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Abstract

We show that as n —> oo, the independence number c*(G), for
almost all 3-regular graphs G on n vertices, is at least (61og(3/2) —
2 — e)n, for any constant e > 0. We prove this by analyzing a greedy
algorithm for finding independent sets.

1 INTRODUCTION

This paper is concerned with the independence number of random cubic
graphs. For a graph G, the independence number <*(G) is the size of the
largest set of vertices not containing any edge.

The independence numbers of random graphs have been studied by a number
of authors. For r-regular graphs, Frieze and Luczak [3] showed that if GT-reg

is randomly chosen from the set of all r-regular graphs with vertex set [n] =
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{1,2 , . . . ,n} then for any fixed € > 0 there exists a fixed rf such that if
rf<r< n1 / 3 then

p r j _i—I^If£ (iOg r — log log r + 1 — log 2)
V| n r

This tells us nothing about small values of r, e.g. r=3, i.e. cubic graphs.
Bollobas [2] gives the following bounds in his book:

Pr ( 1 _
\18

o(l) < <
\18 n )

The main result of this paper is

Theorem 1 For any constant € > 0,

lim Pr(a(G3-reg) > (61og(3/2) - 2 - e)n) = 1.

Observe that 6 log(3/2) - 2 = .432

We prove this theorem by analysing a simple algorithm MINGREEDY. This
algorithm repeatedly chooses a vertex v of minimum degree, adds it to its
current independent set and then deletes it along with all of its neighbours.
In detail, given a graph G we have

MINGREEDY
Input G\
5:=0;
while (V(G) ̂  0) do
begin

Knin := set of vertices of minimum degree in G\
choose v from Fmm with uniform probability:
G:=G-{v}-rG(v);
S :=SU{v};
remove from G all isolated vertices if any;

end;
output S;

Let n{G) denote the (expected) size of the independent set produced by
MINGREEDY. We prove
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Theorem 2 For any constant e > 0 and sufficiently large n,

rep)) > (61og(3/2) - 2 - t)n.

A simple martingale argument shows that a(Gs^reg) is concentrated around
its mean and consequently Theorem 1 follows immediately from Theorem 2.

2 CONFIGURATIONS

Our first task is to describe our model of a random cubic graph. We will use
the configuration model of Bollobas [2] which is a simple and useful descrip-
tion of that used by Bender and Canfield [1].

Suppose we are given a degree sequence 1 < di,d2,...dl/ < A. Let W{ =
{i} x [di\ for t G [v] and W = UJLi W*. A configuration is a partition of
the points W into /z = 3i//2 pairs. Let fi^ = {configurations} and let Fv be
chosen uniformly from Slv. Then let 7(iv) be the multigraph ({^],{{^i} '
{(hx),(j,y)} G Fu for some x G [d^y G [dj]}).

The properties that we need of this model are:

Property 1 conditional on i(Fu) being simple, it is equally likely to be any
simple graph with the given degree sequence,

Property 2 assuming A is an absolute constant (here three will suffice),

Pr(7(F1/) t« simple ) = exp j ~ - ^ j (l + O (j^J , (1)

where \ = ^ = 1 (*).

We make a simple observation which is the basis of our analysis of MIN-
GREEDY when applied to Gn = 7(Fn). Fn being a random matching of
3n/2 labelled points, it can be constructed by repeatedly choosing an arbi-
trary point u from the set P of the current unmatched points and matching u



with a randomly chosen point from P — {u}. Now the step in MINGREEDY
where vertices are removed can be regarded as a sequence of edge removals
from Fn . When applying MINGREEDY to Gn, we may think of Fn as be-
ing constructed in parallel to MINGREEDY. Each edge in Fn constructed
is precisely the current edge being removed by MINGREEDY. In particular,
we have the following observation stated in the next lemma. We shall write
from now on Ni(t) (i = 1,2,3) as the number of vertices of degree i in the
graph G(t) at the end of the t-th iteration of MINGREEDY. We shall also
write N(t) = (Ni{t),N2(t),N3(t)) and M(t) as the number of edges in G{t).

