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ABSTRACT. We call a bipartite graph homogeneous if ev-
ery finite partial automorphism which respects left and right can
be extended to a total automorphism. We classify all countable
homogeneous bipartite graphs.

A (/c, A) bipartite graph is a bipartite graph with left side
of size AC and right side of size A. We show that there is always
a homogeneous (Ko,2**°) bipartite graph (thus answering neg-
atively a question by Kupitz and Perles), and that depending
on the underlying set theory all homogeneous (Ho,Ki) bipartite
graphs may be isomorphic, or there may be 2Kl many isomor-
phism types of (Ko, Ki) homogeneous graphs.
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§0. Introduction
A homogeneous graph is one in which every finite partial automorphism extends to

a total automorphism. All countable homogeneous graphs were classified in [LW], and
countable tournaments were classified in [L] (see also [C]). When looking at countable
homogeneous bipartite graphs, one sees that there are only five types of such graphs:
complete bipartite graphs, empty bipartite graphs, perfect matchings, complements of
perfect matchings and the countable random bipartite graph.

In this paper we study the structure of uncountable homogeneous bipartite graphs
which have two sides of unequal cardinalities. We must make the following demand on the
notion of automorphism to admit this class of graphs: a bipartite graph has a left and a
right side, and automorphisms preserve sides (this is necessary, as otherwise a partial finite
automorphisms which switches two vertices from the different sides cannot be extended to
a total automorphism).

We call a bipartite homogeneous graph with a left side of cardinality K and a right
side of cardinality X > K and which is neither complete nor empty, a (ft, A) saS graph.
The name should mean "symmetric asymmetric", where the symmetry is local, and the
asymmetry is global, in having a bigger right hand side. (The demand that saS graphs are
neither complete nor empty is to avoid trivial cases).

The paper is organized as follows: In Section 1 we classify all homogeneous bipartite
graphs, and show that there are only five types of countable homogeneous bipartite graphs.
Then we prove the existence of (No, 2**°) saS graphs. The existence of such graphs answers
negatively the following question by J. Kupitz and M. A. Perles: is it true that in every
connected locally 3-symmetric (see below) bipartite graph which contains squares and is
not a complete bipartite graphs both sides are of equal cardinality? (Kupitz and Perles
proved that the answer is "yes" if the graph is finite).

In the second section we count the number of non isomorphic (No, Ni) saS graphs. We
first prove that 2**° < 2**1 (which is a consequence of the continuum hypothesis) implies
that there are 2**1 pairwise non isomorphic (No,Ni) saS graphs, and then show that -»CH
+ MA implies that there is only one (No, Ni) saS graph up to isomorphism. These results
together show that the number of isomorphism types of (No, Ni) saS graphs is independent
of ZFC, the usual axioms of Set Theory.

Our interest in homogeneous bipartite graphs started when M. Perles introduced us
to the question of the existence of a locally symmetric infinite bipartite graphs with sides
of unequal cardinalities. We are grateful to him for this, and not less for his careful reading
of the paper and his helpful suggestions.

The notation we use is mostly standard, but we nevertheless specify it here.

0.1 NOTATION:
(1) A bipartite graph is a triple F = (L, R, E) = (L r, RT, ET) such that L n R = 0, L and

R are non-empty and E C {{#,y} : x € L,y £ R}. LU R is the set of vertices of F, E
is the set of edges. Members of L and R are called left and right vertices, respectively.
Abusing notation, we sometimes write v G F, instead of v G LU R. Abusing notation
even more, we may write LxR for {{x,y} : x G £,y G i?}. F = (L,i2,E) is a subgraph
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of T' = (I/, i?', E1) if L C £', R C i?', J5 C £' . It is called an induced subgraph) if in
addition £ = E' D L x R.

(2) A bipartite graph F = (L, i?, E) is complete if for all x 6 £, y G R we have {#, y} € E
and is called empty if JE7 = 0. If F = (L,R,E), the complement graph of F, is the
graph whose edge set is £ x i? \ i?

(3) If F is a bipartite graph and v G F, the set F(v) = {u : u G F, {v,u} G £ } is called
the set of neighbors of v. F is called a perfect matching iff F(u) is a singleton for every
u G F .

