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1 Introduction

In an earlier paper [12], I have studied the asymptotic behavior of Ginzburg-
Landau equation,

(i.i) ^ - An* + ^/(«•)« o, (o, oo) x *',

(1.2) ««(0,*) = «$(*), * € * ' .

The nonlinearity / is the derivative of a bi-stable potential W :

(1.3) W{u) = | (u* - I)2, f(u) « W"(«) = 2u(u' - 1).

In [12], I proved that there are two open, disjoint subsets V,N of (0, oo) x
Hd and a subsequence €n satisfying,

a. it'» —• 1 ^uniformly on bounded subsets of P ,

b. nCv —» — 1 , uniformly on bounded subsets of AT

c. r=complement of (PUAT) has Hausdorff dimension dand it moves by mean
curvature in the sense defined in [12], [1].

This convergence result generalizes the previous results of Rubinstein, Steinberg
and Keller [10], DeMottoni and Schatzman [8], Chen [2], Evans, Soner and
Souganidis [4], Barles, Soner and Souganidis [1] and Ihnanen [7]. For more
information on the Ginzburg-Landau equation, the weak theories for the mean
curvature flow and other related topics we refer the reader to the introduction
of the companion paper [12] and the references therein.

The above result was proved under the assumption (c.f. (2.6) in [12])
that for every £ > 0 there are positive constants K$ and 17 such that for every
continuous function y>,

(A) nt>{J\9{x)\S{dx;t) : c€

where



(1.4) ji«(<fc;t) « [l|Du«(t,x)p + iw(««(t,*))] dx.

The main purpose of this paper is to verify (A) under some reasonable
conditions on the initial data u(

0. This analysis requires a detailed description
of u€(t,x) near the initial interface. Such an analysis have already been carried
out by DeMottoni and Schatzman [9] and by Chen [2]. However, the condition
(A) can not be directly obtained from the results of [2, 9].

There are two key estimates in the proof of (A). The first one is a detailed
description of u((t,x) near the initial interface; Theorem 4.1, below. This result
is a sharper version of a result of DeMottoni and Schatzman [9] and its proof
is similar to Lemma 4.1 in [5]. The description obtained in Theorem 4.1 is of
independent interest. The second key step in the proof of (A) is a gradient
estimate; Theorem 5.1, below.

The paper is organized as follows. In the next section the main result of
this paper is described. In section 3, a result of DeMottoni and Schatzman is
recalled and an easy gradient bound is proved. The behavior of tic(t,x) near
the initial interface is analyzed in Section 4 and a second gradient estimate is
obtained in Section 5. A proof of the main theorem is given in the last section.



2 Main Result

Multiply (1.1) by cuj, integrate and use integration by parts to obtain,

(2.1) ^(tx) - E*{t2) m - c P [ (u\)7dxdt% tx > ta,

where

dx.

Hence (A) holds with IJ = 0 provided that E*(0) is bounded in e. In particular,
an elementary computation shows that E*{0) is bounded in c, if there are a
function zj, a constant A > 1 and a bounded open set (I of finite perimeter (c.f.
(3, 6]) satisfying,

^ «(r) = tanh(r),

\Dz<0\<\, \d{x)<zl(x)

where d(x) is the signed distance between x and the boundary of ft.

When u(
Q is independent of c, we generally do not expect £*(()) to be

bounded in e. Indeed let t^ = /? for some constant 0 ^ dbl. Then ii'(t,x) =
«7<(t)and £ ((t) = +00 for every t > 0 and c > 0. However, the condition (A)
holds with any IJ > 0.

In the remainder of this paper, we assume that:

(2.2a) i*o is independent of €,Le. *£ s tto,

(2.2b) «i€C?(fc*) , M * ) | < 1 ,

(2.2c) r0 = {x € 7Jd : uo{x) = 0} b bounded,

(2.2d) infro |Du0 |>0,

(2.2e) limsupjj^o inf W > R |* 0 (X) | > 0,

where Cj(7ld) is the set of all bounded functions that are thrice continuously
differentiate with bounded derivatives. Observe that (2^b^d) imply that To
is a C2 manifold. The main goal of this paper is to prore {K) under the above
hypotheses, see Theorem 6.1 below.
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3 Preliminaries

Let do(x) be the signed distance between z and IV Choose A > 0 such that

(3.1) do€C*(nA), ftA = { * € * ' : |io(«)l<2A}.

