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Abstract

In this paper we deal with energy functionals depending on elastic strain and chemical composi-
tion and we obtain lower semicontinuity results, existence theorems and relaxation in the spaces
HYP(;R*)x L*(S};R?) with respect to weak convergence. Our proofs use parametrized measures
associated with weakly converging sequences.
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1. Introduction 2

1. Introduction

Systems depending on both deformation and auxiliary parameters such as concentration arise in several
applications. These systems lead to the introduction of energy densities of the form

¥(Vu,m)
with functionals

I(u,m) = / ¥(Vu,m)dz, ue H*?(Q;R"), me L1(Q;RY), Q C RV,
n

We study the lower semicontinuity of such functionals in the case 1 < p < 00,1 < ¢ < c0. When lower
semicontinuity fails, a sequence {u" ,m"} which drives I to a minimum develops oscillations, generally on
successively finer scales. To study these oscillations, we shall examine the Young measures generated by
sequences {Vu", m"}. The novel feature of I is that u and m have no special relationship, like u = m, which
ensures regularity or tameness in the second variable. Relaxation in the Vu variable alone or separately in
the Vu and m variables does not produce the relaxation. Moreover, we may require the range of m to be
constrained in some manner.

The relaxation question was motivated by the analysis of coherent thermochemical equilibria in a
multiphase, multicomponent system [AJ], [JA], [LC1], [LC2]. Consider a binary alloy of components A and
B which may exist in phase o (matrix) or in phase § (precipitate) and let p4 (respectively pg) denote the
molecular density per unit volume of the component A (respectively B). Then the network constraint is (see
[LC1], [LC2], [IM])

PA +pB = po,

where pg is the density of lattice sites of the reference volume, and the caloric equations of state on phases
a and B become

Wa = Weo(F, p%,08)
= Wo(F, p%,P0 — PZ)
= ¢a(F, ca)

and, respectively,
Wp = ¥p(F,cp)

where all other thermodynamical quantities are held fixed, F denotes the deformation gradient,

'/’G(F: C) = WG(F» PoCa; Po — POca),
lﬁp(F,C) = WH(F;POCA,PO -Pﬂcﬁ)»

and the composition (concentration or mole fraction of component A) in phase a (respectively §) is defined
by

-y i = Pa
Ca := == (respectively ¢g := —4).

Po Po
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Assuming conservation of mass of each species gives rise to the condition

/ p§+/ Pa=T
0. 0,

/cc.,+-/‘; cs = O meas(Q)

for fixed T, or, equivalently

for some fixed 6 € [0, 1).

Equilibria are interpreted as minima of the energy functional
E(u,c,p) = /0 [p(2)¥a(Vu(z), ca(z)) + (1 — 9(2))¥5(Vu(2), p(2))] dz,

where ¢ : Q — {0,1} denotes the characteristic function of phase a, ¢ : @ — [0, 1] is the chemical composition
of the system and
Ca:=pc, cp:=(1-¢)c.

Minimizing first in ¢, we see easily that we are reduced to examining the functional

E*(u,c) :=/n¢(Vu(z),c(z))dz

where

Y(F,¢) := min {¢o(F,c), Ys(F,c)}

and

/ ¢(z) dz = O meas(Q).
o}

Kohn [K] obtained a formula for this relaxation in the case where composition is uniform, i. e. ¥(F,c) :=
¥*(F), and for two linearly elastic phases with identical elastic moduli. We note, however, that in the systems
discussed in [AJ),[JA),[JM],[LC1],[LC2] composition is not uniform (see [LC2]) and so we must address the
problem of finding the effective energy in the case where it depends on the chemical composition c.

A second example is from magnetostriction. In the theory of linear magnetostriction [C], the stored
energy density is assumed to depend on the linearized strain and direction of magnetization,

(Vu+VuT) and a, |a] =1,

[T

€=

and has the form
p(€, @) = pei(€) + wem(€, @) + pan(a),

where @.1(¢) is a linear elastic strain energy with cubic symmetry,

go,,,.(c,a) = botre+ b; E t.','(cn')2 + b 2 €005,
1<i<3 1<1,5<3

and @qn () is the anisotropy energy, often a fourth order or higher degree polynomial in a. Owing to the
constraint that |a| = 1, ¢ is not its own relaxation even though it may be convex. Some special cases used
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in computation have been examined in [CKM]. See also [P2] for some questions related to relaxation in the
context of micromagnetics.

Our principal results bind the lower semicontinuity of the functional to the joint quasiconvexity /convexity
of the integrand. An integrand ¢(A,)) gives rise to a weakly sequentially lower semicontinuous functional
provided that

p(AA) = mf (A +Vu,A 4+ m)dz,

IQI
where

A= {(u, m):u € H'P(Q;R"),m € LY(Q; R‘),/ mdz = o} ,
(1]

subject to appropriate growth conditions, Theorem 4.4. In Section 6, these results are extended to the case
of a Carathéodory energy density. Finally, in Section 5 we obtain the relaxation theorem (see Theorem 5.4)
asserting that the two infima

inf {/nt/:(Vu,m) dz : (u,m) € H'P(Q;R") x LY(Q;R?),u — up € HyP(Q;R"),
/nmdz = |Q]mo.m(z) EK ae z € Q} ,
and
inf {/nzp'(vu,m) dz : (u,m) € H'P(Q;R") x LI(Q;R?),u — up € HyP(;R™),
/nmdz = |Q|mo,m(z) € K ae. z € Q}
coincide, where the relaxed energy density is given by
Y4, = inf{TSlTI Ltﬁ(Vu,m)dz tu— Az € H)P(;R"),m € LY(Q; RY)
Lmdz =|Q|A,m(z) €K ae. z € Q} ,

extending the well-known relaxation result of Dacorogna [D] to the case where ¥ depends also on the chemical
composition. In most of the paper '. i not assumed to be a closed, convex (except on Section 5). Indeed, we
are usually careful enough to speciiy ¢ K), co(K), etc ...In the particular case discussed above K = [0,1]
since the function ¢ should take values in [0,1]. In Theorem 5.1 we assert that under some suitable growth
conditions, the existence of minimizers for the energy E*.

In the scalar case n = 1, loffe [I] studied the lower semicontinuity of E* in HY ‘(weak)xL,oc (see
also [Am)] for a new proof of this result). Here, generalizing E* to the case where ¢ may take vector values
and assuming that N,n > 1 we want to study the weak lower semicontiruity and relaxation of the energy
E*. An integral representation of the relaxed functional in BV/(R2, R") x L=(2,R%) with respect to the
L! x L*(w-*) topology was obtained in [FKP].

In order to describe oscillatory behavior and macroscopic limits of sequences {Vu*,m*} bounded in
L? x L! we introduce appropriate Young measures or parametrized measures (see Theorems 3.3 and 3.5).
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The context for our discussion is H!-Young measures and Lf-Young measures as studied in [KP2]. Recall
that a sequence f* € L?(Q; R*) with
“fk "Lr(n) <M (1.1)

generates a Young measure v = {V;},¢q, & family of probability measures on R*, if whenever
¥(z, f*) = ¥ in L}(Q), for ¥ € C(22 x R*), (1.2)

we have the representation

¥(z) = / Y(A\,z)dve()) in Q ace. (1.3)
Rl
When f* = Vu*, we call v a gradient Young measure.