Lemma 1 Given N(t), G(t) is a multigraph with vertex set V1UV2UV3, where
^ii ^2? V$ are random disjoint subsets of [n] with sizes N\,N2, N3 respectively,
obtained from a random configuration F on W = U,=i,2,3 Uv€v. {v} x [t].
Consequently, {N(t)}t>o is a Markov chain with initial state N(0) = (0,0, n).

We will prove

Theorem 3 For any constant e > 0 and sufficiently large n,

This is not sufficient to prove either of Theorems 1 or 2. On the other hand
we know from martingale arguments that the independence number of Gn is
concentrated around its mean and so Theorem 1 then follows from Properties
1 and 2 of the model. We will continue in "multigraph mode" until the end
of the paper where we will show how the proof can equally well be applied
to simple graphs and obtain both of Theorems 1 and 2.

3 SOME PRELIMINARIES

We first consider the transition probabilities of N\(t). Suppose that N(t) =
(Ni(t),N2(t),Nz{t)) is given. We write AJV.-(t) = N^t + 1) - N4(t) and
given N(t), p{ = pi(t) = iNi(t)/(2M(t)). Suppose that in the *-th iteration
of MINGREEDY, a vertex u of minimal degree 8(t) is picked. Let



be the number of edges joining u or a neighbour of u to a vertex not in
{u} U {neighbours of u}. Consider the case where 6(t) = 1 first. Then

- f - \ = / P.'+i + 0 ( l / M ) , if* = 0,1,2,
| 0, otherwise,

where we write Pr t as the probability conditional on N(t) and 6(t) = i.
Next, each of the j(t) edge inspections increases iV^i) by 1 with probability
p2 + O(l /M) and decreases M(t) by 1 with probability pi + O(l /M). Since
6(t) = 1, N\(t) is decreased by 1 automatically. Therefore, the transition
probabilities in the case where 6(t) = 1 are given by

Pvl(ANl(t) = k-
= coefficient of xk in + = i) + O(l/M).

Hence,

= 0 =

Similarly, we have

Pr2(7(t) = 2 + i) =

and

0,

O(l/M),

0,

= coefficient of xk in

if » = i,
if i = 0,
iff = —1,
if i = - 2 ,
if f = - 3 ,
otherwise.

iff = - 1 , - 2 ,
iff = 0,1,2,
otherwise,

= j) + O(l/M).



This gives that

= 0 =

I o,

O(l/M),
+ 2P&2 +
+ Gpbl +P2 + O(l/M),
+ 6p|p| + j

+ 2piP* + Phi + O(l/M),

iff = 4,
if i = 3,
if i = 2,
if t = 1,
if t = 0,
otherwise.

For 6(t) = 3, it is enough to check that

1-O(1/M), if i = 0,
Pr3(AJV!(t) = «)=< O(l/M), if z = 1,2,3,

0, otherwise.

It is easy to check the following transition probabilities of M.

Pri(AM(<) = i) =

P3 + O(l/A/), if /! = - 3 ,
p2 + 0( l /M) , if t = - 2 ,
p , + 0 ( l / M ) , if t = —1,
0, otherwise,

Pr2(AM(*) = t) = <

0,

if f = - 6 ,
if i = - 5 ,
if i = - 4 ,
if i = - 2 , - 3
otherwise,

and
Pr3(AM(*) < 9) = 1.

We next state a result proved in Frieze, Radcliffe and Suen [4] concerning
the behaviour of Nz(t) with respect to M(t).