We now recall a result of DeMottoni and Schatzman [9, Theorem 5].

Theorem 3.1 For every j,m > 0 there are Ci,Cj > 0 such that for every

(3.2) «€ / € ^[C,€»ln( i ) ,{%€§!,

we have,

(3.3) |.«(«,«)-,(*j*!)|£«, if |do(*)| < A,

(3.4) |«'(t,x)-«>M*)]|<€m, if

Recall that q(r) = tanh(r). In the remainder of this paper C\yC2 denote
the constants constructed in Theorem 3.1 with m = 2 and 6 = 1/8. Also set

(3.5) 03 =

Fix t € J«. Then whenever d(x) € [tC», A], (3.3) yields

Also if d(x) > A, (3.4) implies the above inequality, provided that e* < 1/4.
Hence

(3.6) «•(«, s) > 3/4, Vc < 1/2, t € 7C, d(x) > cC,.

Similarly,

(3.7) n c ( t ,*)<-3/4 , V€<l/2, t € / o rf(x) < -

We dose this section with a simple gradient estimate.



Lemma 3.1 There is a constant Ky independent of c, satisfying,

(3.8) |i?««(t,«)|<£.

Proof: Since |uo| < 1, |««(t,*)| < 1 for all (t,*). Set

Then for all 0 < r < t,

(3.9) ««(i,*

where * denotes the convolution and G is the heat kernel, Le.,

Now, differentiate (3.9) with respect Xj and use the properties of the convolution
and the heat kernel to obtain,

C C

where C is an appropriate constant. Choose r = t — c* to obtain (3.8).



4 Behaviour near the interface

In this section we prove a sharper version of (3.3), (3.4). Our approach is very
similar to [5, Lemma 4.1]. Let A be as in (3.1) and set

(4.1) t l«C,csln(;).

Theorem 4.1 There are /*, K > 0 $ueh that for sufficiently tmall e > 0,

(4.2) «'(«,*)

(4.3) ««(t,x) < -W(t - t,, |do(*)|), V* € /«,do(x) € (-A, -

Proof: We will prove only (4.2). The proof of (4.3) is similar.

1. In view of (3.1) there is d € Cl(Rd) satisfying

(4.4) <£(*) = do(x), if |*>(x)| < A,

(4.5) |<*(*)| > A, if |do(x)|>A,

(4.6) |i?d(i)| < 1, V*.

For t(t),p(t) > 0 (to be determined later) define

where Cj is as in (3.5).

We will show that for appropriately chosen €(*)>?(') *&d & sufficiently small
c> 0, v is a subsolution of (1.1) on {v > 0}. Indeed a direct computation shows
that,



I := t> t-Av+-j/(»)i

£i /w -«"(••
where (•••) denotes ld(x)-«C8-€(!)]/«•
2 . Since • ( " O - . + F - F ^ ? (^) > 0 whenever V(*,x) > 0. Therefore

on {t; > 0} , g"(- • •) < 0 and (4.6) yields

q"(.-)\Dd\7 >«"(•••) = /(«(-))•

So on {v > 0} we have,

(4.7) / < 4«'(-H'(^ - i*J> + JVM " /«"•>»+f

3. Set

and

We will choose £ > 0 in step 5 satisfying,

(4.10) * * ° -

4. Suppose that

(4.11) l ( - > Cl|,U

The caw ,(.••) < { will be analyzed in the next step. Since lp(r)| < \ ,(4.11)
implies that



»(«,*)=«(•••) - * ( ; )> f.
Since v = j(- • •) - p < g(.. •) ,(4.8) yields

Use (4.9), (4.10) and the above inequality in (4.7) to obtain,

on {v > 0}.

5. Suppose that (4.11) does not hold, i.e.,

Then on {v > 0}, g(- • •) € [0, | ] and

(4.12) g'(. • •) = (1 - ,(• • •)*) > (1

Set

o := max{|/'(«)| : «

Since v < 1, on {t> > 0} we have,

Use the above inequality and (4.12) in (4.7) to obtain,

We now choose ((•) satisfying ((0) s 0 and

C'(T) = fa + ap(r) - «P'(r)} = ^pP(r), r > 0.