(4) A square in a graph F is a quadruple of distinct vertices, vi, • • •, v4 such that {vi, V4 } G
E and {v,-, v i+i} G £ for 1 < i < 3.

(5) A partial homomorphism between two graphs Fi, F2 is a partial map / : Fi —> Y2
with the property that for all x,y G dom(/): {x,y} G £1 iff {/(#),/(j/)} G E2

(6) A partial isomorphism between bipartite graphs F and Tf is a 1-1 partial map from
Lv U RT into Lv' U RT' which preserves left and right (i.e., f[LT] C L r ' , /[i?r], £ J?r')
and preserves edges and non edges (i.e., {u,v} G ET iff {/(w),/(v)} G i? r for all
u,t; G dom/). Such a partial isomorphism / is called a (total) isomorphism if / is a
bijection between the vertices of F and F'.
/ is called a (partial) automorphism of F if / is a (partial) isomorphism of F to F
itself. Aut(F) is the group of all automorphisms of F.

(7) A bipartite graph F is locally n-symmetric if there is some H C Aut(F) such that
for every v G F and every two n-tuples of neighbors of v, x\, • • •, xn and y±, • • •, yn,
there is an automorphism <p G H such that <p(v) = v and <p(xi) = yi for all 1 <
i < n. In such a case we say that H acts on F in a locally n-symmetric manner. A
bipartite graph F is homogeneous if every finite partial automorphism can be extended
to an automorphism. If H C Aut(F) has the property that for every finite partial
automorphism / of F there is an automorphism in H which extends / , we say that H
acts homogeneously on F.

Kupitz and Perles proved

0,2 Theorem: If F is a finite, connected bipartite graph which is not complete, but
contains squares, and is locally 3-symmetric, then \L\ = |i2|.

We shall also need some standard set theoretic notation: u> is the set of all natural
numbers. We use the convention that n = {0 ,1 , . . . , n — 1}, namely that a natural number
equals the set of all smaller natural numbers. By ww we denote all functions from a; tow
and by <ULO we denote all finite sequences from u>. nuj is the set of all sequences of natural
numbers of length n, i.e., functions from n into u. For rj G nu>, i G co we let rfi be the
sequence 77 extended by i, i.e., rj U {(n,i)}.

The relation 77 < v between the sequences rj and v denotes that 77 is an initial segment
of v. Ord is the class of ordinals. An ordinal is equal to the sets of all smaller ordinals,
a = {/3 e Ord: 13 < a).

By f[A] we denote the range of the function / when restricted to the set A. An n-tuple
x of a set A is an ordered subset {z(l), s(2),. . . , x(n)} CAof size n. By \A\ we denote the
cardinality (finite or infinite) of the set A. By dom/ we denote the domain of a function
/ and by ran/ its range. If ACw, the complement of A (in a;) is the set -iA d=f to \ A.
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The symbol \f°°x G A means "for all but finitely many x in A".
A dense set D in a partial order (P, <) is a subset D C P such that for every x G P

there is y £ D, x < y. Two members x,y e P are compatible if there is 2 G -P such that
x < z and y < z. An antichain in P is a set of pairwise non compatible elements. A
partial order satisfies the ccc (countable chain condition) if every antichain is countable.
A filter in a partial order is a set JP C P which satisfies (a) F is downward closed, i.e.
yeF$zx<y=>x£F and (b) F directed, i.e. x,y £ F => (3z £ F){z > x & z > y).
The axiom MA (Martin's Axiom) is the statement "for every ccc partial order P and
every collection £) of fewer than 2K° dense sets of P there is a filter of P with non-empty
intersection with every D G 3D". MA follows easily from the continuum hypothesis (CH),
but it is known that MA is consistent with the negation of CH — in fact, MA may be true
with the continuum being any regular cardinal.

§1. What Homogeneous Bipartite Graphs Exist?
Let us classify all bipartite homogeneous graphs. Suppose F = (L, R, E) is homogeneous.
If both sides are of cardinality 1, there are only two possibilities. Suppose then that x ^ y
are on the same side (say L). If V{x) = F(y), by homogeneity T(x) = T(z) for every z G L,
or, in other words, there is a set B C R such that B = F(a?) for all x G L. If B and R\ B
are proper subsets of R, an easy violation of homogeneity follows. Therefore F is either a
complete or an empty bipartite graph.