Lemma 2 For any fixed e > 0,

Pr (3t such that M(t) > nl'2\n3n and^J3(t)^H (^Y^ - 1

Proof (sketch) We shall only sketch briefly why it is true. Note that
for each edge uv removed by MINGREEDY, one of the end-points, say u,
is picked from the vertices of minimal (but non-zero) degrees, or u is pre-
determined from a previous edge removal. The other end-point v is chosen
randomly from the neighbours of u. Now since almost all cubic graphs are
connected, each decrease in JV3 (except for the first edge removal) is accounted
for exactly once as the end-point v (whenever v is of degree 3). Now consider
the edge removal when the current graph has Ar3 vertices of degree 3 and M
edge. The probability that the end-point v in the edge removed is of degree
3 is precisely ZNz/(2M). Thus the rate of change in N$ with respect to M
should be approximately

=

dM 2M'
which gives us an approximation as stated in Lemma 2. d
We shall use Lemma 2 as follows. Define im as the minimum t such that
M(t) < m. Then Ni(im) is a function of m. Lemma 2 gives a fairly accurate
estimate of Ns(im) and hence P3(im): with probability 1 — O(l /n 2) , we have
for m > n1 / 2 log3 n and for any constant t\ > 0 that

|P8(tm) ~ (2m/3n)1/2| < 61(2m/3n)1'2. (2)

We shall consider the behaviour of N\ conditional on Ar3 satisfying (2). This
will be done in the Section 5 by dividing the interval [m] into h subintervals
where h is a large integer constant. As p{im) does not change much for m
within a subinterval, we are able to approximate N\ by a Markov chain.

4 Approximate Chains for N\

We next describe the Markov chain that will be used to approximate N\.
Let Z be a random variable with support on Jsf. We write At = Pr(Z = t)



and Gz(s) = J2i>os%^i f° r the probability generating function of Z. We also
write fi = E[Z]. Assume also that the radius of convergence of Gz(s) is least
a constant strictly greater than 1. We next define the transition probabilities
of Xt as follows.

= 0) = A,-,

p, ifi = l,
1 - p - q, if i = 0,

0, otherwise.

We shall assume throughout that p and q are constants such that q — p > 0.
Let rt- be the minimum value of t such that Ar< = 0 given that Xo = i. Thus
TQ = 0 for example. Note that T\ equals in distribution to
(a) 1 with probability q,
(b) 1 + L\ with probability 1 — p — 9,
(c) 1 + £2 + £3 with probability p,
where Li.L2.Ls are independent copies of TJ. Thus, if cp(s) = E[exp(sri)],
then

tp(s) = e5(<7 + (1 — p —

giving that for 5 > — log(l —

Note that

Lemma 3 For any A > 0, we /iave as A; —• oo that

Pr(\rk - k/(q - p)\ > Ak1'2) = O(e~A).

Proof Note that r^ equals in distribution to the sum of k independent
copies of T\. Thus for s > 0,

Pr(Tk-h/(q-p)>Ak1'2)



< E[exp(sr*)] exp(-sk/(q - p) - Ask1'2)

= ¥>(*)* exp(-sk/(q - p) - Asfc1/2)

= (1 + */(« " P) + 0(*2))* exp(-sfc/(ff - p) -
< exp(O(ifcs2) - Ask1'2).

Take 5 = kr1'2 and obtain

- k/(q - p ) >

Similarly, one can obtain that

Pr(rfc - fc/(g - p) < -

and the lemma follows.

Let Rk be the time elapsed when Xt first returns to 0 for the fc-th time given
that Xo = 0. Note that R\ equals in distribution to one plus the sum of Z
independent copies of T\. Hence if tp(s) = E[exp(si?i)], then

Note that E[R\] = 1 + fi/{q - p). Note also that as s -> 0,

^(5) = 1 + s(q - p + fi)/(q - p) + O(52).

Since ii^ equals in distribution to the sum of A: independent copies of
we have the following lemma by following similar arguments used in showing
Lemma 3.

Lemma 4 For any A > 0, we have that as k —* oo,

Pr(|i4 -k(q-p + n)/(q - p)\ > Ah"2) = O(e~A).

We shall also require the following lemma.



Lemma 5 Suppose that XQ = 0. Then for any A > 0, there are constants
C > 0 and p € (0,1) suc/t that

Pr(3j e [fc] 5.f. ii , > i4) < fcCp^ /or a// k > 0.