Using (4.9) we integrate the above equation,
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Observe that this choice of £ satisfies (4.10).

6. By the previous two steps,

J < 0 on { v £

Also by (3.6)

* c ( t , * ) > | , V t € / c ,

In particular,

4 """ 4 ~'

and since p,£ > 0,

Since u*(t,i) > 0 for all t € Jc and do(i) > (Ca, the maximum principle yields,

(4.13) i»'(t,«) > v(t - *i,»), Vt € I«, do(*)

Now (4.2) follows from (4.13), (4.4), (3.6) and the definitions of p and {.

9



6 Conclusion

Theorem 6.1 Assume (2.2). Then (A) holds.

Proof: Let A be a Borel subset of Hd with a finite Lebesgue measure. Set

{x€Hd: |<*o(*)|€[cC,,A]},

*. t = l,2,3, t > 0 ,

«(t,*))<**, * • 1,2,3, t > 0 ,

where A,Cs are as in (3.1) and (3.5), respectively. In the following steps we will
estimate /» and J,*'s separately.

1. By Lemma 3.1,

Since To is smooth and bounded, for sufficiently small c> 0, |fii| < ed for an
appropriate constant C Hence

• ̂ - ) t v< > o.

2 . Set

where 6 > 0 is the constant appearing in (5.1) and C\ is as in Theorem 3.1.
Then for all t € J« O [*4,oo) , by (5.1) we have,
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Therefore,

|Du'(t,x)|* < £ [< + exp(-|

h(t) < ~|A2| + §
2 *€

By (4.4), do = d on A2. In the above integral we use local orthogonal coordinates
to, with wi s (k(x). Since d0 is smooth in ft2, there is a constant C, depending
on the (d — 1) dimensional measure of Fo> such that

If2

"" 2

where £ is an appropriate constant, possibly different than the constant ap-
pearing in the first step.

3 . For t € I€ H [*4,oo) and |do(*) > A ,(5.1) and (4.5) yield,

\Du€(t,x)\7 < £l[e + e-*^-*0^!.

Therefore for sufficiently small c > 0,

J*(0 S -j-flA*! + ^)» Vt € Jc O [t4, oo),

for an appropriate constant C\ again possibly different than the constant ap-
pearing in the previous steps.

4. Recall that we have chosen CUC7 satisfying (3.4) with m = 2. Hence for all

< 2(u€ - *ign{u<>))7 <

Therefore,
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Vt€J«.

5. Set

C ^ d + i , *,a=C»€»ln(7).

where p is the constant appearing in Theorem 4.1 and C\ is as in Theorem 3.1.
Then (4.2) and (4.3) imply that lor all t € /«n [ts,oo), |do(x)| € [eC*, A],

where (a)+ s max{a,0}. Since |W'(«OI < 1 for |u| < 1, for sufficiently small
€ > 0 we have,

" Kt

for all t € Jc n [t&, c]. Now using the same change of variables used in step 2 we
obtain,

C J€C%

rX/€-2IC
C W(q{r))dr.

Jo

Since
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6. Combining the previous steps we conclude that

(6.1) ?(**) =
iml

for all t > 0 satisfying,

(6.2) «€/«, t>U, t*h, «<«,

and sufficiently small t > 0.

7. Let * be a smooth positive function decaying exponentially as |x| —» oo.
Then using 1.1 we obtain,

Let

Then |D* | < * and

±J*{x)S{dx;t) <

15



Therefore for any t > to > 0,

(6.3) J*(*)/,«(&;<) < J*(*)/i«(dx;i0) e

8. Let to be a point satisfying (6.2). Then (6.1) yields',

< e,
where wj is the volume of the unit space in Tl* and 6 is an appropriate constant.
Then by (6.3)

for every sufficiently small eand

(6.4) ^

0. Now let 4> be any continuous function satisfying,

A := sup{|^(x)|ev5(1+l'D : * € Hd} < oo.

Then |^(x)| < A*(x), and

(6.5)

for all t satisfying (6.4), and sufficiently small e > 0. Since for every e > 0, by
(3.9)

Hence for every t > 0,

16



(6.6) J |*(«)|JI*(dx;t) < £ ( £ +1) J *(x)dx.

Now (A) follows from (6.5) and (6.6) with IJ = %/5.
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