Thus, if F is neither complete nor empty, it must be that x = y <=̂  F(#) = F(y) for
every x,y G L and for every x,y G R (a graph which satisfies this equivalence is called
extensional).

Let us first assume that for some x G L, T(x) is a finite subset of R of cardinality n.
By homogeneity, {T(x) : x G L} = {u : u C R, \u\ = n}. If n > 1 and \R\ > n + 1, this
leads to a contradiction (try mapping two x-s with n — 1 common neighbors to two other
x-s with n — 2 common neighbors). If \R\ = n +1, F is a complement of a perfect matching
of size 2n + 2. So we are left with the case n = 1. One possibility is that i? = {w}, and
in this case F is a complete bipartite graph. Otherwise, F must be a perfect matching!
Similarly, if T(x) is co-finite for some x G L, then F is a complement of a perfect matching.
All this applies when L is replaced by R.

We are left, then, with the case that every x G L has an infinite co-infinite set of
neighbors in R and vise versa. In this case we prove that F satisfies for every k, I < to the
following property:

*)fc,/ For every distinct x$, • • •, #&, yo? • *' ? V\ in L (in R) there are infinitely many u G R (in
L) such that u G T(xi) and w ̂  F(yj) for i < k,j < L

Proof: Given £0, . . . ,£*,yo, . . . , yz £ L, let us first prove that there is at least one u G R
which is a neighbor of every X{ and not a neighbor of every yj for i < k,j < /. Let v G i? be
any vertex. Pick distinct XQ, • • •, rr'j. G F(v) and yo, • • •, y\ £ F(t>) from L. This is possible,
since T(v) is infinite co-infinite. Now find an automorphism <p that takes x'^y'j to xi,yj
respectively, and u := < (̂v) is a s w e want. Next suppose that there are X{,yj as above for
which there are only finitely many u as above, and suppose, furthermore that the number
of such elements u is minimal for this choice of Xi,yj. As L is infinite, there is some z G L,
z y£ Xi and z -̂  yj for i < k and j < /. Let u be as above. If u G F(^) let z := y/+i,
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and otherwise let z := Xk+i to obtain a choice of x;, yj with a smaller number of u, and a
hence a contradiction.

We call a bipartite graph which satisfies (*)*:,/ for all k,l < u> random, and state
without proof:
1.1 Fact: Every countable random bipartite graph is homogeneous.
1.2 Fact: Every two countable random bipartite graphs are isomorphic to each other.

For proofs see [ES] p.98 or [CK] p. 93 and p.129.
1.3 Remark: As a consequence of 1.2, the set of sentences {(*)&,* : &,/ < LJ} is a set of
axioms of a complete first-order theory (see [CK] p. 113). Also, the sentences in this theory
are exactly those sentences whose probability to hold in a randomly chosen bipartite graph
of size 2n tends to 1 when n tends to infinity.

Let us sum up what homogeneous bipartite graphs there are:
(a) complete bipartite graphs and empty bipartite graphs.
(b) perfect matchings and complements of perfect matchings.
(c) homogeneous random bipartite graphs.

Evidently, it is class (c) that deserves attention. By the remark above, all members of
class (c) are elemntarily equivalent to each other. We already mentioned that the countable
members of class (c) are all isomorphic to the countable random bipartite graphs, so we
might ask:
1.4 Question: What uncountable homogeneous bipartite graphs are there? As (a) and
(b) are trivial, the question is what uncountable members of class (c) are there?

It is not true that for uncountable bipartite graphs being random implies homogeneity,
nor is it true that every two uncountable homogeneous random graphs are isomorphic to
each other.

We shall now show that there are homogeneous random graphs with countable left side
and uncountable right side. We call these graphs (No, K) saS graphs when the cardinality
of their right side is K > No. Recall that above we showed that if a homogeneous bipartite
graph is neither complete nor empty then it is extensional. This implies in particular
that \L\ < 2'^' and \R\ < 2'LI. Therefore if in a homogeneous non-trivial bipartite graph
\L\ = No, we have an a priori bound of 2**° on \R\. We shall see that this bound is obtained:

1.5 Theorem: There is an (N0,2
K°) saS graph.

Proof: The left side of our graph will be to, and the right side will be a set of functions
in "u>. We will construct our graph as a projective limit, in some appropriate sense, of a
sequence (Fn : n < u>) of finite bipartite graphs.