Since X| can fee decreased by at most 1 in each transition, it follows that for
any A > 0, there are constants C > 0 and p G (0,1) suc/i

Pr(3t € [Ifc] «.*. Xt>A)< kCpA for all k > 0.

Proof We need only show that there are constants C > 0 and p € (0,1)
such that

Pr(/2i > A) < CpA.

This follows from

by setting s to a positive constant. •

5 PROOF OF THEOREM 3

Choose a large integer h and define

™.- = L ¥ T J -
Thus, mo = 3n/2 equals the number of edges in the initial cubic graph.
Define

tt = imi = min{* : M(t) < 7n,}.

Since M(t) is monotone decreasing in t, we have t, < ti+\. We shall first use

the following lemma to prove the theorem. Write r = rt = J(h — i)/h. Note

that from (2), rt- = i/2m t/(3n) + O(l/n) is an approximation

Lemma 6 For any constant e > 0 and /or sufficiently large h, we have with
probability 1 - O ( l / n 2 ) that for i = 1,2,...,/?. - 2,

'4h(2 + r{y

10



Proof of Theorem 3 Note that

E[//(Gn)] > E[th-X].

From Lemma 6, we have with probability 1 — 0(1/n2) that

= (1 - e)n (6 log(3/2) - 2) + O(n/h).

Thus

-i] > (1 - c)n(61og(3/2) - 2

The theorem follows by choosing sufficiently small i and sufficiently large h.
D

The rest of the section is devoted to proving Lemma 6. We first require an
upper bound of N\. We shall need the functions

a(x) = x(l - xf = xz - 2x2 + x,

(}(x) = z3 + (l -x)x = xz-x2 + x.

Lemma 7 With probability 1 — O(l/n2), we have that for all t <th-i,

11



Proof We introduce two chains W\, W\ where N\ < Wx < Wx in̂  dis-
tribution and consider the time intervals U < t < i,+i separately. W\ is
obtained from N\ by ignoring the influence of p\ and W\ is obtained by
replacing o^(pd),l3(ps) by suitable constants <**,/?,*.

Consider the transition probabilities of AN\ when 6 = 1. Note that
a(ps) and that p | +P3P2 > P(p$)- Since

it is not difficult to check by using a coupling argument that

where W\(t) is a process that runs alongside N(t) with Wi(0) = 0 and
transition probabilities given by

f a(P3) + O(l/M), if* = 1,
l-a(P3)-p(P3) + O(\/M\ if * = 0,
P(P3) + O(1/M), if* = —1,
0, otherwise,

and

We next find an upper bound ^ ( f ) of W\{t), for U < t < tt-+1, by using
the fact that with high probability J93 does not change by very much in the
interval U <t < t l+ i. Since for all x e (0,1),

a(x) < f}(x) and a(x) + (3{x) G (0,1),

it is possible to choose sufficiently large h and sufficiently small 62 = €2(h) > 0
so that for i < h — 1 and for i/h < x < (1' + \)/h (i.e. m^i <m< mt),

a(Vl - x) < a(rf-)+e2/2 < a(rf-)+€2 < 0(rf.)-62 < P(ri)"^/2 < p(y/T^x).

Write a* = a(r t) + 62 and /?,* = /?(rt-) - 62- Now we have from (2) that with
error probability 0(l/n2) , we may assume that for i < h and for U <t < tt-+1,

«(**(*))<",•, 0(Ps(t))>0*, and a ;</? ; . (3)

12



For each * < h, define a process Wi(t) = W['\t) with transition probabilities= W['\

0, otherwise,

and
Pr(AWi(t) = 1 | Wx{t) = 0) = 1.

Note that if N$ satisfies (2), then from (3), it is possible to couple for each
i < h, the processes Wx(t) and Wi(t) so that Wi(U) = Wi(U) and

Wx{t) < W x ( t ) , f o r U < t < U+x.

