the
constraint that \a\ = 1, <p is not its own relaxation even though it may be convex. Some special cases used
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in computation have been examined in [CKM]. See also [P2] for some questions related to relaxation in the
context of micromagnetics.

Our principal results bind the lower semicontinuity of the functional to the joint quasiconvexity/convexity
of the integrand. An integrand <p(A,\) gives rise to a weakly sequentially lower semicontinuous functional
provided that

^(j4,A) = inf— / <p(A + Vu,A-f m)dx>

where
A = ((ti,m) : u £ if 1J>(n;Rn),m € L«(fi;Rd), / mdx = o ) ,

I Jn )
subject to appropriate growth conditions, Theorem 4.4. In Section 6, these results are extended to the case
of a Caratheodory energy density. Finally, in Section 5 we obtain the relaxation theorem (see Theorem 5.4)
asserting that the two infima

inf { / V(Vu,m)dx : (ti,m) € Hl^(Q;Kn) x L<(Sl\Rd),u- u0 €

/ mdx = |f2|m0?m(x) € K a.e. x € fi> ,

and

[ / ^ ) ( ) ^ ' ( " ) x ̂ (fijR^tx- u0 €inf [ / ^(Vti,m)dx : (u,m)

I mdx- |Q| m0, m(x) € /^ a.e. x G f2 [

coincide, where the relaxed energy density is given by

, A) = inf | ^ |

f mdx= |n|A,m(x) € / f a.e. x Gfi> ,

extending the well-known relaxation result of Dacorogna [D] to the case where xp depends also on the chemical
composition. In most of the paper A is not assumed to be a closed, convex (except on Section 5). Indeed, we
are usually careful enough to speciiy c K), co(/f), etc .. .In the particular case discussed above K = [0,1]
since the function c should take valuer in [0,1]. In Theorem 5.1 we assert that under some suitable growth
conditions, the existence of minimizers for the energy E*.

In the scalar case n = 1, Ioffe p] studied the lower semicontinuity of E* in ^1'1(weak)xL/0C (see
also [Am] for a new proof of this result). Here, generalizing E* to the case where c may take vector values
and assuming that N,n > 1 we want to study the weak lower semicontinuity and relaxation of the energy
E*. An integral representation of the relaxed functional in BV(n,Rn ) x Ioo(fi,R<f) with respect to the
Ll x £°°(w-*) topology was obtained in [FKP]. ^

In order to describe oscillatory behavior and macroscopic limits of sequences {Vti*,m*} bounded in
IP x Lf we introduce appropriate Young measures or parametrized measures (see Theorems 3.3 and 3.5).
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The context for our discussion is HlJ>-Young measures and L«-Young measures as studied in [KP2]. Recall

that a sequence / * € L^ftjR') with

generates a Young measure v = { j ^ } * ^ , & family of probability measures on R*, if whenever

V>(*,/*) - ? i n L\Q)y for V € C(Q x R') , (1.2)

we have the representation

? ( * ) = / V(A,x)<MA)in!2a.e. (1.3)

When /* = Vt**, we call v a gradient Young measure.

Even though (1.1) is assumed, (1.2) need not hold for any subsequence of the {/*} when i\> has pth
power growth, that is, when

This would require either an additional condition on the sequence { /*} , or some restriction of the class of

functions V> of the type of convergence utilized. In [KP1], [KP2] this situation is resolved by proving, among

other things, that given a sequence {/*} satisfying (1.1) which generates a restricted Young measure in any

of the senses mentioned above and if p > 1, there is another sequence \fk\ satisfying (1.1) which generates

the same Young measure and in addition provides the representation (1.2), (1.3) whenever V5 has pth power

growth. In particular, there is a p G I1(Q) such that

- , in

We refer to [KP1], [KP2] for details of this. If / * = Vti*, then the / * = Vti* are also gradients.

A consequence of these properties of J/ltP-Young measures is, indeed, that a minimizing sequence for

a functional may be chosen so that {|Vuk |p ,|ro*|*} is weakly convergent in L1(fi). This permits us to

exhibit quite simple and short proofs of our claims.

2. Preliminaries

We are going to study some questions concerning weak lower semicontinuity for this type of integrand

using parametrized measures as in [PI]. We will use equally both terms: parametrized measures and Young

measures. In this context and in order to describe nonlinear macroscopic limits, we want to associate

parametrized measures to bounded sequences {Vti*,m*} in Hltp(Q;Kn) x I«(Q;Rd) where SI C R N is open

and bounded. This is possible using the general framework for the study of oscillations described by Ball

[B], Matos [M] and Tartar [T]. We recall

THEOREM 2.1 ([B]) Let Q C R N be open and bounded and let zj : Q —• R' be a sequence of

measurable functions such that

sup / g(\zj(x)\)dx <oo ,
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for a non-decreasing function g : [0,oo) —• R with limt_oo9(i) = oo. Tier there is a subsequence, again
denoted by {ZJ}, and a family of probability measures {*fc}r€n, depending measurably on x, such that given
any measurable f? C ft,

f(*j) - (»*>f) = / / (y)^x(y) in Ll(E) (2.1)

f<x any continuous f : R* —• R suci that {f(zj)} is sequentially weakly relatively compact in Ll(E).

It is important for us to remember how the existence of {f*} r €n ** obtained in [B]. The space
Ir1(n;Co(R')) of strongly measurable functions with finite norm

sup |V>(*,*)| dx<oo ,

is a separable Banach space under this norm. The space Cb(R') is as usual

Co(R') = f/€C(R'): Km /(A) = o} .