Even though (1.1) is assumed, (1.2) need not hold for any subsequence of the {f*} when % has pth
power growth, that is, when
W) < CA+ ]AP).

This would require either an additional condition on the sequence { S id }, or some restriction of the class of
functions ¢ of the type of convergence utilized. In [KP1], [KP2] this situation is resolved by proving, among
other things, that given a sequence { f*} satisfying (1.1) which generates a restricted Young measure in any
of the senses mentioned above and if p > 1, there is another sequence { f* } satisfying (1.1) which generates
the same Young measure and in addition provides the representation (1.2), (1.3) whenever ¢ has pth power
growth. In particular, there is a g € L}() such that

|f"‘|” —gin L}(Q).
We refer to [KP1], [KP2] for details of this. If f* = Vu¥, then the f* = Va* are also gradients.

A consequence of these properties of H1P-Young measures is, indeed, that a minimizing sequence for
a functional may be chosen so that {|Vu*|”,|m*|*} is weakly convergent in L!(2). This permits us to

exhibit quite simple and short proofs of our claims.
s

2. Preliminaries

We are going to study some questions concerning weak lower semicontinuity for this type of integrand
using parametrized measures as in [P1]. We will use equally both terms: parametrized measures and Young
measures. In this context and in order to describe nonlinear macroscopic limits, we want to associate
parametrized measures to bounded sequences {Vu,m;} in HP(Q;R") x L1(Q; R?) where 2 C R" is open
and bounded. This is possible using the general framework for the study of oscillations described by Ball
[B], Matos [M] and Tartar [T]. We recall

THEOREM 2.1([B]) Let 2 C RV be open and bounded and Jet zj : Q — R’ be a sequence of
measurable functions such that

sl;p/ng(lz,-(z)l) dz < oo,
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for a non-decreasing function g : [0,00) — R with lim;_. g(t) = co. Then there is a subsequence, again
denoted by {z;}, and a family of probability measures {v;}_¢q, depending measurably on z, such that given
any measurable E C Q,

$e)= e )= [ S duely) in L) 21)
for any continuous f : R* — R such that {f(z;)} is sequentially weakly relatively compact in L}(E).

It is important for us to remember how the existence of {ve}, ¢ is obtained in [B]. The space
LY(Q;Co(R?*)) of strongly measurable functions with finite norm

f sup [¥(z,2)| dz < oo,
Nz2ER*

is a separable Banach space under this norm. The space Co(R’) is as usual
Co(R*) = {f €C(R’): lim f())= o} )
|A]=o0

Let £ denote a dense separable subset. Its dual space can be identified with the space LY (Q2; M(R*)) of
weakly measurable functions which are Radon measures at each point in Q. The duality is given by

(¢,v)=L-L. ¥(z,2) dvy(z) dz,

for ¥ € L'(Q;Co(R*)) and v = {1z}, € L (2 M(R?)). Define ¥ € LP(Q; M(R?)) by v =6, () where
6 is the usual Dirac mass. From this sequence we can extract a subsequence which converges weakly * to
some v = {Vz},eq € LY (2 M(R?)), ie.

jlirg/rl¢(:,zj(z))dz= (¥,v) =/n(u,,t/)(z, )y dz. (2.2)

We say that v is generated by {z;} whenever (2.2) holds for every ¢ € L!(Q;Co(R*)). It can be shown (see
[B]) that (2.2) is also true when ¢ is a Carathéodory function such that {y(z,z2;)} is weakly convergent in
L'(Q) and this in turn implies (2.1). This fact has the important consequence that in order to determine a
parametrized measure in the sense of Theorem 2.1 for a given sequence of functions, we only need to worry
about the convergence (2.2) for ¢ € L}(Q;Co(R’)). Let us keep this fact in mind for future reference.

Consider next a sequence {Vu;,m;} where u; : Q C R¥Y — R”, m; : © — R? and {ug,mi} is
bounded in H*?(Q;R") x L1(;R?), 1 < p < 00, 1 £ ¢ < 0o. Setting g(t) = t* with a = min {p,q} > 1
if @ < oo and g(t) = t if @ = oo, we can conclude from Theorem 2.1 that, possibly for a subsequence,
there is a family of probability measures {v¢}, . such that whenever the compositions {¢(Vu,,m,)}, for
#:M x R = R a continuous function, converge weakly in L!(E) for some measurable E C Q, the limit is
given by the integral representation

P(z) = / WA N)dva(4,}), ae z€Q, 2.3)
MxR¢ -
where M is the set of N x n matrices. For example, if ¢ is such that

le(4,2)] < C(1+141°),
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for some C > 0, and 1 < s < a, then {¢(Vui,m;)} is weakly convergent in L!(2) by Hélder’s inequality
and the Dunford-Pettis compactness criterion, and the integral representation (2.3) is valid for the weak
limit. One particularly interesting situation that we should bear in mind throughout the paper, in which
this integral representation is valid, holds when {|Vu,|P}, {|ms|*} are weakly convergent sequences in L!(Q)
and

(4, 3)] € C(1 + |AP + A1),

because by Dunford-Pettis, {t(Vui,m;)} is equiintegrable and thus weakly convergent in L1(2).

For a bounded sequence in L!(2) we may not have compactness in the weak topology. The best one
can expect is biting convergence in the sense of Chacon’s biting lemma ([Z]). We recall that the sequence
{f*¥} C LY(Q) converyes in the biting sense to f € L*(R), and we write

ff 2 fin (@),
if there is a non-increasing sequence of measurable sets { E' } such that |E/| — 0 and
ff=fim LNQ\F), Vi

We may restate Chacon’s biting lemma by saying that a uniformly bounded sequence in L(f2) contains a
subsequence converging in the biting sense to a function in L}(Q) ([BM], [BC)).

This lemma yields necessary and sufficient condition for biting convergence to become weak conver-
gence. Its proof is elementary and can be found in [KP2).

LEMMA 2.2 Let f* : Q@ — Rt (f* > 0) be a sequence of measurable functions in L*(), converging
in the biting sense to f € L*(?). A subsequence converges weakly in L'(Q) if and only if

liminf / f¥(z)dz < / f(z)dz.
k—oo Ja o
Also, {f*} is weakly relatively compact in L'(Q) if and only if

limsup/f"(:)dzs/f(z)d:.
oo JA a

k—

After Ball and Zhang [BZ], we identify biting limits with the help of Young measures.

LEMMA 2.3 Let w* : @ C R¥N — R" be a sequence of vector-valued functions for which we can apply
Theorem 2.1 for some g. Let {v:},q be its associated Young measure. If p : R” — R is continuous and if
the sequence {p(w*)} is uniformly bounded in L'(R), then (possibly for a subsequence)

plwt) £ 5(e) = (o) = [ p(3) due()
R

p—

The proof is nothing more than the fact that whenever p(w*) converges weakly in L!(E), E C Q, the
limit has to be P(z) by Theorem 2.1. This weak convergence holds in L}(2\ Ej) and |E;j| — 0, so that the
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biting limit is equal to B(z) a.e. z € . Note that in particular € L}(Q) because

7| dz < liminf / |o(w)| dz
O\E; k—oo JO\E;

Sligpjogf/nlsp(w")l dz
< Const.

