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Isocategories and Tensor Functors

by Walter Noll

ABSTRACT. In this paper, I show how the concepts of an isocategory (cat-
egory all of whose morphisms are isomorphisms) and the corresponding
concept of an isofunctor can be used to improve the conceptual infras-
tructure of many branches of mathematics. The crucial new idea is that
of a natural assignment, a variant of the idea of a natural transformation
introduced by Eilenberg and Mac Lane. Isofunctors that involve the iso-
category LIS of all linear isomorphisms of finite-dimensional linear spaces
are called tensor functors, because they can be used to clarify most uses
of the word "tensor" in the literature of mathematics and physics. Of par-
ticular importance are the "analytic tensor functors", which can serve to
simplify and generalize the treatment of tensor fields given in the standard
textbooks on differentiate manifolds.
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Introduction

The term "tensor" has been used in mathematics and in physics for nearly
150 years. We know about "strain tensors", "stress tensors", "elasticity tensors",
"electromagnetic field tensors", "energy-momentum tensors", n"Riemann curva-
ture tensors", "Ricci tensors", etc. The meaning assigned to the term "tensor"
in the literature, howerever, is variable and the definitions given are often mud-
dled. The distinction between a "tensor" and a "tensor field" is often blurred,
at least in terminology. At any rate, I do not know of any precise definition in
the literature of a concept that could be used to cover all or at least most of the
uses of the the word "tensor" in the mathematical and physical literature. One
of the motivations of this paper was to introduce such a precisely defined con-
cept, using some of the conceptual machinery of category theory. The concept
in question is that of a tensor functor, first used in [N] in 1984, and defined
here in Sect. 4.

Recently, I found that the ideas leading to the concept of a tensor func-
tor might have wider applications and might actually be used to improve the
conceptual infrastructure of mathematics in general. The basic idea is to use
categories whose morphisms are all isomorphisms, or isocategories for short.
The definitions given in Sect. 1, 2 and 3 are consistent with the ones used in
the literature on category theory, although this literature deals primarily with
categories that are not isocategories. The concept of natural assignment in-
troduced in Sect. 3 is a variant of the concept of a "natural transformation"
originally introduced by Eilenberg and Mac Lane (see, for example, [M], Sect. 4
of Ch.I). These authors introduced the notion of a category precisely because
they wanted to clarify what "natural" means in the context of mathematical
constructions. (Eilenberg confirmed this to me in a conversation in Tbilisi in
November 1989.) I believe that my concept of a natural assignment will lead to
additional clarification. The concept of a tensor product is understood here
as a natural assignment (see Sect.5, (7) and Remark 2, and Sect.7).

I introduced the concept of an analytic tensor functor, defined in Sect. 5
here, in an introductory graduate course on abstract differential geometry given
in 1984 [N]. The purpose was to simplify and generalize the treatment of tensor-
fields given in standard texbooks such as [K-N] and [M-T-W] (see the Remark in
Sect. 4 below). Here, in Sect. 7, I indicate on how one can do this and how one
can apply the concept of an analytic tensor functor to the theory of linear-space
bundles, as has been carried out in detail recently by my doctoral student Sea-
Mean Chiou [CS]. (He use simply "tensor functor" for what we call "analytic
tensor functor" here.) Sect. 7 also contains brief descriptions of three different
modifications of the ideas presented earlier.

The notation and terminology of [FDS] is used in this paper. In particular,
N denotes the set of all natural numbers including zero. Given n £ N, the set
of all natural numbers between 1 and n (inclusive) is denoted by n]. The set
of all subsets (a.k.a. "power set") of a given set S is denoted by Sub(5). The
domain and codomain of a given mapping (f> are denoted by Dom</> and Cod</>,



respectively. The inverse of an invertible mapping (j) is denoted by <j>*~. Given
any mappings (f> and T/>, </> x ip denotes the mapping from Dome/) x DomV* to
Cod (j) x Cod z/? defined by

x <0)(^,y) •= (<HX)> V>(y)) f° r a ^ x € Dom</) and y G

Let an index set / be given. For every set 5 , we denote by S1 the set of all
families with terms in S and indexed on / . Given a G S1, we denote the term of
a with index i G I by a,-, and we often write a = (a* | z G / ) . For every mapping
</>, we denote by (f>xI the mapping from (Dom^)7 to (Cod^)7 defined by

< f > x I ( a i \ i e I ) :=(<f>(ai)\i e l ) f o r a l l a G ( D o m < / > ) 7 .

