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Abstract

Let P be a graph property which is preserved by removal of edges. A random
maximal P-graph is obtained from n independent vertices by randomly adding edges, at
each stage choosing uniformly among edges whose inclusion would not destroy property
P, until no further edges can be added.

We address the question of the number of edges of a random maximal P-graph
for several properties P, in particular the cases of "bipartite" and "triangle-free". A
variety of techniques are used to show that the size of the random maximal bipartite
graph is quadratic in n but of order only rc3/2 in the triangle-free case. Along the way
we obtain a slight improvement in the lower bound of the Ramsey number r(3,<).

1 Introduction

The problem of describing random graphs with a particular property (e.g. regular, triangle-

free) has been much studied since the seminal work of Erdos and Renyi [2] on evolution
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of random graphs. Here we are interested in graphs which are maximal with respect to

a property P , that is, graphs G = (V, E) which satisfy P but such that (V,Ef) fails to

satisfy P for all E' properly containing E. By closing downward, we may assume P itself

is preserved by removal of edges; typical such properties include "fc-colorable," "planar,"

"tfm-free," "disconnected," "girth > k."

As is often the case with random structures, there is a probability measure which is both

more tractable and more natural (we think) than the uniform measure on random maxi-

mal P-graphs, namely that given by building the graph via uniform edge-choice subject to

preserving property P. In the next section we describe three equivalent ways to obtain our

random maximal P-graphs, which we will denote by M n (P) .

Even with all these constructions for M n (P) , however, it is far from clear how to divine

its properties, even for rather simple P. In this work we confine ourselves to the very

basic question "how many edges does M n (P) have?". Even there we shall not pursue sharp

concentration results nor address any non-trivial cases other than for the two properties

"bipartite" and "triangle-free."

Let us note that the size (that is, number of edges) of M n (P) is not necessarily an interesting

parameter. If P is "planar," for example, then M n (P) is a triangulated planar graph with

exactly 3n — 6 edges. If P is "disconnected" then M n(P) will nearly always consist of a

clique on n — 1 points and a single isolated vertex, thus y^) edges, since with probability

1 — o(l) a standard graph process will reach a point where the "giant component" is just

one vertex short of swallowing the whole graph (see e.g. Bollobas [1]).

The cases of "bipartite" and "triangle-free" present, on the other hand, an intriguing chal-

lenge and an instructive contrast. In both cases, the size of a maximal graph may vary from

n — 1 for the star A\n_i to [n2/4j for the balanced complete bipartite graph A^n/2j,[n/2"]-

Thus the size of M n (P) is somewhere between linear and quadratic in n, but where?

One might expect that "bipartite," being the more restrictive of the two conditions, would

produce fewer edges (indeed it does, in the early stages of the construction). But readers

of this work will not be misled, and in fact we shall see that the random maximal bipartite

graphs are vastly larger than their triangle-free cousins.
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2 Constructions

The following equivalent constructions of M n (P) are offered both because they are useful in

the sequel and because readers may find one construction more intuitive than another. The

first construction is merely a precise restatement of our definition.

Construction A

1. Fix V = {1,2, . . . , n}, Kn — complete graph on vertex set V, E° = initial edge set =

0;

2. For each i > 0, if F{ = {e 6 Kn : (V,El U {e}) satisfies P} , then Ei+1 = E{ U {e}

where e is chosen randomly and uniformly from Fl;

3. If Fl = 0 then Mn(P) = (V,E*) and the construction is complete.

Construction A suffers from two apparent shortcomings: it entails an unknown number of

steps (which happens to be the parameter we seek) and the number \F%\ of choices at each

step is also variable. We therefore generally prefer the following process instead.

Construction B

1. Choose a random permutation TT = (ci, e 2 , . . . , em) from the uniform distribution on

the m! permutations of the edges of Kn, where m = u j ;

2. let Eo = 0;

3. for 0 < i < m, set 2£+1 = Ex U {et+1} if (V, E{ U {et-+i}) satisfies P, and Ei+X = E{

otherwise;

4. M

Construction B is thus a "graph process" in the sense of Bollobas [1] but with some edges

discarded along the way. To see that it is equivalent to Construction A, observe that an edge

which is rejected from F{ at some point in A need never be considered again.

