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Abstract. For every finite nonnegative measure ft we introduce the Sobolev spaces W^'p(Q,Kk) and we

study the lower semicontinuity of functionals of the form

where the integrand / is quasiconvex.

1. Introduction

Recently much attention has been devoted to the study of nonconvex functionals and relaxation tech-

niques, motivated in part by the fact that these play an important role in the understanding of pha.se

transition phenomena (see for instance Barroso & Fonseca [8], Modica [15] and the references therein).

As it is well known, the space BV(Q,Rk) seems to be a suitable function space for describing incoherent

phase transitions, and the study of lower semicontinuity and relaxation properties for functionals with linear

growth defined on BV(Q,Rk) was initiated in a systematic way by the works of Ambrosio k Dal Maso [4]

and Fonseca & Miiller [13].

We recall that if it € BV(Q,Rk) then its distributional derivative Du can be decomposed as

(1.1) Du = Vti • Cn + (u+ - II") ® v • 7in'x LSU + Cu,

where Vu(x) is the density of the absolutely continuous part of Du with respect to the n-dimensional

Lebesgue measure Cn , Su is the jump set of u, u(x) 6 Rn is a unit vector normal to 5U, u+(x) and u~(x)

are the traces of u near the jump point x € 5U, and Cu is the so-called Cantor part of the measure Du.

According to De Giorgi & Ambrosio [11] a function u is said to belong to the space SBV(ft,Rk) if the

Cantor part Cu in (1.1) is zero.

Recently Ambrosio established in [3] the XMower semicontinuity for the functional

(1.2) [ f(x,u,Vu)dx



where u € SBV(Q,Kk) and / (x , ti, •) is a quasiconvex function with growth p > 1, while the case p = 1 is

treated by Barroso, Bouchitte, Buttazzo & Fonseca in [6] (see also Braides & Coscia [9]). In these papers,

although the formation of jumps is penalized via the surface energy contribution, we do not know a priori

where the jumps, if any, are going to occur.

Here we study problems where the crack site is imposed a priori. For instance, if fi = Cn + Wn"1LT

for some piecewise C1 surface T C ft, we may minimize functional of the type (1.2) on all functions

u € BV(Q,Ilk) such that \Du\ « /x. It turns out that any function u with this property belongs to

SBV(Q,R fc) and Su C T up to a Wn ̂ -negligible set (compare with Vol'pert k Hudjaev [18]). More

generally, for any finite nonnegative measure /i in fi and any p > 1 we define

, J
and we consider the energy functional on

where for simplicity we denoted by Du/fi the Radon-Nikodym derivative ^r^ of Du with respect to /;.

It is well known (see for instance Dacorogna [10] and Acerbi & Fusco [1]) that, under appropriate

growth conditions, F is weakly lower semicontinuous in W*>p(£l, R*) for fi = Cn provided / is a quasiconvex

function, i.e.

(1.3) f{z)<ff{z + D<p(y))dy
n

We prove that this result is still true for a large class of measures ft. Precisely, let a • Cn + n* be the Radon-

Nikokym decomposition of/x into absolutely continuous and singular parts with respect to Cn. Then we can

write F = Ffl + F' , where

Since p > 1, we are able to show that the lower semicontinuity properties of Fa and Fs can be studied

separately. The lower semicontinuity properties of Fa follows by adapting the Lipschitz approximation and

blow up arguments of [3] to the present situation and we need only to assume that a G L°°(Q). The lower

semicontinuity of F* relies on the rank-one theorem of Alberti [2], which enables us to show that

for a suitable </>u € L^,(Q\Hk)f where r)(x) £ Rn is a unit vector depending only on \x. Since / is rank-one

convex, it follows that F* is a convex functional of ^u, and this easily leads to the lower semicontinuity

result.



2. Sobolev Spaces with respect to a Measure

In this section we introduce the Sobolev spaces W*>p(Sl,Rk) and study their main properties. In the

following ft will denote a bounded, open subset of Rn with a Lipschitz boundary, fi a nonnegative finite

measure on Q, and p > 1 a real number. The Sobolev space W*tP(Q,ILk) is defined as the class of all

functions u € BV^QjR*) such that the first order distributional gradient Du i s a t x n matrix of measures

absolutely continuous with respect to /i and

L Dup .
rf/i < + 00.