Now let j — oo.

Another important fact that we will use in Sections 4 and 5 to guarantee the lower semicontinuity of
the functional ¥ to be considered later is that for non-negative integrands, even though we may not have the
parametrized measure representation (2.3), the “right” inequality still holds. This is a simple consequence
of Lemmas 2.2 and 2.3 (see [P1]).

LEMMA 2.4 Let g : Rt — R* be a continuovs function with lim¢—., g(t) = oo, and let 27 : Q — R”
be a sequence of vector valued functions defined in an open bounded set @ C R™, such that

sup/ 9(|#]) dz < o0.
i Ja

If {v.):zeq is the parametrized measure associated to the z7 ’s according to Theorem 2.1, then
€ g

liminf Eqp(zj) dz_>_/£/nn e(A)dvz())dz,

P And

for any measurable E C Q and for every non-negative, continuous .
Finally,

COROLLARY 2.5 Under the same hypothesis of Lemma 2.4, assume that

lim n(p(z’)d:c:./n—/nn e(A)dvz()) dz.

j—oo
Then the whole sequence {¢(z7)} converges weakly in L*(R).

To prove this result it suffices to apply Lemma 2.4 to a given measurable E C  and its complement
1\ E, keeping in mind the hypoihesis. This yields

Jim [edz= [ [ o) dunas.

We also need to recall a few facts on H'-Young measures, some of which have already been mentioned
at the end of the introduction. For details, we again refer the reader to [KP2]. A H!P-Young measure is
a parametrized measure in the sense of Theorem 2.1 associated to a sequence of gradients {Vu’} where
{v'} is bounded in H'P(;R"). If p > 1 we can always assume that {|vv/|’} is weakly convergent in
L'(2) and therefore it is an equiintegrable family of functions. Indeed, if {Vui} generates {vz};eq then
there is another sequence { V7 }, such that {|V+/|"} is weakly convergent in L!(2) and whose parametrized
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measure is the same {v;}, .. Another important fact is that in this situation each individual v, can be
understood as a homogeneous (i.e. independent of the point in ) H'?-Young measure for a.e. z € €, so
that there exists a sequence of gradients {Vul}, depending upon z € Q, such that

im [ o(Vulw)dy = 1B [ ol4)dve()
I—=JE M

for any continuous ¢ : M — R with
le(4)] < (1+|AP).

3. Characterization of parametrized measures

We want to understand the restrictions that govern parametrized measures arising from sequences
{Vu;,m;} where v : Q C R¥N — R", m; : Q@ — K where K is some given subset of R? and {u;,m;} is a
bounded sequence in H'?(Q;R") x LI(Q;R?),1 < p< 00,1 < ¢ < c0.

Here and throughout the paper, x; and =, will denote projections of M x R? onto M and R4
respectively (or perhaps, projections of R’ x R? onto R* and R respectively). Our aim is to show that this
family of Young measures is characterized by

i) {mv:},eq is an HP-Young measure;
ii) {®2v:},¢q is a family of probability measures verifying

/ / DY drave(A)dz < 00, if1< g < o0,
aJR¢

supp (72v;) C K, for ae. z € Q,
and there exists a compact set K’ C K such that

supp (7avz) C K/, forae. z€Q, if g= 0.

Moreover any such parametrized measure may be generated by {Vu:, 7} where {|Vu;|P}, {|mi|’} are
weakly compact sequences in L(2), and therefore equiintegrable.

The arguments throughout this section do not depend upon the fact that we are dealing with gradients
Vu;. All we need to know to apply the results below to this particular situation is contained in [KP1], and
we will state precisely the conclusions in Theorems 3.3 and 3.5 below. Meanwhile we consider sequences
{vi,m;} for v; : @ — R’ and m; : Q — K, as before. We will deal first with the case ¢ = o0 and deduce
from this and a standard truncation argument, the case corresponding to finite g. Let us assume that K is
bounded. -

THEOREM 3.1 Let v = {v;}, ¢q be a family of probability measures such that {m1v:} ¢, is generated
by {v:} with {[7s|"} weakly compact in L'(Q) and supp (x2v;:) C K for a.e. € Q. Then there is a sequence
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{vj,m;} € LP(2;R*) x L=(Q; R?) whose parametrized measure is {v:},¢q, {v;} is a subsequence of {T},
and mj(z) € K for a.e. z € Q! and all j.

Proof. Introduce the set

A= {p={ps}ien € L(UM(R* x R?)): for every
subsequence of {vi} there is a further subsequence {v;}
and {w;} C L*(Q; K) such that
# is generated by {v;,w;}}.

Step 1. A is convex.

Take u! and p? in A and for p € (0,1), let ¢ = pu 4+ (1 — p)p?. Let {7;} be any subsequence, not
relabelled, of the original {T;}. Then y can be generated by {‘GE'), wﬁ')} for i = 1,2, where

{#} c {#} c m),
% =7

and by inclusion we mean as subsequences.

It is well-known (see [D]) that we can always find a characteristic function x of some subset of Q such
that
x(nz) = 1@lp, in L=(Q).

Let
wh"(z) = x(nz)wgg)(x) + (1 - x(nz)) wiz)(:), wt"(z) €K aez e Q.

For ¢ € L1(2;Co(R* x RY)),

lim lim — f ¥(z,50, wh") d
a

k00 N =200 ‘Q'

= lim lim — n(x(nz)¢(z,v§’),w§;g)(z))+(1-x(nz))w(z,vg”,wf)(:))) dz

k—00 =00 lQl

= Jim [ (p(e 72wy + (1= 262,70, 0(2))

= / / ¥(z,a,)) dps(a, \) dz.
QJR*xK
Taking suitable diagonal subsequences of the pairs (k,n) for all ¥ € £ we obtain that u € A.
Step 2. v € A.

We use the Hahn-Banach Theorem. Assume that for some ¥ € L(Q; Co(R* x R?)) and for all y € A,

j [ ¥(z,v, w) dus (v, w) dz > 0.
0 JR*xR?
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It is easy to see that then
liminf | ¥(z,%:,wi)dz >0,
k—oo Jn

whenever w;(z.) € K for ae. z € Q2 and all k. Define

¥(z,0) = mip ¥(2,0,) < ¥(z,0,),

and w; € L=(Q;RY) by

wi(z) =2 i ¢(z,%,A) = ¥(z, W),
so that

¥(z,T,uz) = Tb'(z,'ﬁg), ae. z €.

Then
// ¥(z,a)dv.(a,\)dz = lim /-J(z,m)dz
nJRxK k—oo /o

= lim /tb(z,m,wk)dz
k=00 o

20,

by hypothesis. Finally,

-/ﬂ-/R'xK 'p(z,a’A)duz(a’A)dz='/ﬂv/l\.'xx('/)-a)dutdz+LL.XK¢dV:dxZ0'

Step 3. A is weak * closed in L2(2; M(R* x R?)).