The last construction is just a "real-time" version of B.



Construction C

1. Set E(0) = 0.

2. For each edge e of A'n, let e appear in E(t) independently at exponential rate 1/(1 — <),

for t £ [0,1), provided property P is not destroyed. Multiple occurrences of an edge

are ignored.

3. M

Since the probability that a particular edge e has not appeared by time t is 1 — £, (V,E(t))

is the classic random graph Gnyt of Erdos and Renyi [2] when P is the "improper" property

possessed by all graphs.

3 The Bipartite Case

When P is "bipartite" M n (P) turns out to be nearly balanced.

Theorem 3,1 The expected size of a random maximal bipartite graph is greater than (n2 —

n)/4.

Proof. Let us imagine that after construction of M n (P) , we color vertex 1 randomly

red or blue (each with probability | and then extend uniquely to a proper red-blue coloring

of the whole graph.

For each vertex u, let the random variable Xu be given by Xu = 1 if u is colored red, -1 if

blue. Then trivially Pr (X u = 1) = Pr(X u = -1) = \ for all u.

Were the Xu 's independent, we would have a binomial distribution for the number of red

vertices, hence expected number of edges of Mn(P) is

: Xu = l } | - | { u : X . = - 1 } | )
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n 2 — n

In fact, the Xu's are negatively correlated. To see this, fix vertices u and v! and let i be the

last stage of Construction B at which u and v! are still disconnected; that is, u and ur lie in

distinct connected components C and C of (V, E{) but are connected by a path in (V, -Ef+i)-

Let A and B be the proper color classes of C, of cardinalities a and b respectively, and

similarly for A', B', o! and U. Let {v,v'} = e,-+i be the edge which connected (7 with C\

where v G C, t;' G C". Set

P "" a + 6 a1 + 6; a + b a' + b'

and
a 6'

= 1 - P = -TT'TTT17 +a + 6 a 7+ 6' a + 6 a' + &''

We say that two vertices are "of the same type" if they are both in AUA', or both in BUB'+

Then we have by symmetry that

Pr(u and u are of the same type)

= Pr(t; and v' are of the same type)

= P -

When the components C and C join, the classes A and A' will unite to become a single

color class just when v and v1 are of different types; hence u and u1 will end up with the

same color in Mn(P) iff either they are of the same type and v and v' are of different types,

or vice-versa. Thus we have

Pr(Xu = Xu,) = 2pg < \

regardless of the values of a, 6, a' and b1. Since p may not be equal to | we have, overall,

the strict inequality

E(XMX t t0<0

for all u and v!.



Finally, we have that the expected number of edges of M n (P) is

7 - I * «£*•>')7

n2 n
> T 4

completing the proof of the theorem. D

The construction of M n (P) is not essentially different if P is the property "contains no cycles"

instead of "contains no odd cycles"; the result is then a tree, whose color balance is the same

as for our random complete bipartite graph. This random tree is not uniform, but is instead

equivalent in distribution to the minimum spanning tree for a copy of Kn with edge-weights

which have been independently selected from some fixed continuous distribution.

4 The Triangle-Free Case

In this section our effort will be devoted to obtaining upper and lower bounds for the size of

the random maximal triangle-free graph M n (P) , or M n for short. It turns out that a lower

bound of the right order can be obtained fairly easily by considering a slightly different

random graph M^, obtained as follows.

Construction B above is followed as before, but now an edge is rejected at stage i not merely

if it makes a triangle with two edges from (V,E{) but with any two previously considered

edges. Thus, rule 3. is replaced by:

3'. For 0 < i < ra, set i? l+1 = £zU{e l+1} if (V, {ei, e 2 , . . . , e,-, el+1}) satisfies P, and Ei+i = E{

otherwise.