Therefore, for U <t < tt-+1,

> log2 n | Â 3 satisfies (2)) + O(l/n2)
2). (4)

Note that since iVi(O) = 0, we may assume that H^O) = O(log2n). Thus
assume inductively that W\(ti) = O(log27i) and show W\(t) = O(log2n)
for ti < t < t,-+i. Now H7i(<) is a special case of the process Xt defined
earlier. Let T be the minimum value of t > ti such that W\(t) = 0. Then
since W\(ti) < log2n, we have from Lemma 3 that T — i, = O(log2n) with
probability 1 - O(l/n2). This shows that for U <t < T, Wx(t) = O(log2n)
with probability 1 — O(l/n2). Since tf-+1 — U < n, we have from Lemma 5
that with probability 1 — O(l/?i2),

Wl(t) = O(\og2n),

for all t satisfying T <t < t{+\. The lemma now follows from (4).

Proof of Lemma 6 Assume throughout that 7V3 and ps satisfy (2) (which
incurs an error probability of 0(l /n2)) . Thus there is a positive constant
€3 = €s(h), where 63(/i) —> 0 as h -+ 00, so that for i < h — 2 and U <t < tf+i,

13



where r,- is as defined before. Write f, = r, + €3. Define two variables Y' and
Y"by

fu if J = - 3 ,

[ 0, otherwise,

and
f

Pr(Y" = j ) =

3 = - 6 ,
2f , ( l - f t ) , ifj = - 5 ,
(1- f , ) 2 , if j = - 4 ,
0, otherwise.

V approximates the number of edges deleted in an iteration when iV*i > 0
(r,- « pz here) and Y" approximates the number of edges deleted in an
iteration when Nx — 0. Next, define a process W2(t) = W2(t) which runs
alongside N(t) with the following transition probabilities: (6 = minimum
degree),

Pr(AW2(t) = j \ 6(t) = 1) = Pr(Y'=j), Vj,
Pr(AW2(t) = j | 6(t) = 2) = Pr(Y" = j), V?,

Pr(AW2(<) = - 9 | 6{t) = 3) = 1.

By comparing the transition probabilities of W2 and the distribution of
AM(t), we see that for t G [t,-,*,+i], we have

AW2(t) < AM{t).

in distribution. Thus, if we take W2(ti) = J?I, —9 (< M(U) deterministically),
then we have for any r > 0,

i - *,• < r) < Pr(W2(U + r) <

(Note: {t,+i < U + r} =» {M(*t- + r) < mi+i} => {Ĥ 2(*,- + r) < mi+1}.)

Let Zfc(r) be the number of times t G [<,,f, + r) such that 6(<) = k. Note that
since the probability that a random cubic graph has at least three components
equals 0(1/n2), we can assume throughout (which incurs an error probability
of 0(1 /n2)) that Zz < 3. Note also that Y" < Y' in distribution, which
implies that for any y > 0, the distribution of W^,- + r) conditional on

14



%2(j) < y is bounded below stochastically by the distribution of W2(t{ + r )
conditional on ^ ( T ) = V- That is,

ti + r) < m,-+1 | Z2{r) <y)< Pr{W2{ti + r)< m t + 1 | Z2(r) = y).

Since E[Y"] = 2E[y'] = - ( 4 + 2ft), we have

E[iy2(tt- + r) - W2(i,-) | Z2(r) = y] = - ( r + y)(2 + r,) + 0(1).

It is therefore not difficult to check that for any constants rf 6 [0,1] and
64 > 0, there is a constant p € (0,1) such that as r —> 00,

Pr(W2(U + r) < rm - (1 + e4)r(l + i/)(2 + r<) | Z 2 (T) < rfr) < pT.

Take

r = L ( l -
,7 = rf/(2-r,2),

Since we can choose sufficiently large h so that f,- is as close to rt- as we like,
we have that

m,-+i < mf- - (1 + 64)r(l + i/)(2 + ft),

by choosing sufficiently small 64 > 0, €5 > 0 and sufficiently large h. We
claim that for any constant e* > 0 and sufficiently large ft, we have that for

n2), (5)

which will be proved later. Now using (5), we have

Pr(t,-+i - U < T)

ti + T) < m i+1 | Z2(r) < TJ'T) + Pr(Z2(r) > rfr)

+ r) < rm - (1 + <r4)r(l + rf)(2 + ft) \ Z2(r) < rfr))

+Pr(Z2(r) > ^r)
= O(l/n2).