Let u®) € A converge to p weak * in L2 (Q; M(R* x R?)) and let {v,} denote a subsequence of {v;}.
Then each u*) is generated by {v.(.k),w(k) } where

..C {v,(,")} c {v,(,*")} c...C {vsp} C {rn)

Let £ = {1} be a countable dense set in L!(2; Co(R* x R?)). For j fixed, choose n(k, j) > n(k — 1, ) such

that
1

=k

n~x/ ¢’(z v(k) w(k))dz /¢J(t vﬂ(td)’ n(k,))) dz

In this way, and keeping in mind the weak * convergence of the u*’s to u, we have

R ) (k) = ;
lmgo/nt/;,(z, Un(k.j) Yn(k)) 9% = L/'xn‘ ¥j(z,v,w)dp.(v,w)dz.
We conclude by a routine density argument that for every ¢ € L!(R2;Co(R* x RY)),

Jim / ¥(z, "n(t k) n(k k))d" = / /n-xn ¥(z, v,w) dp. (v, w) dz.

Step 4. Conclusion.
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The fact that v € A implies that there is a sequence {vj,m;} where {v;} is a subsequence of {7}

such that
jliq&Lt/:(z,vﬂz),mﬂz))dz=‘/n/wﬂ(d:(z,a,l)du,(a,,\)dz,

for all y € L}(Q;Co(R* x R?)). By the comments made after Theorem 2.1 (in particular after (2.2)) we can
conclude that v is the parametrized measure associated to {v;,m;}. =

We now deal with the case ¢ < oo using a truncation argument.
THEOREM 3.2 Let v = {v:},¢q be a family of probability measures such that
i) {m1v:},¢q can be generated by {v;)} with {[v:[°} weakly compact in L'(Q);

ii) {%av:},eq is a family of probability measures with supp(7;v;) C K for a.e. z € Q and

/{;/X Al dxav-(2) dz < oo.

Then there is a sequence {vj,m;} € LP(Q; R*) x L9(Q; R?) whose parametrized measure is {v:}_¢q, {v;} is
a subsequence of {Ti}, {|m;|'} are weakly compact in L'(Q) and m;(z) € K for a.e. z € Q.

Proof. Let xn be the characteristic functions of balls B, centered at the origin with increasing radii
tending to oo, choose A\, € 0B, N K if 8B, NK # B or A, = ko if 8B, N K = @ where kg € K is fixed, and
define ™ = {1]'}_¢q through the formula

") = / / Ota()%(2, 0, A) + (1 = xa(\) (2,8, An)) dvs(a, V) dz,
OJR'xK

for ¢ € L(Q;Co(R’ x R?)). In other words, v concentrates the mass outside B, on ), € 8B, N K or on
ko. We need three basic properties of these truncations:

i) ;2 = v, for all n and a.e. z € Q;
ii) »» = vin LP(Q; M(R* x RY));
iii) (v™,%0) = (v, ¥o) for Yo(z,a,2) = |A|".

The first one is an immediate consequence of the definition of ¥”. For the second and third, notice that if
either ¢ € L1(R;Co(R* x RY)) or ¢ = ¢ then

0 —v= [ [ 20,00) - 9(20,20) (1= xa () dri(4, ) de
=:// Y"(z,a,1)dv.(a,))dz.
aJrRexK

Since y™ — 0 pointwise v @ dz a.e., as
el < IAl*, Vn,
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with

/ / D' dve(a, A) dz < oo,
O JR'xK
by hypothesis, and since if ¢ € L1(Q;Co(R* x R)) then

v"| < 2suf [¥(z,a,))| := ¥(z) € L}(),
a,
we conclude ii) and iii) using Lebesgue’s Dominated Convergence Theorem.

Since supp 720" C (Bn N K)U {ko} we can now apply Theorem 3.1 successively to each v" and find
sequences {vp,m}} such that m}(z) € K for a.e. z € Q (recall A, € K) and each {v}} is a subsequence of
the previous {v] "} and therefore all of them are subsequences of the initial {T;}. This can be done because
of property i) above. Finally we can find a subsequence k(n) such that if {v;,m;} = {v;‘("),mg(n)} then

jmoo

lim /ntl)(z,vj(z),mj(z))dzz/n/wxx Y¥(z,a,)) dv.(a,)) dz,

for all ¥ € L}(;Co(R* x R%)) U {40} just as we did at the end of the proof of Theorem 3.1. By applying
Corollary 2.5 to o we obtain that {|m;|’} is weakly compact in L}(Q2). -

We now can replace v; by gradients Vu; and obtain the following
THEOREM 3.3 Let v = {v;},.q be a family of probability measures such that
i) {m1v;),¢q is @ HP-Young measure, p > 1;

ii) {%avc},¢q is a family of probability measures with supp (x2v;) C K for a.e. z € Q and

/ / Al dxove(2) dz < co.
aQJK

Then there is a sequence {Vu;,m;} € H*P(Q;R") x L1(Q; RY) whose parametrized measure is v, {|Vu;|’},
{Im;|?} are weakly compact in L'() and mj(z) € K for a.e. z € Q.

Proof. We know ([KP1], [KP2]) that {x1¥:},¢q, being an H'P-Young measurewith p > 1, is generated
by a sequence of gradients {Vu;} whose pth power is weakly compact in L!(Q). Hence applying Theorem
3.2 we have the result. a

Due to the equiintegrability of {|Vu;{’ + |m;|}, by Theorems 5.3 and 2.1 the integral representation
in terms of v is valid for any ¢ in the space

XP1 = {p € C(M x RY) : [p| < C(1 + |AP + A1)} .

We would like to complete Theorem 3.3 by adding the integral constraint

1 1 .
Fﬂ/nmj(z)dz - '—Q_l-/n./x Admv:(N)dz,  for all j.
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For this we establish first a basic fact from elementary convexity.

In what follows, if K is a subset of R? we fix a € K and we set L(K)=a+ < K—a >, where< V >
denotes the linear manifold spanned by V. Also, co(K) = {fz + (1 - 6)y|f € [0,1],z,y € K}.

LEMMA 3.4 Let K be any subset of R? and L(K) the linear manifold spanned by K. The set
{ / Adyv()) : suppv = K, v is a probability measure}
K

is convex and is contained in the interior of co(K) relative to L(K), i.e. if v is a probability measure with
support K,

a= /x Adv(]),

then there exists ¢ > 0 such that
B(a,e) N L(K) C co(K),

where B(a,¢) is the ball centered at o and radius e.
Proof. We may assume that L(K) is all of R9. Otherwise we restrict attention to that linear manifold.
The convexity is clear. Suppose that
a= /K A dv(2) € B(co(K)),
and supp v = K. Then there is a vector a € R? such that

a-a=0,

A-a>0, VAeK.