In order to study lower semicontinuity properties of the integral functional on W*iP(Q} R*) we need to

know the structure of the measures Du for functions u belonging to W^iP(fi, R*). To this aim, according to

Alberti [2] we introduce for every nonnegative finite measure A on fi and every x € supp A the set

lim | £?" ~ V ^ x ) ) = 0 for some u € BV(Q)

and we define E(Xyx) = {0} if x £ supp A. The main properties of E(X,x) are the following (see Alberti [2]):

(i) E(Xyx) is a linear space;

(ii) dim£'(A,x) < 1 for A-a.e. x 6 fi whenever A is singular with respect to Cn\

(iii) for every u € BV(Q) we have Du = / • A + 0 with 0 ± X and / 6 Ll(Q\Rn) with f(x) € £(A. x) for

A-a.e. x € fi.

From the properties above we can deduce easily a structural property for functions in W^P(Q). As usual,

given u £ BV(Q) we denote by Vu the absolutely continuous part of Du with respect to the Lebesgue measure

£ n , and for every measure A we use the notation A = A° -h A* for the Lebesgue-Nikodym decomposition of

A into absolutely continuous and singular parts with respect to Cn.

Proposition 2.1. Let TJ € Z£2(fi;Rn) be such that

(2.1) \T](X)\ = 1 and E(n$
yx) C span {*?(*)} for //5-a.e. x £ Q.

Then, for every u G W*tP(Q) there exists a unique <j>u € LP^.(Q) such that

(2.2) Du = VuCn+<f>uT)ii9.

Proof. By property (ii) above for /i*-a.e. x £ Q we can find a unit vector t](x) such that (2.1) holds.

Moreover, (see [2]) by using the Aumann's measurable selection theorem we can assume that x «-+ rj{x) is a

Borel map. Consider now the Lebesgue-Nikodym decomposition of Du with respect to Cn

Du = Vu • Cn + D'u.

By property (iii)

(2.3) Du = <f>uT) n* + 0

3



for suitable <j>u £ £j,»(ft) and 6 ± /i*. Taking the singular parts in (2.3) gives

which implies 6s = 0 because, being ti £ W*'P(Q), we have |Du| << /i and so |I>5ii| « //*. •

Remark 2.2. In the vector valued case u £ W*>p(Sl;Rk) equality (2.2) reads

Dti = Vti • £ n + <£u ® i? • / /

with </>u £ l£.(fi;R*) and IJ satisfying (2.1).

Remark 2.3. It is not hard to see that the usual Sobolev space Wl>p(Q,Kk) coincides with W^f (Q,R*).
Moreover, since BV functions do not charge J/n"* ̂ negligible sets, we have W*f(Q) = W^p(fi) whenever
|/ii - /x2|(i5) = 0 and Hn'x(il \ B) = 0. In particular, if

and v = /iL£;, as Hn'x(Q \ E) = 0 (see for instance Ziemer [19]), we have W

We consider now some compactness properties of the spaces W*>p(ft).

Proposition 2.4. Let p > 1 and let (uh) be a sequence in WX>P(Q) such that

Duh
(2.4) \f (f/i < C.

Then there exists a subsequence {uhk) and a function u £ WXtP(Q) such that

f uhk —• w strongly in Ll(Q)
\ Duhk/fi —• î w/At weaily ij} L^

Proof. By (2.4) we get that (uh) is bounded in BV(Q)i hence by the standard compact embedding theorem, a
subsequence (which we still denote by (tx^)) converges in Ll(Q). Moreover, Du^/fi are bounded in I£(fi; R" )
so that we may assume (a subsequence of) DU^/JJL converges weakly in I^(fi) to some w £ L^(fi). The
equality w = Du/n follows from the fact that, being (UH) bounded in BV(Q), we have Dun —• Du in the
weak* convergence of measures, so that for every <f> £

= lim / ^d/ i= lim
J

= (2)tt,*>= f —<t>dfi. m
Jo P

Remark 2.5. From (2.5) we get, using the notation of Proposition 2.1

\ ^Uhk/a —* Vtx/a weakly i



3. Lower Semicontinuity

In this section we prove our main lower semicontinuity result. Many of the technical tools needed for
the proof will be proved in the next section.