We abbreviate Sn := Sn and <f)xn := <^Xn when n € N; members of <Sn are
called fei^ o/ length n. For linear mappings, evaluation is generally understood
without parentheses, composition is understood without o, and - 1 is used in-
stead of *~~ to denote inverses. We use "lineon" as an abbreviation for "linear
transformation" in order to be able to form the adjective "lineonic".

1. Isocategories

An isocategory is given by the specification of

(i) a class OBJ whose members are called objects,

(ii) a class ISO whose members are called isomorphisms,

(iii) a rule that associates with each <f) G ISO a pair (Dom</>, Cod</>) of

objects, called the domain and codomain of 0,
(iv) a rule that associates with each pair (</>,</') m ISO such that

Cod</> = DomV* a member of ISO denoted by ip o <j> and called
the composite of <j> and </>, with Dom(?/> o <f>) = Dom</> and
Cod(</> ocf)) = Codz/>,

(v) a rule that associates with each A € OBJ a member of ISO denoted
by 1̂ 4 and called the identity of ̂ 4,

(vi) a rule that associates with each (j) G ISO a member of ISO denoted
by <f>^~ and called the inverse of <f>.

The ingredients of an isocategory described above are subject to the follow-
ing three axioms.

(II) We have
X o (ip o <f>) = ( x o V>) o (j>

for all <j>, i/>, x G ISO such that Cod <f> = Dom ip and Cod ip = Dom x-



(12) We have

for all (/> G ISO.
(13) we have

4T~ o (f> = lD o m ^ and ^ o ^ ~ = l C o d ^

for all <£ G ISO.

Given <f> G ISO, one writes </> : .4 —> 5 or .4 —> # to indicate that Dom <j> = A
and £

The class OBJ of an isocategory is determined by the class ISO because
every A G OBJ is determined by the corresponding identity I.4. For this reason,
we will usually name an isocategory by giving the name of its class of isomor-
phisms.

Let isocategories ISO and ISO' with object-classes OBJ and OBJ' be given.
We can then form the product-isocategory ISO x ISO' with object-class
OBJ x OBJ1 as follows:

(a) ISO x ISO' consists of pairs (<£, <f>') with <f> G ISO, <j>' £ ISO'.

(b) OBJ x OBJ1 consists of pairs (A, A') with A G OBJ, A' G OBJ'.

(c) For every (</>, cf>') G ISO x ISO', we put

Dom ((/>, <f>') := (Dom <j>, Dom <j>') , Cod (</>, <f>') := (Cod <f>, Cod <f>').

(d) Composition in ISO x ISO' is defined by termwise composition, i.e.
by

for all <t>,tf> € ISO and <f>',^' € ISO' such that Dom(</>,</'') =
Cod(<A,^')-

(e) The identity of a given pair (A, A') € OBJ x OBJ' is defined to be

HA,A') = (1.4,1.4')-

(f) The inverse of a given pair (</>, <j>') € ISO x ISO' is defined to be

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if an isocategory ISO and an index set / are given, one
can form the /-power-isocategory ISO7 of ISO; its isomorphism-class consists
of all families in ISO indexed on / . In the case when / is of the form I := n\ we



write ISOn := ISOnl for short. For example, we write ISO2 := ISO x ISO. We
identify ISO1 with ISO and ISOm"fn with ISOm x ISOn for all m,n G N in the
obvious manner. The isocategory ISO0 is the trival one whose only object is 0
and whose only isomorphism is 1 .̂

We say that an isocategory ISO is concrete if ISO consists of invertible
mappings, the object-class OBJ consists of sets, and if domain and codomain,
composition, identity and inverse have the meanning they are usually given for
sets and mappings. (See, e.g. Sect. 01-04 of [FDS]). In this paper, we will
assume, in each case, that a basic concrete isocategory ISO is given, and we will
deal only with it and the isocategories obtained from it by product formation,
such as ISOm x ISOn when m,n G N.