The edge-set of M^ will thus be a subset of the edge-set of M n , for any permutation TT.

Incidentally, if r(7r) denotes the reverse of ?r, then we may also take M'n as the graph

obtained by an edge deletion process in which edges in the complete graph Kn on [n] are

examined sequentially as in r(7r) and an edge e is deleted if and only if it is in a triangle

contained in the current graph.
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Theorem 4.1 Let e be an edge of Kn. Then

Pr(edge e is in M^)

Proof. We may as well take e = {1,2}. Let A{ be the event that edges {l,i} and {2,z}

both arrive after edge {1,2}, and B{ be the event that exactly one of the edges {l,i} and

{2, i} arrive after edge {1,2}. Now the event that edge e is in M^ is equivalent to

n - 2

t'=0

Since for each i, A{ and B{ are disjoint events, we have

Pr(edge e is in M.'n)

= 12 )Pr(Bi n • • • n Bm n Am+i n • • • n /in_2)
m=0 V m /
n"2 ^n - 2\

J2m Pr(edges {1,3}, {1,4},.. . , {l,m + 2} arrive before edge {1,2} and

all other edges with end points 1 or 2 arrive after {1,2})
{n-2\ m ! ( 2 n - 4 - m ) !
^ m y (2n-3)!

2 n -

/irn

a

Thus theorem 4.1 implies that if 7Jn (resp. Zn) is the number of edges in M^ (resp. Mn),

then E[Zn] > E[Z^] - ^ n 3 / 2 . In fact it is possible to show a slightly better result for Zn

by considering vertex degrees of Mn; this is what we are prepared to do next. However, in

order to avoid some dependence considerations, we employ Construction C above. It will be

convenient to denote by M(t) the graph (V, E(t)) present at time t, and by G(t) the result

of allowing edges to appear regardless of their effect on property P; thus G(t) is an ordinary

graph process coupled to M(t). In particular, M(t) C G(t)y M(l) = Mn and (7(1) = Kn>

We shall obtain the following theorem by considering M(t/y/n) as t —» 00.



Theorem 4.2 Let dn(y) denote the degree of vertex v in M n . Then for any ex > 0,

Pr(dn(v) < P\[n - e1y/n) = o(l/n) as n -> oo,

where

and f(x) satisfies the differential equation

f- = exp(-a:/), /(0) = 0.
ax

Numerical results show that /* is about 1.13. Theorem 4.2 implies that for any ex > 0, every

vertex in almost all M n has degree at least (1 — t\)f*\/n. An immediate consequence of this

is that for any t\ > 0,

Pr(Z n < v T " 7 ) -> 0 as n -> oo.

Proof. We first note that for any e2 G (0, ex/2), /* can be approximated by | f* — Vj |< 62

by choosing sufficiently small S > 0 and large integer j , where j / * approximates /(&<$) and

satisfies the recurrence relation:

Although it is more natural to leave out the term — kS2 in the exponent in the above equation,

its inclusion makes our approximation a little simpler as we shall see.

Let T = 8n~ll2. Since M(t) is a subgraph of M n for all t, our theorem follows from

Pr(degree of vertex v in M(jr) < i/jy/n — e2\/n) = o( l /n) . (1)

To show (1), we consider (for each k) the growth of the degree of vertex 1; in M(t) where

t G (kr — r,kr]. Let D(t) be the degree of vertex ?> in G(t) and use AkD to denote

D(kr) — D(kr — r ) . Note that A^J? is a binomial variable with parameters n — 1 and

r = Sn"1!2. Hence for any e G (0,1), there is p G (0,1) such that for large n,

Pr ( | AkD - <5Vn |< e6y/n) < p^. (2)