Let C denote a dense separable subset. Its dual space can be identified with the space L£?(Q;.M(R5)) of
weakly measurable functions which are Radon measures at each point in ft. The duality is given by

for V € L1(";Co(R')) and */ = {*/*}r€n € L~(fi;.M(R')). Define i/> e L%(Q;M(RS)) by i^ = 6,j(a:) where
6 is the usual Dirac mass. From this sequence we can extract a subsequence which converges weakly * to
some v = { i / x } r € O € I~(fi;.M(R')), i.e.

lim /^,z i(x))dx=(V',i/>= I(vx,xl>{xr))dx. (2.2)

We say that i/ t« generated by {ZJ} whenever (2.2) holds for every %l> £ Z^QjC^R')). It can be shown (see
[B]) that (2.2) is also true when tp is a Caratheodory function such that {V>(x,z,)} is weakly convergent in
Ll(Q) and this in turn implies (2.1). This fact has the important consequence that in order to determine a
parametrized measure in the sense of Theorem 2.1 for a given sequence of functions, we only need to worry
about the convergence (2.2) for \l> £ I1(fi;Co(R#)). Let us keep this fact in mind for future reference.

Consider next a sequence {Vti*,m*} where ti* : ft C R N —» Rn , m* : ft —• Kd and {tii,m*} is
bounded in ^ ( f t j R " ) x L«(ft;RJ), l < p < o o , 1 < ^ < O O . Setting g(t) = tQ with a = min {p,q} > 1
if a < oo and g(t) = t if a = oo, we can conclude from Theorem 2.1 that, possibly for a subsequence,
there is a family of probability measures {^} , € n BUC^ that whenever the compositions {yKVut,m*)}, for
(p : M x Kd —• R a continuous function, converge weakly in Ll(E) for some measurable E C ft, the limit is
given by the integral representation

<p(A,\)dvs(A, A), a.e. x € ft, (2.3)
MxR' '

where M is the set of N x n matrices. For example, if tp is such that

\<P(A,X)\<C(1 + \A\'),
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for some C > 0, and 1 < * < a, then {^(Vti*,mjk)} is weakly convergent in i ^ Q ) by Holder's inequality

and the Dunford-Pettis compactness criterion, and the integral representation (2.3) is valid for the weak

limit. One particularly interesting situation that we should bear in mind throughout the paper, in which

this integral representation is valid, holds when {|Vu*|p}, {|m*|*} are weakly convergent sequences in Ll(Q)

and

because by Dunford-Pettis, {V>(Vu*,nu)} is equiintegrable and thus weakly convergent in L1(fi).

For a bounded sequence in Ll(Cl) we may not have compactness in the weak topology. The best one

can expect is biting convergence in the sense of Chacon's biting lemma ([Z]). We recall that the sequence

{/*} C Ll(Cl) converges in the biting sense to / € L1(Q)i and we write

i/in

if there is a non-increasing sequence of measurable sets [E* } such that \E* | —• 0 and

We may restate Chacon's biting lemma by saying that a uniformly bounded sequence in L1(Q) contains a

subsequence converging in the biting sense to a function in L1(Q) ([BM], [BC]).

This lemma yields necessary and sufficient condition for biting convergence to become weak conver-

gence. Its proof is elementary and can be found in [KP2].

LEMMA 2.2 Let fk : Q —• R + (fk > 0) be a sequence of measurable functions in L1(Q), converging

in the biting sense to f € Ll(Q). A subsequence converges weakly in Ll(Q) if and only if

liminf / fk(x)dx< f f{x)dx.

Also, {/*} is weaiiy relatively compact in Ll(Q) if and only if

limsup / fk(x)dx < f f(x)dx.
*—oo Jo, Jn

After Ball and Zhang [BZ], we identify biting limits with the help of Young measures.

LEMMA 2.3 Let wh : Q C R N —• R n be a sequence of vector-valued functions for which we can apply

Theorem 2.1 for some g. Let {^x}J.€n be its associated Young measure. If ip : R n —• R is continuous and if

the sequence {<p(wk)} is uniformly bounded in Ll(Q), then (possibly for a subsequence)

<p(wk)±lp(x) = (vgi<p)= I

The proof is nothing more than the fact that whenever <p{wk) converges weakly in LX(E), E C fi, the

limit has to be Tp(x) by Theorem 2.1. This weak convergence holds in Ll(fl \ Ej) and |£^| —» 0, so that the
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biting limit is equal to Tp{x) a.e. z € ft. Note that in particular Tp G I 1 (ft) because

fc| dx < liminf / k(">*)l <**

< liminf / \<p(wk)\ dx

< Const.

Now let j ' —• oo.

Another important fact that we will use in Sections 4 and 5 to guarantee the lower semicontinuity of

the functional • to be considered later is that for non-negative integrands, even though we may not have the

parametrized measure representation (2.3), the "right" inequality still holds. This is a simple consequence

of Lemmas 2.2 and 2.3 (see [PI]).

LEMMA 2.4 Let g : R+ —• R+ be a continuous function with lim^©© g(t) = oo, and let z>f : Q —• R"

be a sequence of vector valued functions defined in an open bounded set Q C R N , such that

sup / 0(|*;|) dx < oo.

If {vx)xen is the parametrized measure associated to the z* 's according to Theorem 2.1, then

liminf / y>(*>') dx> I I <p(\)dvx(\)dx,
i-^00 JE JEJR**

for any measurable E C fi and for every non-negative, continuous (p.

Finally,

COROLLARY 2.5 Under the same hypothesis of Lemma 2.4, assume that

lim [ <p(z>)dx= I I <p(\)dvx(\)dx.
i-o© yn j n jRm

Then the whole sequence {<p(z')} converges weakly in I*1 (ft).

To prove this result it suffices to apply Lemma 2.4 to a given measurable E C ft and its complement

ft \ Ey keeping in mind the hypothesis. This yields

lim [ <p(z*)dx= I I <p{\)di,x(\)dx.