Theorem 3.1. Let p > 1 and / : Mnx* —• R be a quasiconvex function such that

0 < /(*) < C(l + \z\p) Vz € M n x*

for a suitable constant C > 0. Assume that the Lebesgue-Nikodym decomposition of fi with respect to £"
is fi = a • £ n + fi' with a € L°°(f2). Then the functional

is sequentially lower semi continuous on W^^fijR*) with respect to the weak convergence defined by

ii • M/ip/n o h ^ ^ fiifc-*ti strongly in Ll(Q;Kk)
Uh —• u weakly in Wf.iP(il:K ) <=> < -, , r\ i . • r iJ * v ' ; \ Duh/fi —• Du//i weaA'/y m LJ

Remark 3.2. The assumption a € I/°°(fi) in Theorem 3.1 is technical; we do not know if it is necessary.

The proof of Theorem 3.1 is based on the splitting of the functional F into two parts, namely F = Fa+Fs

where

The lower semicontinuity of F* follows easily from Remarks 2.2 and 2.5 . Indeed, we have F9(v) =
with

= I
and since / is rank-one convex, $ is convex and lower semicontinuous in ££.(fi, Rfc). The proof of the lower
semicontinuity of Fa will be obtained using the blow-up technique. The main tool will be the following
inequality.

Theorem 3.3. [Approximate quasi convexity inequality] Let M > 0, p > 1, and let f be a quasiconvex
function satisfying

(3.1) 7|*P < f(z) <

witA 7 > 0. For any e > 0 t/iere exists a constant 6 > 0 depending only on Mt p, f with the following
property: for any choice of p > 0, c0 > 0, z0 € Mnxk, u £ BV(BP), and a £ L1(£,,R+), the approximate
quasiconvexity inequality

emeasi



holds provided \zo\ < M, CQ > M~l, \\a\\oo < M, and

p-n\D'u\(Bp) + f\a- co| dx + p"1 j \u(x) - zo{x)\dx < 6.
B, Bp

Heuristically, if a is sufficiently close to a constant, u is sufficiently close to a linear function and the

singular part of u is small, then an inequality similar to (1.3) holds. The proof of Theorem 3.3 will be given

in Section 4 using the method of Lipschitz approximations of [1] and [3]. Next we show how Theorem 3.3

and a covering type argument yield the lower semicontinuity of Fa.

Proof of lower semicontinuity of Fa. Fix a sequence (uh) bounded in W*tP(Q>Ilk) and converging in

Ll to some u € W**p(Q,Rk). We have to prove that

(3.2) / f(—\ dx < liminf / / (— )a dx.

We may assume that the liminf in (3.2) is a finite limit, say L. Since |Vu/l|
p/°p~"1 is bounded in L^fi),

by adding 7|z|p to f(z) we can assume that the stronger condition (3.1) is satisfied for some 7 > 0. Let

il>h be the densities of (D5*^! with respect to n*. Since (tph) is bounded in Lp(/i*) we can assume that V7>

weakly converges in Lp(fi8) to some function ip. By our growth assumption on / , the function <j> = f(Vu/a)a

belongs to Ll(Cl). We recall (see for instance Federer [12], 4.5.9) that any BV function is approximately

differentiate, i.e.,

(3.3) lim / K

for £n-a.e. x € fi- We denote by E the set of Lebesgue points x of a and <j> such that

l imp" 1 f | u ( x ) - u ( z ) - Vu(z)(x- z)\dx = 0.
p-o+ J

BP{z)

We define also

F = \ z e 0 : limsupp"n / tpdfi9 > o l

fiM = {z € E \ F : a(z) > r 1 , |Vti(z)| < M} for M > \\a> \\a\\oo.