Therefore
0= a-a=/ A-ady()),
K

which implies A-a = 0, VA € suppv and K = suppv is contained in the hyperplane determined by a. This
is a contradiction. -

THEOREM 3.5 Let v = {v:},¢q be a family of probability measures such that
i) {x1v:},eq is 8 H'P-Young measure, p > 1;

ii) {rzu,},en is a family of probability measures with supp(%av.) C K for a.e. z € Q and

/ / I droa(A) dz < oo.
NJK

Then there is a sequence {Vu;,m;} € H**(Q; R") x L1(Q; R%) whose parametrized measure is v, {IVu;IP},
{Im;|'} are weakly compact in L}(), mj(z) € K for a.e. z € Q and

/nmj(:)dz=/r;/x¢\drzu,(,\)d: 3.1)
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for all 5.

Proof. First, we would like to keep K as small as possible but having the property supp (72v:) C K
for a.e. z € Q. This is easily done by introducing the probability measure ¥, defined by

1
@20) =1 [ [ oW dmam)as,
12l Ja Jx
for ¢ € Co(R?), and replacing K by suppV,. Let us assume then that K = supp ;.

By Theorem 3.3, there exists a sequence {ux,m;} € HP(Q;R") x L1(Q; R?) whose parametrized
measure is v, {|[Vu; [P + |m; |7} is equiintegrable and m;(z) € K a.e. z € Q. Our purpose is to redefine m;
so as to have the average constraint (3.1).

Let 1
Q= — Admav:(A)dzr.
I WAL

Then
a= / Adva()),
K

and by Lemma 3.4,
a € int co(K) N L(K).

Without loss of generality we may assume that L(K) = R? or else we restrict our attention to that linear
manifold.

Let m; — 7 in LI(Q; RY), 7i(z) € co(K) a.e. z € Q. In fact

m(z) =/ Admav.()), ae. z€NQ.
K

Then ) .
—/ m(z)dz = a € int co(K) (3.2)
12l Ja ,

and so we may find z,,z,,...,z, Lebesgue points for 77 (changing 7 on a set of measure zero, we may suppose

without loss of generality that all its points are Lebesgue points) and 6,,6,...,6, € (0,1), E:=1 6; = 1 such
that ,
ap = Zﬂgﬁ(zg) € int co(K).
i=1

Otherwise, since a can be approximated by sums of the type

1
z 0.75( z; )

i=1

forz; €Q,l€N, 6; € (0,1), E:-=1 0; = 1, we would have a € 8co(K) contrary to (3.2).

Let ,
Q; = | B(=:.8)V /i) c @

=1
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which is a disjoint union for j large, |Q2;| — 0 and set

12 1

Qi = ——Q — — mi(z)dz.
PEE10 T 1951 Jona, ¢(=)
Since
lim hm |ac-°!:k|— lim lQI -1 wdzr - ag
J—oo k= -0 IQI IQJ| a\Q;
1

= lim |— | Wdz—-aqp
j=oo ‘QJ' a;

) 1
= lim ; / mdzr - ap
J=eo § IB(z.-, o1/ /j)I B(z:,01'7 15)
8
= Z Og‘fﬁ(z;) - Qg
i=1
=0,

we may extract a diagonal subsequence k(j) such that

Jo: = aja] < 3
J

Since ap €int co( K), there is a § > 0 such that
ap + [-6. “ T co(K),

and so, by Carathéodory’s theorem, each of the 2d vertices of the type ag % §e; (where ¢, are the vectors for
the standard basis in R?) can be written as a convex combination of at most d + 1 elements of K. On the
other hand, each point in the cube ag + [—6,6]¢ can be written as a convex combination of the vertices and
so, we conclude that there exist k;,k2,...,k2444:; € K such that

a0 + [~6,6)° C co({k1, k2, ..., kag(a41)})-

Hence, since a; x(j) — ao, for j large enough and, m = 2d(d + 1),

m m
ajkG) = El?)k.-, 2$ e o, 1],2,\?) =1.

=1 i=1
Now we set
Tj = ugj),
. - mk())(z): ifz ¢ QJ)
75:(’)‘{&. if z € 0,

where ©; = |, Q;; and |Q;:] = AY) |Q;|. Clearly

m; EK ae. z€Q,
LTTT,‘(:) dz = [)\nj mg(,-)(z)dz + |Q,'|a,-,g(j) = Q| e.



4. Semicontinuity 17

In addition, for any measurable subset E of {2,

'/EFITJ'I’ dz SL'mbu)l, dz-{-z:lEan';”k,-lp

=1

< /E Imsgiyf dz +CEI,

and so {|m;[P} is equiintegrable. It remains to verify that {Vu;,7;} generates v. Consider ¢ € X?¢ and
E C Q measurable. We want to show that

_lim/cp(W,-,W{,-)dz:// w(A,A)dvg (A, N)dz.
I=®JE E JMxR¢

Indeed, due to the equiintegrability,

Lp(wj,ﬁj)dz-./Eqp(Vug(j),mg(j))dz

< C/ (1+ |V’ + [meiy|”) dz — 0.
a;

Hence
lim A (p(Vl-A'j,ﬁl'j) dz = ’l_l.n;xo ./E (p(Vu,,(,'),mk(,-)) dz

J—00
= / / o(A, ) dva(A, X) dz
E JMxR¢

4. Weak lower semicontinuity

With the parametrized measure device we are going to reduce weak lower semicontinuity to a local
level. Using the language in [FM2], [FM1], this is done by “blowing-up” the initial sequence near the point
y € Q (see also [KP1], [KP2]).

LEMMA 4.1 Let {v;}, . be the parametrized measure generated by a sequence {Vur,m;}, bounded in
HYW?(Q;R")x L1(Q; R?). Then for a.e. y € Q, v, is 8 homogeneous (i.e. spatially independent) parametrized
measure associated with {Vu},m}}, bounded in H?(Q; R") x L1(Q; R?).

Proof. We know that {x;2.} is a H'*-Young measure. Therefore by the comments made at the end
of Section 2, 7,y is an homogeneous H'P-Young measure for a.e. y € 2 (see [KP2]). On the other hand,
by Lemma 2.4 applied to ¢(4, A) = |A|' we have

/n /R NI drav(3) dz < oo

whence -
/ IMlf dxary(X) < 0o
R¢

for a.e. y € 2. Now we can conclude from Theorem 3.3 that for a.e. y € ©, vy is a homogeneous parametrized
measure associated with one of the appropriate sequences. -
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In the following lemma we give the condition which enables us to show weak lower semicontinuity at
this local level.

LEMMA 4.2 Assume that G : M x R4 — R is a continuous function such that

IG(A, NS C(1+ AP +Af), €>0,1<p,1<g< o0,
IG(4,2)] < g(A)(1 + JAPP), g€ LZ(RY),1<p,g=00.

big
1

1]
for every (A,)) € M x co(K) and (u,m) € Hy*?(Q;R") x LY(;RY), [,mdz =0, A+m(z) € K ae. z€Q,
then

G(AN) < / G(A + Vu, ) + m) dz,
1}

e |
G(A,0) < hﬂl‘gf'—sﬂ/nG(Vug,mg) dz,

whenever up — Az in HYP(Q;R"), mp — X in LY(; R%) (or mp — X in L®(;R?)), mi(z) € K ae. € Q
and {|VuiP}, {Imi|} are weakly convergent in L}(R).