We also need to recall a few facts on HlJ>- Young measures, some of which have already been mentioned

at the end of the introduction. For details, we again refer the reader to [KP2]. A HlrP-Yo\ing measure is

a parametrized measure in the sense of Theorem 2.1 associated to a sequence of gradients {Vu' } , where

{u?} is bounded in Jf1>p(ft;Rn). If p > 1 we can always assume that {|Vti'|p} is weakly convergent in

L1(Q) and therefore it is an equiintegrable family of functions. Indeed, if {Vt**'} generates {t<r}r€n then

there is another sequence {VtP } , such that {|Vv>|p} is weakly convergent in I 1 (ft) and whose parametrized
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measure is the same {*/r}x€n- Another important fact is that in this situation each individual vx can be

understood as a homogeneous (i.e. independent of the point in ft) Hl >p-Young measure for a.e. x £ ft, so

that there exists a sequence of gradients {Vuj}> depending upon x € ft, such that

Urn [
j-oo JE

for any continuous (p : M —• R with

3. Characterization of parametrized measures

We want to understand the restrictions that govern parametrized measures arising from sequences

{Vu*,m*} where tit : ft C R^ —• Rn , m* : ft —> K where K is some given subset of Rd and {t/jb,mj.} is a

bounded sequence in J/1«*(ft;Rn) x L«(ft;Rd), 1 < p < oo, 1 < ? < oo.

Here and throughout the paper, Xx and x2
 Wl^ denote projections of M x Rd onto M and Kd

respectively (or perhaps, projections of R' x Rd onto R' and Kd respectively). Our aim is to show that this

family of Young measures is characterized by

i) {^l^lr^n *s a n #1>P-Young measure;

ii) {^2^*}r€n ^s a fsLmily of probability measures verifying

|* dir2Vx{\)dx < oo, if 1 < q < oo,

C K, for a.e. x € ft,

and there exists a compact set K1 C K such that

supp (X21/*) C K\ for a.e. x € ft, if q = oo.

Moreover any such parametrized measure may be generated by {Vtik.rnk} where {|VtF*|p}, {|"T*|*} are

weakly compact sequences in L1^), and therefore equiintegrable.

The arguments throughout this section do not depend upon the fact that we are dealing with gradients

Vti*. All we need to know to apply the results below to this particular situation is contained in [KPl], and

we will state precisely the conclusions in Theorems 3.3 and 3.5 below. Meanwhile we consider sequences

{t>*iTO*} for Vk : ft - • R* and m* : ft —• K% as before. We will deal first with the case q = oo and deduce

from this and a standard truncation argument, the case corresponding to finite q. Let us assume that A' is

bounded. ~~

THEOREM 3.1 Let u = {^p}r€n ^ e a family of probability measures such that {^i^x}T£d is generated

falP} weaiiy compact in Ll(Q) and suppfav*) C K for a.e. x £ ft. Tien there is a sequence
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{vj.rrij} € 1^(0;R*) x I°°(fi;Rrf) whose parametrized measure is {y*}*€n> {VJ} is a subsequence of {vk}>

and rrij(x) € K for a.e. z G Q and all j .

Proof. Introduce the set

A = {/i = { M , € n € L?(0;A4(R* x R<)): for every

subsequence of {vk} there is a further subsequence {Vj}

and {WJ } C L°°{Q\ K) such that

/i is generated by {vj, Wj}} .

Step 1. .4 is convex.

Take /41 and /i2 in >̂  and for p € (0,1), let /i = p/i1 4- (1 — p)/i2. Let {t;^} be any subsequence, not

relabelled, of the original {t;*}. Then /if can be generated by Wj^\ t<4 j for t = 1,2, where

and by inclusion we mean as subsequences.

It is well-known (see [D]) that we can always find a characteristic function x of some subset of Q such

that

Let

j g ) + (1 - x(n*)) u>i2)(x), »*•"(«) € K a.e.x € 0.

For V

Urn Umri?
\Q\

îrnjn̂  i

JBm

Taking suitable diagonal subsequences of the pairs (k,n) for all V1 € C we obtain that /i € .4.

Step 2. i/ € X

We use the Hahn-Banach Theorem. Assume that for some i> € L}(to; C0(R' x Rd)) and for all // e ^4,
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It is easy to see that then

liminf / ^(x.Vt.w^dx > 0,
ft-oo Ja

whenever Wk(x) € K for a.e. x G fi and all t . Define

? («,atA) < V>(x,a, A),

= A if

so that

Then

, a.e. x €

/ /
JnJR

= lim

= lim

by hypothesis. Finally,

Step 3. A is weak * closed in I ~ ( n ; . M ( R ' x R*)).

Let //*> € 4̂ converge to \i weak * in L™(Q\M(R9 x Rd)) and let {vn} denote a subsequence of

Then each /i(fc) is generated by {ti*\u& f c )} where

Let £ = {V>j} be a countable dense set in L1(f2;Co(Rf x R*)). For j fixed, choose n(Jb, j) > n(k - 1, j ) such

that

lim / V'jO^fn^w^Jdx— / $j(2iVn(ijywn({j))dx < -r.

In this way, and keeping in mind the weak * convergence of the /i*'s to //, we have

» ft

l u n § \)4 Cx«v / t »\« w / L • \ J o x ~̂> / / ^Pi C x • v i w^ j utXr I v«^y) cix •

We conclude by a routine density argument that for every V € I^fijCoCR* x **•*))»

lim / V(*J vn(i kywn(k k))dx = / / ^v

Step 4. Conclusion.
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The fact that v € A implies that there is a sequence {vj,m,} where {VJ} is a subsequence of {vt}

Buch that
lim / 1>(x,Vj(x),mj(x))dx= I I il>(x,a,\)dvx(ai\)dx,

i-+°°Jn JnJifxK

for all ̂  € L1(f2;Co(R' x Rd)). By the comments made after Theorem 2.1 (in particular after (2.2)) we can

conclude that v is the parametrized measure associated to {vjjfnj}. g

We now deal with the case q < oo using a truncation argument.