By (3.3), Q \ E is negligible. Moreover, since F is negligible, we have

meas({x € Si : a(s) > 0}) = lim meas(fiM)-

In particular, we need only to show the inequality

(3.4) lim inf / / f — ) adx> f f (—) o dx



for any M > \\a\\oo. Let e > 0, and let 6 > 0 be given by Theorem 3.3. We denote by Tt the collection of all

closed balls ~Bp(z) C fi centered at points z G QM , such that

n I *diJL'+ I \a-a{z)\dx + p~l I \u(x)-u(z)-Vu(z)(x-z)\dx<6

and

By our definition of QM, we have that for any z G QM the ball Bp(z) belongs to T€ for p > 0 small enough.

By Besicovitch's theorem there is a family of pairwise disjoint balls B{ = BPi(zi) G Tt, indexed by 1 C N,

which covers almost all of QA/. Since V>/i converges weakly to tp in Lp(fi*) and t//j converges in 2^.(1), R*)

to u, for any finite set J C / we can find Ao G N such that

Bt Bt B,

for any h> h0 and any t G J. By Theorem 3.3 we get

)
J

Hence, letting /i —* -foo we get

By letting first J ] I then e — 0, (3.4) follows. •

Remark 3.4. More generally, the methods of this paper and of [3] apply to the lower semi continuity of
functionals of the form

f g(x^u)dfi9 u € W^O.R*)

assuming that a G L°°(Q)y f(xys,z) and g(x,y) are Caratheodory functions, / is quasiconvex with respect
to z, g > 0 is convex with respect to y and

0 < / (* , s} z) < C(b(x) + |«|' + |z|P) V(x, 5,2) G ft x R* x Mn x f c

for some b G I ^ ^ ) . C > 0 and p > 1.



4. Proof of the Approximate Quasiconvexity Inequality

In this section we prove the approximate quasiconvexity inequality of Theorem 3.3. We start by intro-

ducing some preliminary notions.

Let 6 be a nonnegative, finite measure in the unit ball B of Rn . The (local) maximal function M{9) of

d is defined by

If 0 is absolutely continuous with respect to the Lebesgue measure Cn and <f> is its density, we set M(<j>) =

M(6). In the following proposition we recall well known properties of the maximal function (see for instance

13], [17])-

Proposition 4.1. Let 6 be as above. Then,

(4.2) meas({x G B : M(0)(x) > A}) < *(WMB> VA > 0,

with £(n) depending only on n. Moreover, if 6 is absolutely continuous with respect to Cn and its density o

belongs to LP(B) for some p > 1, then

/ Mp(0)dx<t(n,p) I <f>pdx
JB JB

The following theorem shows that BV functions can be approximated (in the sense of Lusin) by Lipschitz

functions in the regions where the maximal function of the total variation is controlled. The proof is based

on the inequality

\z - x| "" Jo meas(Btp{x

which holds for any Lebesgue point x of tt (see [3]).

Theorem 4.2. Let A > 0, u £ £V(B,R*) H L°°(S,Rfc), and let

E={xeB : M(|Z>u|)(x)<A}.

Thei3, for any p € (0,1) there exists a Lipschitz function V : 5 P H R 1 such that u(x) = v(x) for £n-almost

every x £ E C\ Bp and

Lip(v, Bp) < c(n)k\ -f

Finally, we will need a weak equi-integr ability property of sequences bounded in Ll (the so-called biting

lemma, see [1]) and a truncation lemma (see [3]).



Lemma 4.3. Let (<f>h) be a bounded sequence in Ll(B). Then, for every e > 0 there exist a Borel subset

Ct of Bf 6 £ (0, e), and an infinite set S C N such that meas(Cf) < c and

meas(C)<«, CnCc = 0 => I \<t>h\dx < c
Jc

for any h £ 5.

Proposition 4.4. Let (uh) be a sequence in BV(ByR
k) converging in L1(B,Rk) to u € L°°(B,Rk). Let

us assume that |Vu/J are equi-integrable in B and

(4.3) lim \D'uh\(B) = 0.