2. Isofunctors

An isofunctor $ is given by the specification of:

(i) a pair (DOM$,COD$) of isocategories, called the domain-
category and codomain-category of $,

(ii) a rule that associates with every (j) G DOM $ a member of COD $
denoted by $(</>),

subject to the following conditions:

(Fl) We have

Cod $(</>) = Dom $(</>) and $(</> o </>) = $(</>) o $(<£) (2.1)

for all <£, %j> € DOM * such that Cod <f> = Dom ip.
(F2) For every identity 1.4 in D0M$, where A belongs to the object-

class of DOM $, $(1.4) is an identity in COD $.

Let isocategories ISO and ISO' with object-classes OBJ and OBJ' be given.
We say that $ is an isofunctor from ISO to ISO' and we write $ : ISO —> ISO'
to indicate that ISO = D0M$ and ISO' = COD$. By (F2), we can associate
with each A G OBJ exactly one object in OBJ1, denoted by $(.4), such that

(2.3)

It easily follows from (13) of Sect. 1 and from (Fl) and (F2) above that
every isofunctor $ satisfies

for all <j> e D0M$. (2.4)
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One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03
and 04 of [FDS].) Thus, if $ and * are isofunctors such that COD $ = DOM # ,
one can define the composite isofunctor \& o $ : D 0 M $ —» COD \I> by

for all <f> 6 DOM $ (2.5)

Also, given isofunctors $ and # , one can define the product-isofunctor

* x V : D 0 M $ x DOM* —> COD$ x C O D *

of $ and * by
(2.6)

for all <f> e DOM $ and all xp € DOM #.
Product-isofunctors of arbitary families of isofunctors are defined in a simi-

lar way. In particular, if an isofunctor $ and an index set / are given, we define
the 7-power-isofunctor $ x / : (DOM$)7 - • (COD $) 7 of $ by

(2.7)

for all families ( ^ 11 € I ) in DOM $. We write $ X n := $ x n ' when n G N.

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-functor Id : ISO -> ISO of ISO is defined by

= <t> for all <f> € ISO. (2.8)

We then have
Id(.4) = A for all A € OBJ. (2.9)

If / is an index set, then the identity-functor of ISO7 is Idx . In particular, the
identity-functor of ISO x ISO is Id x Id.

Let a specific object C 6 OBJ be given. The trivial-functor
Trc : ISO -» ISO for C is defined by

lc for all <f> € ISO. (2.10)

We then have
Trc(A) = C for all A G OBJ. (2 11)

One often needs to consider a variety of "accounting isofunctors" whose
domain and codomain categories are obtained from ISO by product formation.
For example, the switch-functor Sw : ISO2 -f ISO2 is defined by

(V>,̂ ) for all <£,</>€ ISO. (2.12)



Given any index set / , the equalization-functor Eq7 : ISO —• ISO7 is defined

by
:=(<Hi€ J) fora11 ^ e l S O . (2.13)

We write Eqn := Eqn] when n 6 N.

Let isofunctors $ and # with Dom$ = ISO = Dom* be given. We then
identify the pair ($ ,^ ) with the pair-formation functor

($, *) : ISO -+ COD $ x COD *

defined by
($,*) := ($ x $)oEq2 ,

so that
), *((/>)) for all <f> e ISO. (2.14)

3. Natural assignments, examples*

We now assume that a concrete isocategory ISO with object-class OBJ is
given.