THEOREM 3.2 Let v = {^x}r€n be a f&mMy of probability measures such that

i) {^l^ljpcn c a n ^ e generated by {v*} with {|tJ*|p} weakly compact in LX(Q);

ii) {*2Vx}X£fiiS a family of probability measures with supp(^2|/*) C K for a.e. x € ft and

/ / |A|f x < oo.

TLen there is a sequence {vj,m ;} € 1^(0; RJ) x L?(f2;Rd) whose parametrized measure is {^x}x€n^ {vj} JS

a subsequence of {vt}, {|ro.;T} we weakly compact in Ll(Q) and rrij(x) € K for a.e. x £Q.

Proof. Let Xn be the characteristic functions of balls Bn centered at the origin with increasing radii

tending to oo, choose An € dBn n K if 3Bn n /f ^ 0 or An = k0 if 6Bn n K = 0 where fc0 G A' is fixed, and

define j / n = {*£}r€n trough the formula

= / // /
flJK'xK

for V' € L1(Q;Co(R* x Rrf)). In other words, i/n concentrates the mass outside Bn on An € 3Bn n A" or on

io. We need three basic properties of these truncations:

i) Tii/g = i/x for all n and a.e. x € ft;

ii) ,/> .1 „ in £«>(n;M(Rf x R*));

iii) (i^,*>> - <*,*>) for Vo(ar,a, A) = |A|f.

The first one is an immediate consequence of the definition of i/n. For the second and third, notice that if

cither V € Ll(Q;Cb(Rf x Kd)) or tp = Vo then

Since >̂n —• 0 pointwise v®dx a.e., as

KI<|A| f, Vn,
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with

by hypothesis, and since if tp € Ll(Q\Co(K9 * Rd)) then

we conclude ii) and iii) using Lebesgue's Dominated Convergence Theorem.

Since supp*2i>n C (Bn H K) U {to} we can now apply Theorem 3.1 successively to each vn and find

sequences {vjj,fnj} such that m%(x) € K for a.e. x € Ii (recall An € # ) and each {vj?} is a subsequence of

the previous {v%~1} and therefore all of them are subsequences of the initial {7*}. This can be done because

of property i) above. Finally we can find a subsequence fc(n) such that if {vjirrij} = { v£(n)>m2(n)} ^

Urn / ^(xyvj(x)imj(x))dx- I I V(x,a,A)di/x(a,X)dx,
J—oojn JnJR'xK

for all ^ € I1(ft;Co(R* x Kd)) U {V>o} just as we did at the end of the proof of Theorem 3.1. By applying

Corollary 2.5 to V>o we obtain that {|mj|*} is weakly compact in L1(ft). B

We now can replace t>* by gradients Vu* and obtain the following

THEOREM 3.3 Let v = {^*}r€n ^ e a famiiy of probability measures such that

*) {*i | /*}r€n is a fi"1^-^0"^ measure, p > 1;

, is a family of probability measures with supp(ir2i/x) C K for a.e. x £ ft and

|A]' dir2i/JP(A)dx<oo.
JCIJCIJK

Then there is a sequence {Vuj.rnj} € H1>p(Sl\Rn) x L*(Q\Rd) whose parametrized measure is v, {^Vjf},

{\mj\q} are weakly compact in Lx(il) and m ;(x) € K for a.e. x € ft.

Proof. We know ([KPl], [KP2]) that {*i*'a:}ir€n> being an ff^Mfoungmeasurewith p > 1, is generated

by a sequence of gradients {Vtl*} whose pth power is weakly compact in Ll(Q). Hence applying Theorem

3.2 we have the result. a

Due to the equiintegrability of {|Vtii-|
p -f \mj\q}, by Theorems 5.3 and 2.1 the integral representation

in terms of v is valid for any (p in the space

X>« = {<p € C(M x Kd): |^| < C(l + |^|p + |A|*)} .

We would like to complete Theorem 3.3 by adding the integral constraint

pi,"•'<*"'*-wiU*Xi'"*mi"- ***">•
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For this we establish first a basic fact from elementary convexity.

In what follows, if K is a subset of Kd we fix a € K and we set L(K) = a-f < K — a >, where < V >
denotes the linear manifold spanned by V. Also, co(K) = {Ox + (1 - 8)y\6 € [0, l],x,y € K}.

LEMMA 3.4 Let K be any subset ofRd and L(K) the linear manifold spanned by K. The set

\ I A di/( A) : supp v = K, v is a probability measure >
UK )

is convex and is contained in the interior of co(K) relative to L(K), i.e. if u is a probability measure with
support K,

a= /
JK

then there exists € > 0 such that

wiere B(a,e) is the ball centered at a and radius e.

Proof. We may assume that L(K) is all of R*. Otherwise we restrict attention to that linear manifold.

The convexity is clear. Suppose that

a = / Adi/(A)€0(co(/O),
JK

and supp J/ = K. Then there is a vector a € Rd such that

A a > 0 , VA6/C.

Therefore
0 = a a = / Aadi/(A),

which implies A • a = 0, VA £ suppi/ and /£ = suppi/ is contained in the hyperplane determined by a. This
is a contradiction. H

THEOREM 3.5 Let v =r {i<r}r€n ^e a f*ntily of probability measures such that

*) {'l^rlrcn *• a /f 1>p-young measure, p > 1;

ii) {'2*/x}iP€n ** a '*™|y of probability measures with supp(^2*/*) C # for a.e. x 6 J2 and

/ / |A|f <fT2i/*(
JCIJK

Then there is A sequence {Vuj,rrij} € Jy1>p(fi;Rn) x ^(fijR*1) whose parametrized measure is i/, {|Vti^|p},
{|mj|*} are weakly compact in Ll(Q), mj(z) € K for a.e. z e fi and

/ m i(x)dx= / / Ad î/̂ CAJdr (3.1)
^n ^n JK
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for all j .