We shall need the following notion:

1.6 Definition: We say that F' is a "magic extension" of F if
(1) F is an induced subgraph of F'.
(2) Every finite partial automorphism of F extends to a total automorphism of F'.

E. Hrushovski proved in [H] the following theorem:

1.7 Theorem: If (V,E) is a finite graph, then there is a finite graph (V,E) containing
(V, E) as an induced subgraph, such thatevery partial automorphism / of (V, E) can be
extended to a total automorphism F of (V, E). O I 7
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Looking at the proof in [H] one can see that the same theorem is still true if we replace
"finite graph" by "finite bipartite graph". Hence, we get the following fact:

1.8 Fact: For every finite bipartite graph T there is a finite bipartite magic extension F'.

We remark here that it is only the finite case that needed a proof, because it is
standard and easy that every infinite (bipartite) graph has a magic extension of the same
cardinality.

Proof of 1.5: We define now the construction of the sequence (Fn : 1 < n < u>). The graph
Fn = {Ln,Rn,En) has a left side Ln which is an initial segment of a; (a natural number)
and a right side Rn C no;, a finite set of sequences of natural numbers of length n. Let
Lx = {0,1} and JRi = {(1>,(2» and Ex = {(0, (1)),(1, (2))}. (This will ensure that the
graph we get at the end is neither empty nor full).

We demand:
(1) L,2i+1 = L2{
(2) i?2«+i = {*fl : V ̂  i?2i}U{rf2 : r] G R2i} and for every x G £21+1 = L2i and v G i?2i+1,

{x,i/} G E2i+i & {x,v\{2i)} G E2i

So at even stages we "double" the points of the right side. Put more precisely, we can
define p2i(r/) = *fl f° r aU V £ R2U ^2i(v) = *?f2i ^ o r V ^ ^2i+i? and we let 7r2i and p2{
be the identity on L2{. Thus, although Y2{ is not an induced subgraph of F2i.f1, p2%, is an
embedding of F2i in F2i-f 1 as an induced subgraph, and 7r2t is a graph homomorphism.

At odd stages 2z + 1, we do the following: Let /02i+i(ty) = TpL for rj G i?2t+i? P21+1 =
identity on L2i+i. Now find a magic extension F2i+2 = {L2i^2^ R2i-\.2^ E2i-\-2) of the graph
p[r2i+i]« By renaming vertices we may assume that all vertices in R2i+2 which are not
already in P2i+i[r2i+i] are sequences of length 2i + 2 whose first 2i + 1 entries are all 0,
and that L2{+2 is an initial segment of the natural numbers.

Again we let 2̂1+1(77) = r\ \(2i + 1) for all 77 G /9(i?2i+i), ft(x) = x for x G ̂ i-fi- So TT
is a partial homomorphism from F2i+2 onto F2t.f1.

Note that our sequence of graphs, together with the maps TTJ can be viewed almost as a
projective system, except that the homomorphism involved are only partial. Nevertheless,
its "projective limit" can be defined in a natural way:

We define F ^ = (L,R,E) as follows: The left side L = u. The right side R = {rj G
"a; : (y°°n)(ri\n G Rn)}. Let E = {{x^} : (V°°n)({x,77rn} G En)}.

We have to show two facts:

1.9 Fact: The cardinality of R is 2*°.

1.10 Fact: The graph F ^ = (L,R,E) is homogeneous.

The proof of the first being trivial, let us turn to the proof of the second. Suppose / is
a finite partial automorphism of F. We can find no which is large enough such that (dom/U
ran/) PI L C LnQ and such that for any rji ^ r]2 in dom/ U ran/, 771 \n§,r\2 \rto G Rno

 a n ( i
rj! \no 7̂  rj2 fno, and such that for every #, 77 G dom/Uran/, {re, 77} G E <& {x, 77 \no} G Eno.
So for each n > no, / induces a finite partial automorphism fn of Fn : fniv \n) = f(.v)\n

for all T) G dom(/)ni?, fn{x) — /(^) for x G dom(/)nL. Suppose without loss of generality
that no = 2io + 1. Let fno = / n o . Now argue by induction on i > io to get a sequence of
partial automorphisms (/n : n > no) satisfying the following for all n > no:
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(1) fn is a partial automorphism of F n , and if n > no, then fn is total.
(2) 7Tn O / n + 1 = fn O 7Cn

(3) fn extends fn.
Given /21-1 (i > no), a partial automorphism on ^ i - i , we can find a total auto-

morphism fei of F2i extending f2i-i (or more precisely, extending Tr^i^ ° /2*-i ° ^21-1 )•
Condition (3) will automatically be satisfied.