Proof. Let ; be a sequence of cut-off functions such that

n; = 1 when dist(z, 6Q) > ;-,
n; = 0 on 69,
[Vn;] < Cj.
Let
Q; = {z € Q: dist(z,8Q) < ;} :
Set

ui,j(z) = njui(z) + (1 - n;)Az,

1
A= ﬁ/nmg(z)dz.

By the hypothesis on G,
IR1G(A, \) < / G(Vur g, ms) dz
n
= / G(Vu;,,m;)dz —/ G(Vug,mp,)dz +/ G(Vugj,mk) dz
1} a; a;

= /nc(vm,m,,)dz + L+

We next show that |I; ;| and [I]i ;| can be made small.

1) | -
sl < /n O + [Vl + jma ') ds.
3]
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By hypothesis, the integrands are equiintegrable in all of 2, so that for j sufficiently large we can make |I; ;|
small uniformly in k. Same argument for ¢ = cc.

2) For fixed j, take k sufficiently large so that

/ IVn; ® (ux — Az)|f dz < -1-
a; J

This is possible because
/ lug — Az’ dz — 0, k& — oo.
n

For such a subsequence, since
Vg j =0 Vur + (1 - n;)A+ V; ® (u — Az),

we have

I 5] < C/n (14 |VuP + AP + |Vn; ® (ur — Az)P + |my]?) dz,
5
and therefore, due to the equiintegrability of {|Vu|’, |m:|'},
HIgj|—0, j— oo,
for both cases corresponding to ¢ < 00 and g = co. Therefore
“,,fﬁif,}f nCv’(Vw,,mk) dz > |Q|libr2i£fG(A,Ak) = |Q]G(A, ),

because Ay — A by hypothesis and G is continuous. -

In the proof of Theorem 3.5 we used the average of a Young measure. Let {v:},.q be a Young measure
associated to {Vu;, m;}, a sequence bounded in H!?(Q;R") x L(Q; R?) with m;(z) € K for ae. z € Q.
Assume that the associated underlying deformation u with deformation gradient

Vu(z):/l;Adxlu,(A),

is affine on 89Q, i.e., u(z) = Fz, z € 8. The average U is defined by
T¥) = / / V(AN dve(A, ) dz,
19 Ja Jmxx

for ¢ € C((M x RY).

LEMMA 4.3 U is a parametrized measure generated by some sequence {Vu,,m;} with {|Vu,|'},
{I:|'} weakly compact in L}(Q), Ui(z) = Fz, z € 8Q, for all k and Wi (z) € K for a.e. z € Q.

Notice that we are asserting here that under the additional condition of affine boundary values for the
deformations, the average defined above is itself a parametrized measure generated by a sequence with the
same properties i) and ii) in Theorem 3.3. Indeed, for the proof we rely again on Theorem 3.3.
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It is easy to check that
1'117 = m

and we know that this is a homogeneous H!®-Young measure precisely because we have affine boundary
conditions (see [KP2]). On the other hand,

/ DI drop() = o / / Al drya(A) dz < oo.
K 12| Ja Jx

We conclude by Theorem 3.3. -

We are ready for weak lower semicontinuity.

THEOREM 4.4 Let G : M x R4 — R be a continuous function such that

0<GANSCA+|AP+]A)"), C>0,1<p<o0,1<g< o,
0< G(A,)) <g(A)(1+14F), g€ LZ.(R%),1< p,g =00,
0<G(A,)) <g(A)1+ A7), g€ LZ(M),p=00,1<g< 0.

Then the weak lower semicontinuity property
/ G(Vu,m)dz < lim inf/ G(Vup,my)dz
E k—oo Jp

holds for any measurable E C Q whenever u; — u in H*?(Q;R") and m;y — m in LY(Q;RY), my(z) € K
ae. z €Q (or my — m in L*°(Q;R?)) if and only if

G(A,A):inf{—l—/ G(A+Vu,A+m)dz}, (4.1)
A L2 Ja
for all (A,)) € M x co(K) where

A= {(u,m) € Hy?(;R™) x LY(Q; RY) :/ mdz=0,A+m(z)€ER ae. z€ Q}.
a

Proof. We will not make the distinction between the cas:s ¢ < 00 and ¢ = 00 or p < 00 and p = .
We start by showing that (4.1) is a necessary condition for lov.er semicontinuity.

As usual (see [D]), we may assume without loss of generality that € is the unit cube (0,1)N. Given
(u,m) € A, we extend Vu and m to RV as periodic functions of period one. Let (A,2) €M x co(K) and
consider

ur(z) = Az 4+ %u(k.t),
m(z) = A + m(kz).

Then
uy — Az in H'?(Q;R")
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and
my — )\+/ m(y)dy= A in L(Q;RY).
n

Hence, as the functional is lower semicontinuous we conclude that
G(A,)) <lim inf/ G(Vug,mp)dz
k—oco Ja
= lim inf/ G(A+ Vu(kz),A + m(kz))dz
k—oo 1}

= /n G(A + Vu(y), A + m(y)) dy.

Conversely, assume we have uy — u in H"’(Q;li.") and my; — m in LI(Q;R?), mi(z) € K ae.
z €Q, and let {v:} ¢ be the associated parametrized measure. Observe that supp7ov, C K ae. z € Q.
By Lemma 4.1, for almost every y € Q, v, may be regarded as a homogeneous parametrized measure which
by Theorem 3.3 is generated by some sequence {Vu},m}} with the properties that {|Vu}|’}, {|m{|’} are
equiintegrable families in 2 and mY(z) € K ae. z € . In this case the Young measure representation is
valid since {G(Vu}, %)} (or a subsequence of it) is weakly convergent in L!(Q) (by Dunford-Pettis) and by
Lemma 4.2 (take K = K),

1
G(A,A)dyy (A, ) = lim —/GVu ,7iY)dz
S SN a4 = Jim 2 [ 67
2 G(Vu(y), m(v)).
Since this is true for a.e. y € Q,

_/E _/M e G(A,\)dvz(A,X)dz > /B G(Vu,m)dz.

Use Lemma 2.4 to conclude the proof. -

5. Existence theorems and relaxation

We present several results and applications of the preceding facts related to existence theorems, regu-
larity properties of minimizing sequences and relaxation, as well as some examples of functions verifying the
“convexity” condition (4.1).

Let ¢ : M x R4 — R be continuous and
emax(JAFf + |~ 1,0) < ¥(4,2) C1 +1AF + M), AeM,)eR?, (5.1)

where 1 < p < coand 1 < g < co. For very well-known reasons, we have to restrict attention here to p,¢ > 1.
When p = 1 one needs to work on spaces of functions of bounded variation ([FKP]). We will be dealing in
this section with the functional

¥(u, m) =/n',b(Vu, m)dz,
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defined on an admissible class A, where
A ={(u,m) € H**(R") x L@ R?) : u - uo € Hy*(%R"),

/ mdz = |Q|mo,m(z) € K a.e. € Q} ,
o

for up € H''?(2; R") and my € R%. We also assume K to be closed and convex (although not necessarily
bounded) so that A is closed under weak convergence.