Proof. First, we would like to keep K as small as possible but having the property supp (TT2I/X) C K

for a.e. x £ Q. This is easily done by introducing the probability measure F2 defined by

I f f
MJCIJK

for (p £ Co(Rd), and replacing K by suppF2. Let us assume then that K = suppl/2.

By Theorem 3.3, there exists a sequence {ti*,m*} € Hl*p(Q\Kn) x L*(Q\Kd) whose parametrized

measure is i/, {IVti^p + \mk\q} is equiintegrable and m*(x) £ K a.e. x £ Q. Our purpose is to redefine m*

so as to have the average constraint (3.1).

Let

:=Tr>T / /

Then

Gt =

and by Lemma 3.4,

a € int co(tf) n L(K).

Without loss of generality we may assume that L(K) = Rd or else we restrict our attention to that linear

manifold.

Let mk — m in L*(Q; Rd), m(x) £ co(K) a.e. x £ Q. In fact

?n(x) = / Ad^r2i/r(A), a.e. x € fi.

Then
— / m(x) dx = a € int co(AT) (3.2)

and so we may find xi, x 2 , . . . , x, Lebesgue points for m (changing m on a set of measure zero, we may suppose

without loss of generality that all its points are Lebesgue points) and 0 i , 0 2 , . . . ,0, € (0,1), JZ*=1 6i = 1 such

that

&o = y ^0jffi(Xi) £ int

Otherwise, since a can be approximated by sums of the type

I

for *, € fi, / £ N, 0i £ (0,1), £ l s l 0i = 1, we would have a € Oco(K) contrary to (3.2).

Let
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which is

Since

a disjoint union for j

lim lim |a0
j—oo k-+oo

large, \Qj\ - 0

in
m

— atjtk\ = Km

= lim

= lim

II 
II

t = l

and set

| 1

PI 1
- /

• * —

1 _

*/i)m x

we may extract a diagonal subsequence k(j) such that

Since ao €int co(X), there is a £ > 0 such that

co(K),

and so, by Caratheodory's theorem, each of the Id vertices of the type ao ± 6c, (where €,- are the vectors for

the standard basis in Rd) can be written as a convex combination of at most d + 1 elements of K. On the

other hand, each point in the cube a0 + [—6,6]d can be written as a convex combination of the vertices and

so, we conclude that there exist k\, *2» • • • * &2<*(<f+1; € K such that

Hence, since otjjy) —»<*o, for ,; large enough and, m = 2«{(cf + 1),

t s l • s i

Now we set

where fi, = ^ n i t< and |fi,>t| = A ^ 10,1. Ckarly

rrij € K a.e. i € fi,

/ rn,(x)dx = / mt0)(*)<fe + |n,|ai<k(J) = |fi|o.
Jti Jn\ti
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In addition, for any measurable subset E of ft,

j = 1

and so {IWjD is equiintegrable. It remains to verify that {VUpWj} generates v. Consider <p € Xp%q and

£ C f i measurable. We want to show that

lim / ^ . ^ / /
J JJUXK*JEJ

Indeed, due to the equiintegrability,

- / <p(Vuk(j)imkU))dx <C f (1 + |Vu* ( i )|
p+ \mkU)\

q)dx -> 0.

Hence
lim / ^(Vtl^m;)ds=: lim I

= / //
MXR'

4. Weak lower semicontinuity

With the parametrized measure device we are going to reduce weak lower semicontinuity to a local

level. Using the language in [FM2], [FM1], this is done by "blowing-up" the initial sequence near the point

y e fi (see also [KP1], [KP2]).

LEMMA 4.1 Let {^*}r€n ^ e the parametrized measure generated by asequence {Vtn ,mi} , bounded in

HliP(Q\ R n ) x L*(Q; R/*). Then for a.e. y € ft, vy is a homogeneous (i.e. spatially independent) parametrized

measure associated with {VuJ,mJ}, bounded in / /^ (QjR") x L<(Q\Rd).

Proof. We know that {*i*>*} is a Jif^-Young measure. Therefore by the comments made at the end

of Section 2, *ii/y is an homogeneous Jf^-Young measure for a.e. y € fl (see [KP2]). On the other hand,

by Lemma 2.4 applied to tp(A, A) = |A|* we have

/ /
JCIJK

whence

<oo
R*

for a.e. y € ft. Now we can conclude from Theorem 3.3 that for a.e. y € ft, vy is a homogeneous parametrized

measure associated with one of the appropriate sequences. H
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In the following lemma we give the condition which enables us to show weak lower semi continuity at
this local level.

LEMMA 4.2 Assume that G : M x R ' — > R i s a continuous function such that

\G{A, A)| < G(l + \Af + |A|<), C > 0,1 < p, 1 < q < oo,

|G(A, A)| < y(A)(l + \A\% 9 € L&(R'), l < M = oo.

If
A) < T^T / G(A + Vu, A + m) dx,

for every (A, A) € M x co(/0 and (tx,m) € H^p(fi;Rn) x I^njR 4 ) , / n m d x = 0, A + m(x) € K a.e. x e fi,
tiec

whenever tit — i4x in H^(tyR"), m4 — A in L«(n;R
d) (or mk — A in L°°(n;Rd);, mfc(x) € K a.e. x € fi

and {|Vufc|p}, {|m*|*} are weakly convergent in

Proof. Let iy be a sequence of cut-off functions such that

rij = 1 when dist(x,0S2) > - ,

ty = 0 on 512,

Let

Set

Xk = W\imk{x)dx-
By the hypothesis on G,

A*)^ f G(VukJimk)dz

= [ G(Vuk,mk)dx- I G(Vukimk)dx+ I G(VukJimk)dx
in in, in>

= f
Jo

We next show that | / * j | and | / / * j | can be made small.
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By hypothesis, the integrands are equiintegrable in all of fi, so that for j sufficiently large we can make \Ik

small uniformly in k. Same argument for q = oo.