Now we have to define /21+1. We must have /21+1 t ^ i + i = jfei t-̂ 2i? so it remains to
define /21+1 fifei+i. To satisfy condition (2), we require

For x in dom(/2i) PI i?2i, exactly one of aTl, af2 is in dom(/2i+i) (by our assumption on
no), so (2) and (3) uniquely determine the behaviour of /2i+i on afl and aT2 in this case.
For r/ ^ dom(/2i), we define f2i+i(lr]) arbitrarily satisfying (*).

Having done the induction, let F be defined of F as follows: for x £ u>, F(x) = y O
(Voon)(/n(x) = y) and for r, e R, F(V) = v & (Voon)(/n(r7 \n) = 1/ fn).

We have to check that this indeed defines an automorphism. Note that all the /,-
extend each other as far as the left side is concerned, and that whenever 77 6 i?i, j < i
and 7717 6 Rj, then fi(r))\j = fj(r]\j). From this property it is easy to see that all F is
well-defined on the right side of F, and since all the / ; are automorphism, also / will be
an automorphism. @ 1.91.101.5

We do mention one more thing: The proof actually gave us the following property:

, v for every finite partial automorphism / of F there is a locally
^ finite automorphism F of F extending / .

By a locally finite automorphism we mean a permutation of to with the property that for
every finite A C u> there is a finite B D A such that F\B £ Sym(B).

1.11 R e m a r k : (1) A similar proof shows the existence of (AC,2K) saS graphs for any
infinite cardinal K.
(2) If K < X' < A, and if F is a (/c, A) saS graph, then it is easy to find an induced subgraph
F' which is a (AC, A') saS graph.
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§2. The n u m b e r of (K0 ,^i) saS graphs
In this section we handle the question of the number of the isomorphism types of

(^o? ^1) saS graphs. An obvious upper bound is 2K l , the number of isomorphism types of
graphs of size Ki. First we show that if 2**° < 2Kl, then this upper bound is realized: there
are 2Nl isomorphism types of (No, ̂ i ) saS graphs. Then we show that if CH fails and MA
holds, then all (No, ̂ i ) saS graphs are isomorphic to each other, namely there is a unique
isomorphism type of (No, Ni) saS graphs.

The idea of the first proof is as follows: we construct a family Q of 2**1 different saS
graph with the same left side. An isomorphism between two saS graphs being determined
by its action on the left side, an isomorphism between two saS graphs in Q is really a
permutation of the left side. There are 2^° permutations of a given countable set, there-
fore there are at most 2K° members in every equivalence class of Q modulo isomorphism.
Therefore it follows by 2*° < 2*1 that there are 2Kl such classes.

The construction of many different saS graphs is done by iteratively extending a
countable random graph LO\ many times, preserving homogeneity and preserving the left
side, in 2Kl many different ways.

The second proof uses the partial order of finite partial isomorpisms between bipartite
graphs. This order does not satisfy the ccc, so we use the method of Baumgartner [B] to
find a ccc suborder which still generates a generic isomorphism.

2.1 Notation: The left side of all graphs in this section will be to. Since we deal only
with extensional graphs, we will identify a vertex in R with its set of neighbors in L, so
the edge relation will always be given by G.

For u G R denote u^ = u and u~ = u \ u.

We now prove a few technical lemmas concerning the structure of the automorphism
group of a random bipartite graph, which will be used later in extending countable random
bipartite graphs:

2.2 L e m m a : Suppose that F = (L,R,E) is random, that uo 9 . . . ,u* G R and that
/ , <7 G Aut(F) are two distinct automorphisms of F. Then there are u,v G i2, both not in
the list Uo, . . . , Uk such that for every x G u \ t;, f(x) ^ #(#)•

What this lemma says is, that if two automorphisms are different, then they are
different on a definable infinite set of vertices: the set of all points which are connected to
some u and not connected to some v. Moreover, the u and v may be chosen quite freely.