THEOREM 5.1 If ¢ satisfies (5.1) and (4.1), the problem
ngn ¥(u,m),
admits minimizers.

Proof. The proof is standard once we have lower semicontinuity. First of all, notice that the functional
¥ is well-defined and finite on A. If we choose a minimizing sequence (ux, m¢), by the lower bound in (5.1)
we can extract a weakly convergent subsequence in H1'?(;R") x L1(Q;R?) to some (u,m) € A. By the
weak lower semicontinuity obtained in Theorem 4.4 this provides a minimizer of our problem. -

THEOREM 5.2 Assume that ¢ satisfies (4.1) and
0<¥(4,0) SCA+|AP+1"), A€M,A€eR’,
where 1 < p,¢ < 0o. Suppose that
(urymi) = (u,m) in H'P(Q;R") x LYQ;RY),
/ Y(Vu,m)dz = lim / Y(Vug,m;)dz. (5.2)
a k—co Jg

Then .
¥(Vui,mp) — ¢(Vu,m) in L}(Q).

Proof. Given any measurable set E C 2 we apply the weak lower semicontinuity property to both E
and Q\ E. Keeping in mind (5.2) we conclude that

/v/;(Vu,m)dz: lim / ¥(Vug,m;)dz.
E k~oo Jg

As a consequence of both theorems, we have that for any minimizing sequence (u;,m;) converging
to a minimizer (u,m), ¥(Vu,, m;) converges weakly in L*(Q) to t[)(V;, m), and in particular, at least for a
subsequence, {|Vu:|’}, {Im:|'} are weakly convergent in L!(Q2) (we are assuming (5.1)). This property is
still true for some minimizing sequences even if we do not assume condition (4.1).
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THEOREM 5.3 Let o satisfy the growth assumptions in (5.1). Then the problem
iﬁf ¥(u,m),

admits a minimizing sequence (ux,m;) € A such that {|Vui[P}, {Imi|*} are weakly convergent in L}(R).
Moreover, if (U, ;) is a minimizing sequence with Young measure {v;},¢q then the parametrized measure
representation for ¢ holds, i.e.

inf W(u,m) = / / V(4,2 dvs(A,N) dz
A n JMxR¢
and suppxav; C K ae. z € 1.

Proof. Let (U, ;) be a minimizing sequence in .A. By Theorem 3.5, we may assume that (0, ;) is
such that {|Vu, [}, {||'} are weakly convergent in L!(£2), x(z) € K for a.e. z € Q and the average value
of T} is mg for every k. However, in making this change we might no longer have that the new sequence is
in A since the trace of U; might not coincide with up. Since both sequences share the same Young measure,
the weak limit for both coincide and so let (u,m) € A denote this common weak limit. We can arrange
the boundary values of %; in the usual way using cut-off functions as in the proof of Lemma 4.2 (notice
that u should replace Az) and we find a sequence {Vu;,m;} for (u;,m;) € A such that {|Vu;|’}, {|m;]?}
are weakly convergent in L!(Q) and the parametrized measures for {Vu;,m;} and {Vu;, i} are the same
(this is also an easy exercise left to the reader). Then, because { Vi, } is a minimizing sequence and for
{Vu;,m;} the Young measure representation is valid, '

Jim /ﬂ YV, T) dz < Jim /n ¥(Vuj,m;)dz = /ﬂ /M AN d (4,3 b,

By Lemma 2.4 we conclude that (u;, m;) is a minimizing sequence. -

For a continuous function ¢, we define the relaxed energy density by

L
1]

/ mdz = |Q|A\,m(z) EK ae. z € Q} ,
a

Y(A,2) = inf{ VY(u,m): u— Az € H}*(Q;R™),m € L(;RY)

where, as before,

¥(u,m) =/ ¥(Vu,m)dz,

a

and set
Wl(u,m) = / ¥} (Vu, m)dz.
n
RELAXATION THEOREM 5.4 Suppose that ¢ satisfies the growth assumption (5.1), and for (v, mp) €
HYW?(Q;R") x RY let _
A= {(u,m) € H'?(;R") x LY(Q;R%) : u — up € HYP(;R™),

/mdz: | mo,m(z) € K a.e. zeﬂ}.
n
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Then
iaf {¥(u,m)} = inf {¥'(u,m)}.

Proof. Clearly ¥! < ¥ and so
in}{'ll(u,m)} < igf{‘l"(u,m)} .
It remains to show that for any (%, 7) € A there is a sequence (u;,m:) € A such that

klggo W(ug,mp) = 'I"(’ﬁ,'ﬁ).

Let y € 2, and consider the minimization principle

W(Va(y), 7(y)) = inf {l?‘ﬂwu,m)  u - VE(y) € HIP(;R")
me€E L'(Q;R"),l—‘%-l /nmdz =m(y),m(z) €K ae. z € Q} .

By Theorem 5.3, 1
W(Vu(y),m = == z
¥(Va(y), m(y)) lm/ﬂ/mm ¥(4,2)dvz(4, ) dz,

where {ug},m is the parametrized measure generated by a minimizing sequence. Furthermore by Lemma

4.3 we may assume that this Young measure is homogeneous, i.e. v¥ = v¥ for a.e. z € Q. This is so because

we have affine boundary conditions. Then

Y (VE(y),m(y)) = ﬁ/n/‘“m V(A,A)dY(A,N)dz =/MxR‘ Y(A,A)dvY(A,N).

Since this holds for a.e. y € R, we can consider the family of probability measures {¢¥}, .. By construction,

the projection {x11¥} qisa H 1,P.Young measure. We refer the reader to [KP2] for details. Regarding the

second projection, if {u},m}} stands for a generating sequence for v¥, then

/ Al dra¥(A) = lim / im¥|? dz

K k=0 Jg
< hllrgo c¥(u),m})+c|Q|
= e} (VE(y), (y)) + ¢ |9,

whence
[ [ pr ararydy <c [ w(va0), M) dy+ M < oo.
O JR4 (13

By Theorem 3.5, there is a sequence (u;,m;) € A whose parametrized measure is {u“}”en and for ¢ the

integral representation is valid. Finally by (5.3)
lim W(ug,m;) = / / (A, \)dv¥(4,))dy
k—oo 0 /MxR¢

= /n P (Va(y), m(y)) dy

= ¥(4, ).
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It is not easy to find explicit examples of functions verifying the convexity condition (4.1) other than
the usual convex functions. There is however a source of such functions in taking

¥(4,2) = g(M(4),)),

where M(A) is the vector of all minors of the matrix A and g is a convex function of all its arguments.
This is the analogue of polyconvexity. In particular, it is interesting to ask whether there might be more
“pull-lagrangians” than affine functions of M(A) and A, that is to say, to determine all functions G such
that

G(A,)) = -/n G(A 4 Vu,A+m)dz, (54)

for all u € Hy?(Q;R") and m € LY(Q;R?), [;,mdz = 0 and all A € M and A € R® where |Q] = 1. We
claim that the only null-lagrangians in this context are truly affine functions of M(A) and ).