2) For fixed j , take k sufficiently large so that

This is possible because

/ \uk - Axf dx — 0, k -> oo.
Jn

For such a subsequence, since

Vfy ® (uk - Ax),

we have

and therefore, due to the equiintegrability of {|Vti*|p , |mt|*},

|//*j|-*0, i-oo,

for both cases corresponding to q < oo and q = oo. Therefore

liminf / G(Vuk,mk)dx > |fi|liminf G(A,Xk) = \Q\G(A,X),

because At —• A by hypothesis and G is continuous.

In the proof of Theorem 3.5 we used the average of a Young measure. Let { ^ } r € n be a Young measure

associated to {Vtit,m*}, a sequence bounded in #1 J ?(f i;Rn) x L^fljR/*) with mk(x) € Ar for a.e. x € fi.

Assume that the associated underlying deformation u with deformation gradient

/
M

is affine on 5Q, i.e., ti(x) ss Fxy x € dft. The average V is defined by

for V € C(M x

LEMMA 4.3 V is a parametrised measure generated by some sequence {Vuk,Tnk} with

{lm*| f} weakly compact in Ll(Q), uk(x) = Fx, x € 0fi, for all k andmk(x) £ K for a.e. x € fi.

Notice that we are asserting here that under the additional condition of affine boundary values for the

deformations, the average defined above is itself a parametrized measure generated by a sequence with the

same properties i) and ii) in Theorem 3.3. Indeed, for the proof we rely again on Theorem 3.3.
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It is easy to check that

and we know that this is a homogeneous J/Ijl>-Young measure precisely because we have affine boundary

conditions (see [KP2]). On the other hand,

oo./ |A|* d*2V(\) = JL / / |A|f d*2vt(\)dx
JK l"l Jn JK

We conclude by Theorem 3.3.

We are ready for weak lower semicontinuity.

THEOREM 4.4 Let G : M x Rd —• R be a continuous function such that

0 < G(A, A) < C(l + \A\P + |A|*), C> 0,1 < p < oo, 1 < q < oo,

0 < G(A, A) < ,(A)(1 + \Af)t g € I£C(R'), 1 < P, q = oo,

0 < G(A,\) < g(A)(l + |A|f), y € I,~ (M),p= oo.l < 9 < 00.

TAen tie weal: lower semicontinuity property

f G(Vu,m)dx < liminf / G(Vukimk)dx
JE *—°° JE

holds for any measurable E C fl wienever u> -* 11 ID /f1|P(f2;Rn) and rat —> m in L*(Q;Rd), mk(x) e K

a.e. x £Q (ormk^m in L°°(Q\Rd)) if and only if

J (4.1)

for all (A, A) € M x co(K) where

A = j(ti,m) e Nl*(Cl\Rn) x L«(Q;Rd) : / mdx = 0, A + m(x) G A' a.e. x € fi j .

Proof. We will not make the distinction between the ca.^s 9 < 00 and q = 00 or p < 00 and p = oc.
We start by showing that (4.1) is a necessary condition for leaver semicontinuity.

As usual (see [D]), we may assume without loss of generality that Q is the unit cube (0, l)N. Given

(ti,m) € A, we extend Vti and m to R N as periodic functions of period one. Let (-A,A) € M x co(A') and

consider

( ) l + (ft)

Then
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and
mk — A + / m(y) dy = A in L*(ft; R*).

-/n

Hence, as the functional is lower semicontinuous we conclude that

G(A, A) < liminf / G(Vukitnk)dx

= liminf / G(A + Vu(*s), A + m(*x)) dx

n

Conversely, assume we have uk —> it in J J^ f t jR" ) and m t - r n i n L«(ft;Rd), mk(x) e K a.e.
x € n, and let {vx}X£n be the associated parametrized measure. Observe that supp a^x C ~K a.e. x € fi.
By Lemma 4.1, for almost every y € ft, i/y may be regarded as a homogeneous parametrized measure which
by Theorem 3.3 is generated by some sequence {Vttj[,m][} with the properties that {|V«J|P}, {|raj[|*} are
equiintegrable families in ft and mv

h(x) € T( a.e. * 6 ft. In this case the Young measure representation is
valid since {C?(VtZj,mJ)} (or a subsequence of it) is weakly convergent in L^ft) (by Dunford-Pettis) and by
Lemma 4.2 (take K = K),

>G(Vti(y),m(y)).

Since this is true for a.e. y £ ft,

/ / _G(A9\)dvg(A,\)dx> I
JEJMXK JE

Use Lemma 2.4 to conclude the proof.

5. Existence theorems and relaxation

We present several results and applications of the preceding facts related to existence theorems, regu-
larity properties of minimizing sequences and relaxation, as well as some examples of functions verifying the
"convexity" condition (4.1).

Let V>: M x Kd —• R be continuous and

cmax(|>i|p + |A|f - 1,0) < *(A, A) < C(l + \A\P + |A|«), A € M,A € Rd, (5.1)

where 1 < p < oo and 1 < q < oo. For very well-known reasons, we have to restrict attention here to p, q > 1.
When p = 1 one needs to work on spaces of functions of bounded variation ([FKP]). We will be dealing in
this section with the functional

*(u ,m)= / iHVti,
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defined on an admissible class A, where

A = {(u,m) € H^(fi;Rn) x L«(n ;R
a) : u - u0 € H0

1>?(f2;Rn),

/ mrfxs: |fi| mo,m(x) € tf a.e. x € $1 > ,

for tio € /T1>p(n;Rn) and mo € R*. We also assume K to be closed and convex (although not necessarily
bounded) so that A is closed under weak convergence.

THEOREM 5.1 Iftl> satisfies (5.1) and (4.1)f the problem

min*(t/,m),

admits minimizers.