Proof: We may assume by applying g~l to / and g, that g = id. As / ^ id, there is some
x such that f(x) ^ x. As F is random, there are infinitely many u G F which satisfy x G u
but f(x) £ u. Pick one such u with the property that both u and f(u) are not in the list
wo, . . . ,wK and set v := f(u). For every x G u, f(x) G v. So if x G u \ v, / (x) G v, while
x £ v. In particular, f(x) ^ (x). (Q) 2.2

2.3 Corollary: If F is random, u 0 , . . . , Uk G R and #i,#2,- • • ,<7/ £ Aut(F) then there is
some finite function a : R —> {+, —} such that for all i <, Ui\ £ domcr, and such that for
every x G (\<Edom<T u<r(u\ flri(^),52(^),. • • ,9i(x) are / distinct members of u.

Proof: Apply 2.2 iteratively (2) times. @ 2.3
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2.4 L e m m a : Suppose that B is an infinite subset of a; and that g\,..., gk are 1-1 functions
defined on B with the property that for every x G B and 1 < i < j < fc, gi(x) ̂  gj{%)-
Then there is an infinite subset B1 C B such that for every x ^ y in B1 and 1 < i < j < k,

9i{*) ± 9j{y)
Proof: By induction on n we pick an increasing chain of finite sets An with this property.
At the induction stage: Clearly gr~1[An] is finite, because g is 1-1. Pick any x G B \
{g^tiMn]] : 1 < i < 3 < &} and let An+1 =AnU {x}. Q 2A

We are now ready to prove the main lemma:

2.5 L e m m a : Suppose F is a countable random bipartite graph, and G C Aut(F) is a
countable group of automorphisms. Then there are two countable random bipartite graphs
F° and F1 with the same left side as F, properly extending F, such that G C Aut(F*) for
i G {0,1} and such that there is no random bipartite graph F' with the same left side as
F extending both F° and F1 .

Proof: We wish to join a new vertex u to the right side. This amounts to specifying to
which vertices of L u is connected. Of course, once realizing a set S C L of vertices as u,
we must realize also g(S) for every g G G — if we are to preserve the automorphisms of
G.

We shall find some subset S of u> such that (to,R U G(S)} and (u>,i? U G(->S)) are

r a n d o m . H e r e G(s) d= {g(S) : g G G} a n d g(S) d= {g(x) :xeS}.
Let the sequence {An : n < UJ) enumerate R and let the sequence {gn : n < LO)

enumerate G. We let Rn = {̂ 4,- : i < n}, and Gn = {g% : i < n}. We define by induction
on n two sets an and bn with the following properties:
(1) an and bn are finite and an fl bn = 0.
(2) an C an+i and bn C 6n + 1 .
(3) For every m < n, m G an U bn.
(4) For every function a : (Rn U Gn) -> {+, - } ,

n A*(A)" n 9M n n

For n = 0 let an = bn = 0.
For n + 1: We specify which elements should be added to an and bn to obtain a n + i

and 6n+i respectively.
First, if n £ a n + i U 6n+i, add it to an.
Use 2.3 to find some function a* : R —> {+, —} such that Rn f) domcr* = 0 and such

that for every x G f]Bedom^ B<7*(B) a n d distinct f,g G Gn , /"1(a:),flr"1(a?) a r e distinct.
Now enumerate all a G n»uG<> {+, - } in the list (<rf- : i < 22 n). We shall define two chains
of sets, (di : i < 22n) and (ef- : t < 22n) such that d0 = an , e0 = 6n, df- C di+1 and ct- C c i+i
and di D ei = 0. Finally, a n + 1

 d=f c?22n and 6n + 1
 d=f e22n.

We define now o?t+1 and e,_j_i. As doma* is disjoint from Rn, and F is random, we can
find by 2.4 an infinite set B C ft B^^ n f| ^ f f t 'U ) \ U 5 ^ U c,-] such that for

Bd A£Rn g£Gn

8
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all distinct x,y € B and (not necessarily distinct) # , / G Gn , g"1^) ^ / " 1 ( y ) . So by the
choice of cr* we have

(!) for any (*,/) ^ (y,(?) i n f i x G
«,

Pick any n members x in this set B, and form dj+i by adding to d;, for each such #,
the set {g""1(a;) : g G cri~1(+)}- Form ei+i by adding to et-, for each such x, the set
{g""1(x) : # G c^1 (—)}. Why are et+i and c?;+i disjoint? Because of (!).