15



It therefore remains to show (5). Remember that with high probability
Z2(r) = 0(1) plus the number of times N\ = 0. We consider an approximate
lower bound of N\. For similar reasons as given in proof of Lemma 7, it is
possible to choose sufficiently large h and sufficiently small 6g = €^(h) > 0,
where e^h) —> 0 as h —• oo, such that for all i = 1,2,..., h — 2 and for x
satisfying i/h < x < (i + l)//i,

x) > a ( r f ) - e 6 ,

Write

Prom the assumption that J93 satisfies (2), we have for i < h — 2 and U <t <
£i+i that,

c*(p3(0) ^ a ^ a n d /'(PaC*)) < bi. (6)

For each i < h — 2, define a process W^t) = ^ ^ ( O i (< M in distribution),

P r ( A W3(«) = 3

and for small 67 > 0,

a,-, if J = 1,
1 — a,- — 6,-, if 7 = 0,

bu if J = — 1,
0, otherwise,

r?(l - r,)4 - e7,
4r?(l - r,-)3 + 2r,-(l - r,)4 - c7, if J = 3,
6 r 4( l _ r.)2 + 6 r 2 { 1 _ r . ) 3 _ ( 1 _ r.)4 _ €7> if j. = 2>

4rf(1 - n) + 6r?(l - r,)2 + 2r,-(l - r,)3 - €7, if i = 1,
r? + 2r,4(l - r<) + r?(l - r,)2 + 4e7, if j = 0,
0, otherwise.

Define Ws(U) = Ni(U). Note that we can choose sufficiently small e7 > 0
and sufficiently large /i so that (under the assumption that p^ satisfies (2))
for all j ,

0 < i I ̂ ( 0 = 0).

16



We next bound the transition probabilities of N\ when N\ ^ 0. We first
deal with the transitions of N\ with probabilities O(p\) as follows. Assume
in conjunction with iVi there is a process of coin tosses where
(a) if N\ > 0, the probability of a head appearing equals the sum of the
transition probabilities of N\ involving p\,
(b) if N\ = 0, the probability of a head appearing equals 0.
If a head appears at stage t, then N\ makes an appropriate transition ac-
cording to those probabilities involving p\; if a tail appears then N\ makes
an appropriate transition according to those probabilities not involving p\.
In particular, we have

Pr(AiVi(£) = j | Ni(t) > 0, a tail appears at stage t)
if j = 1,

if J = -1>
0, otherwise.

Let Wz(t) be a process with W^{U) = N\(U) and transition probabilities such
that for all j ,

Pr(AW3(t)=j\W3(t)>0)
= Pr(AAri(t) = j | iVi(i) > 0, a tail appears at stage <),

Pv(AW3{t) = j | W3(t) = 0)

has the same distribution as N\ conditional on no heads appearing. It
is coupled with N\ as follows: let o\ < o*i be times such that N\{p\) =
N\{p<i) = 0 and iVi(t) ^ 0 for G\ < t < o<i- If there are no heads in the
interval [0-1,02] then W3 = N\ throughout, otherwise the interval is ignored
in defining W3.

Let R (resp. R) be the number of times t G [tiyti + r) such that W^(t) = 0
(resp. Ws(t) = 0) and let H be the number of times that a head appears in
stages t € [tt-,tt- + r). Write Z2 = Ziij) and we now bound Z2. For a given
time t, let tf be the last time before t such that JVi(t') = 0. Let H' be the
number of times t € [*,,*,- + r) such that N\(t) = 0 and that no head appears
in the coin tosses between t1 and t. Then

Z2 < H' + if.

17



Since
Hf < R, in distribition,

we have
%2 < R + H, in distribition.