Corresponding to D(t), we next define Y(t) which is a lower bound of the degree of vertex

v in M(t). Suppose that for some //, 77 > 0, Y(kr — r) = i/y/n and A^£) = rjy/n. (We
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may mentally regard v as vk-\ and 7/ as 6.) Consider t G {kr — r,kr] at which D(t) is

increased by 1, and assume inductively that Y(t —) is a lower bound of the degree of v in

M(<—). Then an edge e = {u, i*;} is added to G(t—). Use d to denote the degree of vertex v

in M(t—) and {v, t>i}, {v, t>2}? • • •, {v, ̂ rf} to denote the edges incident to v in M(t-). Note

that edge {v, w} is added to M(t — ) if and only if M(t-) does not contain any of the edges

{w,Vi}, {w,V2},..., {w,v<i}. There are two cases:

(1) If (y + r))y/n < d, then we arbitrarily pick (u + r])\/n vertices that are adjacent (in

M(t—)) to vertex v. Y(t) is then increased by 1 if and only if G(kr) does not contain any of

the edges joining it; to the {y + r/)y/n chosen vertices. It is clear that Y(t) remains a lower

bound.

(2) If (y + r))y/n > d, then we assume that there are additional (is + r\)\/n — d independent

com tosses, each with probability of success equal to 1 — kr. Y(t) is increased by 1 if and

only if G(kr) does not contain any of the edges {w, Vi}, {w,v2},..., {w,Vd} and all the coin

tosses are successful. It is also clear that Yt remains a lower bound in this case.

Note that the edges in cases (1) and (2) above are inspected once in the entire construction of

{Y(t)}. Let AkY = Y(kr)-Y(kT-T). Then given that Y(kr-r) = i/y/n and AkD = rfy/n,

A*F has a binomial distribution with parameters rjy/n and (1 - kr)^*71^ ~ ^kSv-kSnm

Hence, for any t £ (0,1), there is p G (0,1) such that for large n,

Pr ( | AkY - fiy/n |< e/iyfc \ Y(kr - r) = i/y/n, AkD = riy/n) < p^", (3)

where we used ft to denote r]e~k6u~k6ri. Now (2) and (3) suggest that we can approximate

Y(jr) in j successive stages. To be specific, let eG (0,1). Define t'k and e% recursively by

1 + 4 = (1 + 6^1)
2exp(A:e//.1(5(//,-1 + 6)), k > 1, t'Q = c,

1 - el = (1 - 4-x?eM-K-i^h-i + S)\ k > 1, ĉ ' = e.

Then it is not difficult to deduce from (2) and (3) that there is pk G (0,1) such that for large

n,

Pr((l - 4>*Vn < K(fcr) < (1 + 4)"^) >l~pf- (4)

Indeed, we have from (2) that there is p G (0,1) such that for large n,

Pr((l - 4-i)6>/n < ̂ D < (1 + 4 ^

Assume inductively that for large n,

Pr(( l - t'U>k-x^ < Y(kr - r ) < (1+ e/
fc_1



By taking e = minle '^ , e ^ } in (3), we have, as n -> oc and with probability at least 1 -pf*

for some pk € (0,1),

< (1 + e^J^e

= (1 + e' )2£e**c*-i(**

= (1 + e'k)e-kS"k-1-k6\

and similarly,

A*K > (1 - c^e

Inequality (4) now follows easily from the induction hypothesis. Since j is finite, by putting

k = j in (4) and by choosing sufficiently small e in the definitions of ef
k and e£ so that

t'jfj < €2, we have, as n —• oo,

which implies (1). D

Using similar arguments, it is possible to show that for any e G (0,1), the degree of any

vertex in M'n is bounded between (1 — e)>/7rn/2 and (1 + e)v/7rn/2 with probability at least

l - / > ^ for some p€ (0,1).

We next turn our attention to the size of the largest independent set of M n . Let j3n be the

independence number of M n . Note that since the neighbours of a vertex in a triangle-free

graph form an independent set, theorem 4.2 shows that for almost all M n , fin = f^n1 '2).

We next would like to find an upper bound for f3n.