Having completed the inductive construction, let S = U a n- Because of (3), -*S =
n

IJ 6n- We claim now that F° = (a;, R U G(S), G) is random. If x o , . . . , £fc, j /o, . . •, y/ G cu
n

are distinct, already in R there are infinitely many u which are connected to X{ and not
connected to yj for i < fc,j < /. Suppose therefore that a is a finite function from RU G
to {+,—}. For almost every integer n, domcr C Rn U Gn . Therefore by (4) there are
infinitely many elements in f| A*^ n f| g(S)a(<9K Now for every A G JR,

S Pi -iA is infinite, therefore S £ R. Lastly, it is clear that G C Aut(F°). The same holds
also for F1 = (OJ,R U G(-*S)). Clearly, there can be no random F ; with left side LJ such
that F° C F' and F1 C F', because S n ^S = 0. © 2>5

2.6 T h e o r e m : There are 2Kl different homogeneous random bipartite graphs of cardi-
nality Ni with a; as their left side.

Proof: To every rj G <a>12 we attach a pair (F^C?^) and a set S^ such that the following
conditions hold:
(1) F^ = (a;, i2^, G) is a countable random bipartite graph and Gv C AutF^ is a countable

group that acts on F^ homogeneously.
(2) If r} < v then Rn C Rv and Gn C C .
(3) For every 77, 5,, G B ^ and ^Sv G i ? ^ .

We define (F^, G^) and 5,, by induction on the length of 77. If 77 is the empty sequence,
let F^ be any countable random bipartite graph with to as its left side, and let Gv be any
countable group of automorphisms that acts homogeneously on F^.

If lg 77 is some limit ordinal a, let Rv = U/?<aj^r?t^ an<^ ^ ^v = U/?<a^r£* ^ e

should show that that Gv C Aut(F^) and that it acts homogeneously on F^. As all
members of G^ preserve G by their definition on i?^, it is enough to show that Rv is closed
under Gv. Suppose that g G Gv and A G R^ are arbitrary. There is some /3 < lg(7?)
such that g £ Grj\p and A G Rn\p- Now g(A) G Rrj\p Q Rrj- To see homogeneity,
suppose / is a finite partial automorphism of F^. There is some ordinal (3 < lg 77 such that
dom/ U ran / C UJ U Rv\p- By the induction hypothesis, there is some g G Gri\p C G^
extending / .

If (F^G,,) is defined, use lemma 2.5 to find two countable homogeneous random
bipartite extensions of F^, F ^0 and F -^ , and a set 5 such that S G R^o, ~^S G i J ^ ,
such that Grj C Aut(F *Q) fl Aut(F ^). As F ~. are countable random bipartite graphs
for i G {0,1}, for every finite partial automorphism of F ^ there is an automorphism of
F ^ which extends it. By adding countably many automorphisms to Gv and closing under
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composition we get, therefore, a countable group extending G^ which acts homogeneously
o n F - j . Let this group be G ~..

Having done the definition by induction, we define for every sequence £ G Wl 2 a bi-
partite graph If = (a;,Ua<u;i R^o)- As the group G^ = IJa<u;1 ^ r « a c t s homogeneously
on F^ — as is easily seen — F^ is homogeneous. Suppose that £o and £1 are two different
members of UJl2. We wish to show that F^o and F^ are different. Let a be the last ordinal
such that £o tot = £1 \a and suppose without loss of generality that fo(oO = 0 and £i(&) = 1.
By condition (3) above, 5^ofa G i?£0, while -i*S£ofa £ JR^. AS for no /? > a can it be that
5 G if^ f̂  or that ~«5 G F^o ̂  (this would contradict the fact that a homogeneous non
trivial bipartite graph is random), we conclude that T(o and F^ are different. © 2.6

2.7 Theorem: If 2K° < 2Kl, then there are 2Kl many isomorphism types of (Ko? ̂ 1) saS
graphs.

Proof: By the previous theorem there is a collection of 2**1 many different saS graphs
{Ff : i < 2**1} such that the left side of each F,- is u>. An isomorphism between F t and
Tj for i,j < 2**1 is determined by its action on CJ. Therefore in an equivalence class of
{Ti : i < 2Kl} modulo isomorphism there are at most 2K° members. By the assumption
2K° < 2Kl, it follows that there are 2Kl many equivalence classes. (0) 2.i

2.8 Remark: The proof above is readily generalized to give 2K isomorphism types of
(/c, AC+) saS graphs in case 2K < 2* .