A natural assignment a of degree n G N is given by the specification of:

(i) a pair (Dmfa,Cdfa) of isofunctors from ISOn to ISO, called the
domain-functor and codomain-functor of a,

(ii) a rule that associates with every list T G OBJn a mapping

Cdfa(JT),

subject to the condition that

for all X€lSOn. (3.1)

Let isofunctors $ and #, both from ISOn to ISO, be given. We say that a
is a natural assignment from $ to #, and we write a : $ —» # to indicate
that Dmfa = $ and Cdfa = * .

A natural assignment a of degree n € N is called a natural equivalence
if, for every T € OBJn, the mapping a? of (ii) above belongs to ISO.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments a and f3 be



given. If a and ft have the same degree n G N and if Dmf^ = Cdfa we can
define the composite assignment ft o a : Dmfa —» Cdf^, also of degree n, by
assigning to each T G OBJn the mapping (/? o a)T := ftToa.T. If a has degree
A; G N and /? has degree m G N, one can define the product-assignment

a x ft : Pr o (Dmfa x Dmfy) -> Pr o (Cdfo x Cdf^),

of degree k + m, by assigning to each pair {T,Q) G OBJk x OBJm = OBJh+m

the mapping (a x ft\T#) := a^ x /?c.
Given a natural assignment a of degree n G N and an isofunctor

$ : ISO —> ISOn with A: G N, one can define the composite assignment
a o $ : Dmfa ° * —* Cdfa o $, of degree Ar, by assigning to each T G ISO* the
mapping (a o $ )^ := ann.

The identity-assignment id : Id —> Id is defined by

id^ := I,* for all A G OBJ. (3.2)

We have a: o (id o Dmfa) = (id o Cdfa) o a = a for all natural assignments a.
An illustration of the the use of the operations involving assignments is

given by (5.18) below.

Examples:
We now consider the concrete isocategory INV consisting of all invertible

mappings. The corresponding object-class SET consists of all sets. The subset-
functor Sub : INV -> INV is defined by

Sub(» := <f>> for all <\> G INV, (3.3)

where <f>> is the image mapping of <f> (see [FDS], (03.7)). For every S G SET,
Sub(<S) is the set of all subsets of S. For every S G SET we denote the set of
all finite subsets of S by Fin(S). The finite-subset-functor Fin : INV -> INV
is defined by

Fin (Cod <f>)

Fin(^) := <f>> for all <j> G INV. (3.4)
F i n ( D o m <j>)

(See the definition of "adjustment" of a mapping in [FDS], Sect. 03.) The (finite)
cardinality # can be interpreted to be the natural assignment # : Fin —> Tr^
which associates with each set S the mapping #5 : Fin(<S) --» N defined by

#S(A):=#A for all A&Fin(S). (3.5)

The set -product- functor Pr : INV2 -» INV is defined by

, </>) := <f> x if? for all (<£, %l>) G INV2 . (3.6)

We have Pr(S, T) = S x T for all S,T G SET. A natural equivalence of degree
2 is the switch-equivalence sw : Pr —> Pr o Sw which associates with every
pair (<S,T) G SET2 the mapping defined by

) := ( M ) for all 5 6 5 , < £ T. (3.7)
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(Here, the switch -functor Sw : INV2 -> INV2 is defined according to (2.12).)
The map-functor Map : INV2 -> INV assigns to each pair (5,T) G SET2

the set Map(<S,T) of all mappings from S to T and to each pair (<£, VO € INV2

the invertible mapping Map(^,V0 : Map(Dom0,DomVO —> Map(Cod</>,Cod?/>)
defined by

(Map( <£,</>))(/) :=ij)o f o<j)*- for all /GMap(Dom^Dom^). (3.8)

We can define a natural equivalence

a : Sub oPr-> Map o (Id x Sub) (3.9)

of degree 2 by assigning to each pair (S,T) € SET2 the mapping

ais,T) : Sub (5 x 7) -> Map(5,SubT) (3.10)

defined by
) :={teT\(s,t)eA} (3.11)

for all <4 G Sub(«S x 7) and all s G 5.