Proof. The proof is standard once we have lower semicontinuity. First of all, notice that the functional
• is well-defined and finite on A. If we choose a minimizing sequence (it*,!?**), by the lower bound in (5.1)
we can extract a weakly convergent subsequence in J/1>p(f);Rn) x Lq(Q;Kd) to some (u,m) G A. By the
weak lower semicontinuity obtained in Theorem 4.4 this provides a minimizer of our problem. B

THEOREM 5.2 Assume that ^ satisfies (4.1) and

0 < tI>(A, X) < C(l + \A\P + |A|«), A € M, A € Rd,

where 1 < p, q < oo. Suppose that

(uk,mk) - (ti,m) in H^^R")

Jf V(Vti,m)dx= lim / il>(Vukimk)dx. (5.2)

Then
V ( V ) V ( V m ) in

Proof. Given any measurable set E C fi we apply the weak lower semicontinuity property to both E
and Q\E. Keeping in mind (5.2) we conclude that

I ^(Vu,m)dx= lim /
•/£ *—°° JE

As a consequence of both theorems, we have that for any minimizing sequence (tt*,m*) converging
to a minimizer (ti,m), ^(Vti*,m*) converges weakly in L^R) to V»(Vti,m), and in particular, at least for a
subsequence, {|Vti*|p}, {|m*|f} are weakly convergent in Ll(Q) (we are assuming (5.1)). This property is
still true for some minimizing sequences even if we do not assume condition (4.1).



5. Relaxation tS

THEOREM 5.3 Let %l> satisfy the growth assumptions in (5.1). Then the problem

inf»(ti,m),

admits a minimizing sequence (ti*,nu) G A such that {|Vu*|p}, {|m*|*} are weakly convergent in L1(Q).

Moreover, if (tZ*, m*) is a minimizing sequence with Young measure { i^} r €n *hen the parametrized measure

representation for V> holds, i.e.

inf*(u,m)= / / il>(A,\)dvx(A,\)dx

and supp^v* C K a.e. x € ft.

Proof. Let (TTfc,m*) be a minimizing sequence in A. By Theorem 3.5, we may assume that (U*, in*) is
such that {|VtT*|p}, {|nu|*} are weakly convergent in L1(ft), m*(x) € K for a.e. x G ft and the average value
of m* is roo for every k. However, in making this change we might no longer have that the new sequence is
in A since the trace of ut might not coincide with u<>. Since both sequences share the same Young measure,
the weak limit for both coincide and so let (u,m) € A denote this common weak limit. We can arrange
the boundary values of tJ* in the usual way using cut-off functions as in the proof of Lemma 4.2 (notice
that u should replace Ax) and we find a sequence {Vuj,mj} for (uj,mj) € A such that {|Vu,|p}, {Imjl*}
are weakly convergent in Ll(Q) and the parametrized measures for {Vti;,mj} and {VtZi,mjt} are the same
(this is also an easy exercise left to the reader). Then, because {Vujt,mjt} is a minimizing sequence and for
{Vtij jtrij} the Young measure representation is valid,

lim / tl>(Vukymk)dz< lim I ^{Vu^mAdx^ I I %l>(A,\)dvx(A,\)dx.

By Lemma 2.4 we conclude that (ti ;,m ;) is a minimizing sequence. B

For a continuous function V>, we define the relaxed energy density by

&{A,\) = inf j JL*(ti,m) : tx- Ax

I mdx = \Q\Xim(x)eK a.e. xGft i ,

where, as before,

• (" ,m)= I tl>(yu,m)dx9
Jet

and set

Ja

RELAXATION THEOREM 5.4 Suppose that V> satisfies the growth assumption (5.1), and for (ti0, m0) €
Hl*(Q\Rn)xKd let

A = {(ti,m) € Hl*iQ;Kn) x ^(ftjR*): u - u0 € ifo
1|P(ft;Rn),

I mdx = |ft|mo,m(x) € K a.e. x G ft > .
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Then
inf{*(ti,m)} = inf

Proof. Clearly * ' < * and BO

inf{«(u,m)} <inf {• '(«."»)}•

It remains to show that for any (tf.Tff) € A there is a sequence (tii.mjt) € A such that

lim *(uk,mk) = • ' ( « , m ) .
Jt<-+OO

Let y € 0, and consider the minimization principle

^(Vtl(y),m(y)) = inf { p * ( " , m ) : " - VB(y) € Hl
0*(Q;Kn)

m e L'ifyR*),^ I mdx =m(y),m(x) € ^ a.e. x € ft j .
l"l in J

By Theorem 5.3,

where {*/x)r€n ^ ^^e parametrized measure generated by a minimizing sequence. Furthermore by Lemma
4.3 we may assume that this Young measure is homogeneous, i.e. i/| = vy for a.e. x G fl. This is so because
we have affine boundary conditions. Then

l I ( ) ( ) ( ) ( ) (5.3)
JnJMxK* J *

Since this holds for a.e. y € H, we can consider the family of probability measures {^v}y^Q- By construction,

the projection {*ii>y}y€n ** a Hl>p-Young measure. We refer the reader to [KP2] for details. Regarding the

second projection, if {tij,mj} stands for a generating sequence for i/y, then

= lim [\ml\' dx

lim

whence

/ / * f l M < oo.<ef
in

By Theorem 3.5, there is a sequence (t**,m*) € A whose parametrized measure is {^ y } y € n and for tp the

integral representation is valid. Finally by (5.3)

lim •(!!*,mk) = / / V(A, A)dv>(A,A) dy

= f
•/n/n

= •l(tZ,m).
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It is not easy to find explicit examples of functions verifying the convexity condition (4.1) other than

the usual convex functions. There is however a source of such functions in taking

where M(A) is the vector of all minors of the matrix A and g is a convex function of all its arguments.

This is the analogue of polyconvexity. In particular, it is interesting to ask whether there might be more

"null-lagrangians" than affine functions of M(A) and A, that is to say, to determine all functions G such

that

G(A, A) = / G(A + Vtx, A + m) dx, (5.4)

for all u € Hl'p(Q;Rn) and m € L«(fi;Rd), f^mdx = 0 and all A € M and A € Kd where |fi| = 1. We
claim that the only null-lagrangians in this context are truly affine functions of M(A) and A.