We note that CH implies that 2K° < 2Kl, and therefore implies by the theorem above
that there are 2**1 many isomorphism types of (Ko,^i) saS graphs. We turn now to an
examination of the number of the isomorphism types of (Ko,Ki) saS graphs under the
negation of CH, but with MA. The situation here is exactly opposite to what we have seen
under CH. We shall prove the following:

2.9 Theorem (MA): For any K < 2H° there is a unique (tt0,«) saS graph.
Let us introduce the following notation: if F = (a;, Ry E) is a bipartite graph, a a

finite partial function from CJ to {+, —} we let

Ba := {aERiVxe dom(cr) : a(x) = + iff {x, a} G E}

2.10 Lemma: Let F = (a;, R, E) be an (No, K) saS graph, K > Ko. Then for all a as above
we have \Ba\ = K.

Proof: Fix fc, / in LJ. We will only consider functions a with |cr~"1(+)| = ky |cr~1(—)| = /.

For any such functions a, a1 there is a partial automorphism / mapping a"1(+) to cr'~1(+)

and <y~l{—) to a1" (—). The total automorphism /extending / must map Ba onto B'a.
Hence all these sets B& have the same cardinality, say A. Since since every element of

R must be in some such Ba (by homogeneity) and there are only countably many such a
we get K < A • tt0, i.e., A = K. Q 2 10

2.11 Fact: If F = (u>, R, E) is a (Ko, K) saS graph, then R can be partitioned into K many
countable sets (Ri : i < K) such that for all i < K the induced subgraph determined by
(w,Ri) is random.

10
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Proof: Let R = {x{ : i < K}. We will construct (Ri : i < AC) by induction. Given
(Rj : j < z), we can choose countable sets

*? C B. \ |J i?,

for every partial finite function or from UJ to {+, —}, because by 2.10, \Ba\ = /c, | Uj<i -Rjl <
K. If #; G Uj<i Rj then let

otherwise let Ri := (J^ i?J U {#i}. (Q) 2.11

2.12 Definition: Assume F = (LO,R,E) and F' = (oo,Rf,Ef) are two (No,«0 saS graphs,
and let R = [ji Riy R

r = [Ji R\ be partitions as in 2.11. We let Pr,v be the set of all finite
partial isomorphisms between F and F' respecting the partitions, i.e., all finite partial
isomorphisms p satisfying

Vz G dom(p) n Ri : p(x) G Rf
{

2.13 Lemma: (-Pr,r'5 Q) is a forcing notion satisfying the countable chain condition.

Proof: Let {pa : a < u>i} C Pr,r'- For each a let s a := {i < K : dom(pa) PI Ri ^ 0}. 3 a is
a finite set. Applying the A-system lemma [K, II, 1.5] we may without loss of generality
assume that (sa : a < u>i) forms a A-system with root s. Moreover, since there are only
count ably many possibilities for pa \ 5, we may also assume that for some p G -Pr,r7 we
have for all a: pa \ s = p \ s. Similarly, we may assume pa \ UJ = p \ UJ for all a. Now for
any a, fl we have that pa U pp is a 1-1 function, and hence an element of Pr,r' © 2.13

2.14 Proof of 2.9: Let F = (u>,R,E), F' = (LJ.R'.E1) be (w,/c) saS graphs, and fix
partitions as in 2.11. For any filter G C Pr,rs we let f& := [JG. Clearly fo will be a
partial isomorphism from F to F'.

Now note that for each x G UJ U i2, the set Dx := {p G Pr,T' • ̂  £ dom(p)} is a dense
subset of Pr,r ; (because each (u>, jRJ) is a random bipartite graph).

By MA we can find a filter G C Pr,r ; that meets all Dx. This implies that /G is an
isomorphism from F into T'. Similarly, using K many dense sets defined from F' we can
insure that / will be onto. Hence F and F' are isomorphic. © 2.9

11
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