Prom Lemma 7, we may assume (with error probability O(l/n2)) that p\ =
O^og2 n/n) = o(l). Under this assumption (and the assumption that p$
satisfies (2)), we have for all j ,

Pr{AW3{t) > j I W3{t) > 0) > Pr(AW3(*) > j I Wji(t) > 0).

Hence, we have
R < R in distribution.

Note that as N\ = (^(lo^n) with probability 1 - 0(l/n2), we have with
probability 1 - O(l/n2) that for all i = 1,2,..., h - 2,

Thus, for any j ,

Pr(Z2 > j) < Pr(R > j - O(log2 n)) + O(l/n2). (7)

Since W3(tt) = O(log2n) and Wz(t) is an example of the process Xt con-
sidered earlier, it follows from Lemma 3 and Lemma 4 that for any small
constant eg > 0,

(l + 6 8 ) / )
6,- - a, + //

where fi in this case equals

E[AW3{t) I W3(t) = 0] = 2 - 2rf - 10e7.

Since S, — a, = r? + 2e6, we have for any small constant eg > 0 that with
probability O(l/n2),

2 - r f - 1 0 6 7 -

18



Since e& and e? can be arbitrary small (by choosing sufficiently large /t), we
have for any constant e* > 0 that

with probability O(l /n 2) . We now have (5) from (7). •

6 SIMPLE GRAPHS

Let N(t) denote the number of vertices of degrees 1,2,3 in the current graph
G{t) at the end of the t-th iteration of MINGREEDY when applied to GZ-reg.
To prove Theorems 1 and 2 we need only verify that

(i) given 7Vt(t) = n t , i = 1,2,3, G(t) is equally likely to be any member of
£(721,722,723) = {graphs with vertex set V C [n] and 72,- vertices of degree
t = 1,2,3},

and

(ii) the transition probabilities given for the Ni stay the same as in Section
3 up to an error of 0(1/M).

To prove (i) we fix t and assume inductively that (i) holds at t. We can
therefore assume that G(t) is a random member of G(x\,#2,£3) f° r some
x. Now fix y such that there is a positive probability of a transition to a
state y. For G G £(2/1,3/2,2/3) let IG = {(H,v) : H 6 G{xux2,xz),v is of
minimum degree in Hy and G is obtained from H by deleting v and all of
its neighbours}. We must show that \Ic\ depends only on a:, y. Let d denote
the minimum i such that x, ^ 0. To construct /<? for G we first

(a) choose v, v\,..., vd € [n] \ V(G);

(b) add edges incident with v,v\,v2,... ^ to make a graph in G{x\,x2,x$).

The number of choices in (a) (trivially) depends only on x, y and the same is
true for the number of choices in (b), which is fixed once the degree sequence
of G is fixed. Just observe that if one chooses G and edges A as in (b)
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and changes G without changing the degree sequence then A remains a valid
choice.

To prove (ii) we must consider the configuration model as described in Section
2. Here let d»- = 1,1 < t < Xi,df = 2,X\ < i < x\ + :r2,dt = 3,xi + x2 <
i < xi + x2 + £3. Now choose Fu randomly from £)„ and apply one step of
Algorithm MINGREEDY to i(Fy). Let £y denote the event that the graph
remaining is in £(3/1,2/2,2/3)- All we need to show is that

Pr(£y I Fu is simple) = Vv(£y) + O(l/v). (8)

But
x> fc 1 T? • • i \ P r ( ^ i s simple I £y)Pr(£y)Pr(^ v Fy is simple) = — ^ . ̂  .—. y; N

 y
v y ' l ' Pr(F l / is simple)

and so we need only show

Pr(F I / is simple | £y) = Vv{Fu is simple) + 0(1/v)

or
P ^ F ^ is simple | D) = Pr(F1/ is simple) + 0(1/u) (9)

where D is the set of pairs of points deleted from Fu in one step. But
\D\ = 0(1) and contains no loops or multiple edges. (9) follows easily from

(1).
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