Then, there exists a sequence of sets of finite perimeter Eh C B such that

lim [ meas(£h) + \DXE, \(B)] = 0

Wh\(x) < (1 + ||u||oo) for every x£B\Eh.

Remark 4.5. Let Uh, Eh be as in Proposition 4.4 and let <f> : R* »-». R* be a bounded Lipschitz function

such that <£(s) = 1 for any s with |s| < (M -f 1), M > ||ti||oo- Since <t>(uh)XB\Eh = w/iX£\£;fê
 w^ infer (by

[18]) that the functions Vh = w/ĵ BVEn belong to BV(i?,R*), are bounded in L ^ i ^ R * ) , converge to u in

I^B^R*). Moreover (3.3) implies that if w £ BV(Q) then Vw(x) is zero for £n-a.e. in a level set of w and

so

for almost every x € B. Finally, by the inequality (see [18])

\D9vh\(B)< \D8uh\(B)-

we obtain that \D8Vh\(B) tends to 0 as h —• -foo.

The proof of Theorem 3.3 will be achieved by a contradiction argument. The contradiction will be a
consequence of the following lower semi continuity theorem.

Theorem 4.6. Let f : M n x * —+ R be a quasiconvex function and let (uh) C BV(B,Rk) and (ah) C

Ll(B, R + ) be sequences converging in Ll(B) respectively to a linear function u(x) = zo(x) and to a constant

Co > 0. Assume that

M = sup IKHoo + IMIoo < + oo and lim \D*uh\(B) = 0
h —+oo

and (3.1) holds. Then we have

(4.5) liminf / f(^)ah dx > f f(—)c0 dx.
A—+oo JB \ ah J JB \ c0 /

9



Proof, It is not restrictive to assume that the liminf in (4.5) is a finite limit, say L. We denote by T a

constant such that \DUH\{B) < T for any ft € N. Since

7 / M*(\Vuh\)dx<7S(njP) I \Vuh\pdx<Z{n,V)Mp~l f / ( — ) « * <**,
JB JB JB V ah J

the sequence <f>h = Mp(\Vuh\) is bounded in LX(B). Let c > 0 be fixed, and let C€ C B, 6 €]0,c[, 5 C N be

given by Lemma 4.3 so that for any Borel set C C B \ C€ 6uch that meas(C) < 6 we have

(4.6) / Mp(\Vuh\)dx<c Vh € 5.
Jc

Since |Vt//»| is bounded in Ll(B), by (4.2) we can choose Ac > 1 such that for every A > X€

(4.7) meas({x G B : Af (|Vtifc|)(«) > A}) < 6 Vfc € N,

(4.8) ^ £ < 2 A .

For any A > At, we apply Theorem 4.2 with p = 1 — e to obtain Lipschitz functions « h A : Bp |-^ R* whose

Lipschitz constant does not exceed A' = (1 + c(n)fc)2A, such that U/,,A = «h £"-a.e. in Bp \ Eh,\- where

EhiX={x€B:M{\Duh\)>2\}.

Let

Ch = C(U{x£B: ah{x) < co/2}

E'hiX={x€B\Ck:M(\Vuh\)>\}

E'ix ={x£B\Ch: M(\D'uh\) > A}.

Since Vu>, = Vuj,,x a.e. in Bp \ Eh,x we get

JEhtX\ch

By the inclusion Ehtx \ Ch C ̂  A U £?£A we get

JEh,x\ch\ ap
h

The second term in the right hand side vanishes as h —* +00 because

To estimate the first term we replace Ap by Afp(|Vuh|):

If ft € S, by (4.6) we obtain

(o / 2 +, (c o /

10



By letting h G 5 go to + oo, (4.9) yields

(4.10) liminf / / ( ^ ^ W dx < L + C(co6 + 22'(1 + c(n)k)p c\"p e)
*-*+oo JBp\Ck \ ah )

for any A > Ac. We now claim that there are Lipschitz function v\ : Bp H* R* such that