If we take u = 0 in (5.4), then we come to the conclusion that G should be affine in A, i.e.

Take this G back to (5.4), and let A = m = 0 to find that f(A) is some affine function of M(A). Now (5.4)

reduces to
g(A)X=

?
= I

Jn

Vu)dx-\+
n

for all u e HltP(Q;Rn) and m £ L^(Q\Kd), / n mdx = 0 and aU A € M and A € Rd. If we take m = 0 we

conclude that g(A) should be an affine function of M(A). Let us write g(A) = Tj(A) + C where ^(-4) is a

linear function of M(A) and C is some constant. For A = 0 (5.5) becomes

i g{Vv) • m ix = 0
n

for all ti € HltP(Q\Rn) and m € Lf(O;Rrf), J^^idx = 0. In particular, for any such tx we can take

m(x) = p(Vti) because by the well-known properties of null-lagrangians J^rndx = 0. Hence

and therefore 7(Vti) = 0 for all ti € -ffo>P(niRn)- T h u 8 ? = ° ^ ^ i s constant, as desired.

Each one of the following is a sufficient condition for G to satisfy (4.1), but we do not know what type

of restrictions these place on G. Those conditions are

i) G quasiconvex in A and

G(A + Vti,A + m ) d x > / G(A + Vu,A)dx,
i Jo.
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for all u € //^(fijR/1) and / n m d x = 0.

ii) G quasiconvex in J4, convex in A and

/ IG(A + Vu(x\\ + m(y))dxdy< I
Jo, Jci Jn

for all u € Hl*(Q\Rn) and Jamdx = 0.

6. Weak lower semicontinuity for Caratheodory functions

Once we have the weak lower semicontinuity property on any measurable E C fi we can prove weak
lower semicontinuity for any Caratheodory function. The proof of this case is reduced to the homogeneous
case (no dependence on x) via a standard localization procedure.

Let just deal with the case 1 < p, q < oo and leave the obvious adaptations for p = oc or q = oc to
the reader.

THEOREM 6.1 Let G :Q xM xTLd —* R be a C&ratheodory function, i.e. continuous on (A,\) for
a.e. x € ft and measurable on x for all (A, A) € M x Rd. Assume that

0 < G(x, A, A) < c(l + |A|P + |A|f),

and that G(x, •, •) verifies the "convexity" condition (4.1) for a.e. x 6 fl. Then

liminf / G(x,Vtin,mn)dx > / G(x,Vti,m)dx, (6.1)

whenever (un ,mn) — (u,m) in Hl*(Q\Rn) x I*(f

Proof. We divide the proof in several steps.

1. Since {(Vunf + |n»*|f } is bounded in Ll(Q)} by the biting lemma there exists a decreasing sequence
of sets {£*}, \Ek\ - • 0 such that {|Vun|p + \mn\*} is equiintegrable in Q\Ek. Observe that we can consider
an appropriate subsequence yielding the liminf in (6.1).

Fix k and e < 0. Let

Xn,t = {x € fi : |Vtin(x)| > t or |mn(x)| > f} .

Then
!*n,t| < |{* € Q : \Vun(x)f > t>}\ + |{« € H :

<^l|Vun||J + i||mn||J-.0ast-oo.
Choose t large enough so that due to the equiintegrability

(6.2)
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and write Xn = Xn,t •

2. Choose 6 > 0 so that 6(1 + tp +<«) < c and by the ScorzarDragoni Theorem for Caxatheodory
functions (see [D]), let K C ft be a compact set so that |ft \ K\ < 6 and G restricted to K x £(0, < + l ) x
2?(0, t -h 1) is uniformly continuous.

Let i; > 0 be such that whenever

then

|G(*M,A) -G(*U' ,A' ) |<e . (6.3)

By Vitali's covering lemma, write

where |7ST| = 0 and c,- < 17. Choose ** € (â  + etB(0, l))dK if this set has positive measure. Set B = B(0,1).

3. Fix j € N and let [gr]t stand for the truncation 9X\g\<t for any function g. We decompose the left

hand side of (6.1) in several terms

•±J
{r{JEhr\(<

,Vtin ,mn)-G(x,[Vun] t , |

- G(x,-,[Vun]t,[mn]t)) dx
B)c\K

i»[Vun]t,[mn]t) - G(xitVun>rnn)) dx

G(xt\yun]ti[mn]t)dx

,Vit,m))

t=i ^ n ( « i

i+e.B)n/T

(G(xi,Vti,m)-G(xl,[Vu]<,[m]t)) dx

E / (G(xlS[Vti]t,[m]t)-G(x,[Vt/]t,[m]O) dx

,[Vu]i, [m]t) - G(x, Vu,m)) dx

G(x,Vu,m)dx
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4. Estimates.

A<C I (l +
JEkr\Xnti

<ce by (6.2),
B<\Q\€ by (6.3),

C<c f
JEkr\X^t

<ce by (6.2),

<c6(l

< ce by choice of 6 in Step 2,

F is like C,

G is like B,

# is like A.

5. Conclusion. When n —• oo, because of all the previous estimates, all those terms go to 0. Regarding

E we have

liminf V / (<?(*•, Vun ,??*„) - G(x,,Vu,m)) dx

n)-G(x i ,Vti,m)) dx

by Theorem 5.3. We conclude that

liminf / G(x, Vtin ,mn)dx > liminf / > T^ / G(x, Vti,m)dx.
n * ° ° / n - > 0 ° friJE{B)K

Finally, if we now let 17 —> 0, k —• 00 and ,; —• 00 in this order, using the monotone convergence theorem we

conclude that

liminf / G(x,Vtin,mn)dx > / G(x.Vu,rn)dx.nm*°° Jn Ja
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