If we take u = 0 in (5.4), then we come to the conclusion that G should be affine in A, i.e.
G(4,2) = g(4)- A+ f(4).

Take this G back to (5.4), and let A = m = 0 to find that f(A) is some affine function of M (A). Now (5.4)
reduces to

g(A)- A= / 9(A+Vu) - (A +m)dz

a (5.5)

= Lg(A+Vu)dz-A+-/‘lg(A+Vu)-md:r

for all u € Hy*(;R") and m € LY(Q;RY), [,mdz =0 and all A € M and X € R?. If we take m = 0 we
conclude that g(A) should be an affine function of M(A). Let us write g(A) = g(A) + C where g(4) is a
linear function of M(A) and C is some constant. For A = 0 (5.5) becomes

/g(Vu)-mdz:O
o}

for all u € Hy*P(Q;R") and m € LY(Q;RY), Jomdz = 0. In particular, for any such u we can take
m(z) = §(Vu) because by the well-known properties of null-lagrangians [, mdz = 0. Hence

/n (m(z) + C) -m(z)dz =0,

and therefore §(Vu) = 0 for all u € Hy**(Q; R"). Thus § = 0 and g is constant, as desired.

Each one of the following is a sufficient condition for G to satisfy (4.1), but we do not know what type
of restrictions these place on G. Those conditions are

i) G quasiconvex in A and

/G(A+Vu,A+m)dz2/G(A+Vu,A)d::,
1] o
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for all u € HyP(Q; R™) and [, mdz =0.

ii) G quasiconvex in A, convex in A and

/ / G(A+ Vu(z),) + m(y))dzdy < / G(A+ Vu(z),A + m(2))dz,
aJa a

for all u € Hy?(Q;R") and [;mdz =0.

6. Weak lower semicontinuity for Carathéodory functions

Once we have the weak lower semicontinuity property on any measurable E C § we can prove weak
lower semicontinuity for any Carathéodory function. The proof of this case is reduced to the homogeneous
case (no dependence on z) via a standard localization procedure.

Let just deal with the case 1 < p,g < co and leave the obvious adaptations for p = 0o or ¢ = o0 to
the reader.

THEOREM 6.1 Let G : @ x M x R? — R be a Carathéodory function, i.e. continuous on (A, ) for
a.e. z € Q and measurable on z for all (A,)) € M x RY. Assume that

0 < G(z,A,2) < c(1+]4F + A%),
and that G(z,-,-) verifies the “convexity” condition (4.1) for a.e. z € Q. Then
ligiorgf/nG(z,Vu,.,m,.)dz > /nG(:c,Vu,m) dz, (6.1)
whenever (u,,m,) — (u,m) in H*?(Q;R") x L1(Q; RY).
Proof. We divide the proof in several steps.

1. Since {|Vun’ + |[ms|'} is bounded in L!(R), by the biting lemma there exists a decreasing sequence
of sets {E;}, |Ex| — 0 such that {|Vu,|® + |m,|*} is equiintegrable in Q\ Ej. Observe that we can consider
an appropriate subsequence yielding the liminf in (6.1).

Fix k and ¢ < 0. Let
Xn1={z€Q:|Vup(z)| > tor |ms(z)| >t}

Then
[Xnil < {z € Q: [Vun(z)F > P} + [{z € Q : [ma(z)|* > 17}
1 1
< 7 ||Vu,.||; + ) "mn": — 0 ast — oo.

—

Choose ¢ large enough so that due to the equiintegrability

/E x (14 |VunlP + |ma|) dz < ¢, (6.2)
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and write X, = X, 1.

2. Choose § > 0 so that §(1 + t? + t?) < € and by the Scorza-Dragoni Theorem for Carathéodory
functions (see [D]), let K C Q be a compact set so that |\ K| < § and G restricted to K x B(0,t + 1) x
B(0,t + 1) is uniformly continuous.

Let n > 0 be such that whenever

(z,A,}),(z',A",)") € K x B(0,t + 1) x B(0,t + 1)
=2 |+ A=A+ A= XN]|<q

then .
|G('t- Av A) - G(z,s A" A')I <e (63)

By Vitali’s covering lemma, write
Q= U;(a,- + ¢;B(0, l)) UN,
where |[N| = 0 and ¢; < 1. Choose z; € (a; +¢; B(0,1)) N K if this set has positive measure. Set B = B(0,1).

3. Fix j € N and let [g]; stand for the truncation gx|s < for any function g. We decompose the left
hand side of (6.1) in several terms

/ G(z,Vu,,m,)dz > i/ (G(z,Vu,,m,) — G(z,[Vu, )i, [my):)) dz
1] =1 E.,n(a.--l-:.-B)
J

+ (G(:’[Vun]h [mn]t) - G(zi’ [Vuﬂ]i’ [mn]!)) dz

i=1

-/E. n(c."l-t.‘B)ﬂK

2
+ / (G(zs, [Vtnles [ne) = Gl(zi, Vetn, mp)) d
i=1 Y Ean(ei+e; B)NK

Jj

+ G(z, [Vun)i, [ma)) dz

i=1

~/Egﬂ(o.'+¢.'3)—x

+ (G(zi, Vg, my) — G(zi, Vu,m)) dz

j
i=1 ‘/Ekﬂ(c.'+¢.-B)nK
j
+ Z / (G(zi,Vu,m) — G(z;,[Vu), [m];)) d=z
i=1 YExn(si+ e B)NK
J

+ (G(zi,[Vu)s, [m]:) — G(z, [V}, [m])) dz

i=1
j

L; n(ai+e; B)INK

+ (G(z,[Vu)s, [m):) — G(z, Vu, m)) dz

i=1

J

-/E. n(¢.~+¢.-B)nK

+ G(z,Vu,m)dz

i=1 L.,n(a;«(»qﬂ)nk
=A4+B+C+D+E+F+G+H+1
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4. Estimates.
AL c/ 1+ [VuafP + |ma|f) dz
ExnXa,t

<ce by (6.2),
B <|Q]e by (6.3),
C<e / (14 [Vual + [malf) dz
ExnNXa,

<ee by (6.2),
D<c|Q\K|(1+1t° +17)

<cb(141° +19)

< ce by choice of § in Step 2,
F is like C,
G is like B,
H is like A.

5. Conclusion. When n — 00, because of all the previous estimates, all those terms go to 0. Regarding

E we have ;
timinf > [ (Glzi, Tty ma) — Glzi, Vu,m) de
n=eo 1 YEan(ai+6B)NK
j
> Y " liminf (G(2i, Vun,my,) — G(z;, Vu, m)) dz

n=o0 JE.n(a,~,B)NK
by Theorem 5.3. We conclude that

i/ G(z,Vu,m)dz.

liminf [ G(z,Vu,,m,)dz > liminf I>
a n—oo i=1 Y Ean(ai+e;B)nK

N=s00

Finally, if we now let 7 — 0, k — oo and j — oo in this order, using the monotone convergence theorem we

conclude that
liminf/ G(z,Vu,.,m,.)dz2/G(1,Vu,m)dz.
a a

N=s00
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