(4.11) meas({* € B, : u(x) # vx(x))) < ^

(4.12) / ft— )c0 dx < liminf / f(^^)ah dx.
JBP\C€ \ CO J " *-+oo JBACk

 J \ a h J

Indeed, let A > Ac be fixed and let vt = ^hk,x and a* = ahk such that

hm / / { la* dx = liminf / / — a/j ax.
* - + o o y B p X C f c V «* / *>-*+«> JBp\ck \ °h )

Possibly extracting a subsequence, we can assume with no loss of generality that Vk converges in the weak"

topology of W1>OO(BP) to a Lipschitz function v\ : Bp »—• Rfc. By Lemma 4.7 below we get (4.12). On the

other hand, Proposition 4.1 yields

meas({* € Bp : uhk(x) # vk(x)}) < meas(EhktX) < ^ J ^ .

By the lower semicontinuity of the functional u; »-»• meas({x € Bp : w(x) ^ 0}) we obtain (4.11) and this

shows the claim. By (4.10) and (4.12) we get

/ / (—) codx<L + C(c0S + 22*(1 + c(n)k)pcl
0-

pe)
JBp\cttX \coj

with Ce,\ = C£ U {x e Bp : u(x) ^ vx(x)} and A > A,. By letting A — -foe, (4.11) yields

/ f(—\o dx<L + C(co6 + 22p(l + c(n)Jb)pc*-pe).
JBp\Ct \c0/

The conclusion follows now by letting c —• 0. •

Lemma 4.7. Let f : Mnxk —• R be a quasiconvex function, let (VH) C W 1 I O O ( B , R * ) be a sequence

converging in the weak* topology ofWl>oo(BfR
k) to v, and let (ah) C L°°(B,R+) be a bounded sequence

converging in Ll(B) to some constant c0 > 0. Then, for every Borel subset D of B, setting

Dh = {x£D : ah< co/2}

we have

imMf f(Ylh.)ahdx>f f(Yl)Codx.
-+oo JD\Dk \ ah J JD \ co /

Proof. Let ah = max{a/»,co/2}. Since meas(Dh) - • 0, ah still converges in Ll(B) to c0. It is well known

(see for instance [10]) that

11



On the other hand, since an is bounded away from 0 and -f oo, and / is locally Lipschitz continuous in Mn x A

lim f f(l3.)Codx_ f
h~+ooJD

J\ C0 ) JD
so that

InniniInninif
*-+°° JDJD

Then, the statement follows by the inequality

D\Dh

Proof of Theorem 3.3. We argue by contradiction. If the claim was false, it would be possible to find

€ > 0, a sequence 6h converging to 0, and sequences ph) Ch, ZH, ̂ h satisfying all the conditions in the

statement of the theorem, such that

(4.13) cmeas(B,J+ / / ( — V * dx < I f(—)chdx.
JBPh \ ah ) JBPh \ChJ

Defining, by a standard scaling argument ,

Ph

and setting ph = 1, Ch = c^, £& = Zh, we may assume that ph = 1 for any /i € N. Possibly extracting a

subsequence, we may assume that z^ converges to z0 € M n x * (with |*0| < M) and ch converges to c0 (with

M > Co > M"1) . Now we claim that Uh fulfil the assumptions of Proposition 4.4. Indeed

\D'uh\(B)+ I \uh(x)-zh(x)\dx<6h
JB

implies that

lim \Dsuh\(B) + / \uh(x) - zo(x)\ dx = 0.

Moreover, by (3.1) and (4.13) we get

J B JB \ ah J JB \chj

hence, as p > 1, |Vti^| are equi-integrable in £2. Let £*h be given by Proposition 4.4, and vn = W/»XB\£A • By

Remark 4.5 we get
r /T7.,. \ r /T7*i» \ r

ahdx.[
JB

Since meas(£/>) - • 0, by (4.13) we get

(4.14) cmeas p / f(
*—+00 JB \ ah

On the other hand, since \\vh\\oo < (M -f 1) and

lim \D'vh\(B)+ I
fc—+00 JB

12
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we can apply the lower semicontinuity Theorem 4.6 to obtain

Kmfaf / f(Z!i)ah dx> I f(S)codx.
h-++ooJB \ ah ) - JB \CQJ

This gives a contradiction with (4.14). •
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