Theorem 4.3 For any A > 3/2, let i = [v4n1/2lognj. Then as n —> oo;

P r ( M n contains an independent set of size i) = o(l).

It turns out that this theorem is related to a result attributed to Paul Erdos (see for example

Bollobas [1]) concerning the Ramsey numbers r(3,<)- In finding a lower bound for r(3,£),

it is sufficient to establish that there are triangle-free graphs with r(3,2) vertices containing

no independent set of a certain size. The technique is to delete edges from the standard
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random graph GUiP to obtain a maximal triangle-free graph, and then prove that the resulting

triangle-free graph does not contain an independent set of a given size. Using our construction

of M n , coupled with G(t) = Gnyt, we are able to do slightly better. Note that our proof of

theorem 4.3 shows that r(3,f) > | (1 — e)(t/logt)2, for any t > 0. (The lower bound given in

Bollobas [1] is ±{t/\ogt)2.)

Proof. Since M(t) is a subgraph of M n , we have for / = {1,2, . . . , i } ,

Pr(Mn contains an independent set of size i)

< I . ]Pr(7 is an independent set of M n )

< tnjPr(\/t e (0,1) , / is an independent set of M(t)).

We shall show the theorem by considering the graph process {M(t)} for t < jr < n~1/2 for

some suitably chosen j and S (note that r = Sn"1^2 as before).

Let K{ be the set of all unordered pairs {x,y} of vertices x,y € I. For A: = 1,2,... let Ak

be the event that / is an independent set of M(kr). Also, let Hk denote the set

Hk = {e = {x,y} G K% : 3 ^ ^ / s.t. G(kr) contains edges {w, x} and {w,y}}.

Use Bk to denote the event that for all e £ Ki — Hk, edge e does not appear in the process

{G(t)} for t G (kr — r,kr). Observe that the event Aj implies Ak (k < j) and that Ak

implies JE^. Hence, event Aj implies B\ D • • • 0 Bj-i 0 Bj, and so

j) < Pr(Bx n • • • n B^ n Bj). (5)

Next, since the probability that an edge does not appear in (^1,̂ 2) is (1 — ^ ) / ( l — h)

the events that an edge appears in disjoint intervals are independent, we have

n , v
Sit...,Sj A:=l \ >

< E e x P I - M o ) + T T , \ H k \
k=l

(6)

11



We next would like to estimate \Hk\. For w $• I, note that if Dk{w) is the number of

neighbours of w in / in G(kr), then

\Hk\<\j2Dk(w)2=l-Fk, say.

Since each Dk{w) is a sum of i independent Bernoulli variables with parameter kr, we see

that

E[Dk(w)} = ikr = O(logn),

and that

converges to 1 in probability, as n —> oo.
z2fc2r2

Note also that {Dfc(iu)2 : w $ 1} is a, set of independent random variables. Hence it is not

difficult to show that for any e > 0, 3p G (0,1) such that for large n,

P r (n — i

Since i = o(n), the above implies that for any e > 0, 3p G (0,1) such that for large n,

Pr(F*> {l + e)ni2k2r2)<pn.

Hence for any e > 0, 3p G (0,1) such that for large n,

E

< E

< E

exp

exp r
fc=i

exp [U

It therefore follows from (5) and (6) that for e G (0,1), there is p G (0,1) such that for large

n,

PT(AJ) <exp U ~ /

Since A > 3/2, it is possible to choose sufficiently small 6 > 0, large j < 1/8 and small c > 0

such that
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Hence, for A > 3/2, there is 7/ > 1 such that for large n,

( A \

--7] ^ log2 nj +jpn.
Lastly, we note that for large n,

and since rj > 1, we have

P r ( M n contains an independent set of size i)

lo*2n, for some Pl G (0,1).

Since the neighbours of a vertex in a triangle-free graph form an independent set, the previous

result shows that for any e > 0, every vertex in almost all M n has a degree at most (1 +

e)| \ /nlogn. This gives a corresponding upper bound on the number of edges in M n .
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