Remark: Most of the about 100 symbols listed in the Index of Multiple-Letter
Symbols in [FDS] can be interpreted as standing for either isofunctors or natural
assignments. |

4. Tensor functors

We now fix a field F and we consider the isocategory whose object-
class FDLS consists of all finite dimensional linear spaces over F and whose
isomorphism-class LIS consists of all linear isomorphism from one such space
onto another or itself. We use the term tensor functor of degree n G N for
isofunctors from LISn to LIS. Here is a list of important tensor functors:

(1) The product-space functor Pr : LIS2 —> LIS. It is defined by

Pr(A,B) := A x B for all (A,B) G LIS2. (4.1)

We have Pr(V, W) := V x W (the product-space of V and W) for all V,W e
FDLS.

(2) The lin-map-functor Lin : LIS2 —» LIS. It assigns to every pair
(V, W) G FDLS2 the linear space Lin(V, W) of all linear mappings from V to W
and to every pair (A, B) G LIS2 the invertible linear mapping

Lin(A, B) G Lis(Lin(Dom A, Dom B), Lin(Cod A, Cod B)) (4.2)



defined by

Lin(A, B)T := BTA"1 (4.3)

for all T € Lin(Dom A,DomB).

(3) The duality-functor Dl : LIS -» LIS. It is defined by

Dl:=Lino(Id,TrF). (4.4)

We have
D1(V):=V* for all V € FDLS (4.5)

and
D1(A) := (A1')'1 for all A € LIS. (4.6)

(4) The lineon-functor Ln : LIS -> LIS. It is defined by

Ln:=LinoEq2 . (4.7)

We have
Ln(V) := Lin(V, V) for all V G FDLS (4.8)

and

Ln(A)T := ATA"1 for all A € LIS and T € Ln(DomA). (4.9)

(5) Given k € N, the Jk-lin-map-functor Linfc : LIS* x LIS -> LIS. It
assigns to each list (V; | i € k]) in FDLS and each W € FDLS the linear space

Unk((Vi\ieV),W):=Link( X V,-,W) (4.10)

of all ^-multilinear mappings from X Vi to W, and it assigns to every list

(A; | i 6 k]) in LIS and each B G LIS the linear mapping

Unk((Ai\iek]),B) (4.11)

from Lin* ( X DomA;,DomB) to Lin* ( X Cod A*, Cod B) defined by
iek) iek]

Lin*((A,- \iek]), B ) T := B T o X A " 1 (4.12)
iek)

for all T e Lin( X DomAf,DomB).
iek)

(6) Given k £ N, the fc-multiliii-functor Ln^ : LIS2 —> LIS. It is defined
by

Lnjt := Linfe o (Eqfc x Id). (4.13)
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We have
Lnjt(V, W) := Linfc(V

fc, W) (4.14)

for all V,W € FDLS and

Ln f c(A,B)T:=BTo(A-1)x f c (4.15)

for all A,B 6 LIS and all T € Linfc((Dom A)fc,DomB).

(7) Given k € N, the symmetric-fc-multilin-functor Smjt : LIS2 —* LIS.
It is assigns to every pair (V, W) € FDLS2 the linear sapce

(4.16)

of all symmetric fc-multilinear mappings from Vk to W. We have

Sm i t(A,B)T:=BTo(A-1)x f c (4.17)

for all A,B € LIS and all T € Symfc((Dom A)fe,DomB).

(8) Given Jfe € N, the skew-fc-multilin-functor Skfc : LIS2 -» LIS. It
is defined in the same manner as Smjt, except that Symfc(V

fc,W) in (4.16) is
replaced by the linear space Skewfc(Vfc, W) of all skew /^-multilinear mappings
from Vk to W.

(9) Given n € N, the fc-linform-functor Lnf/;, the fc-symform-functor
, the fc-skewform-functor Skf/t, all from LIS to LIS. They are defined by

Lnffc := Lnfc o (Id,Trp) , Smfk := Smfc o (Id,Trp) , Skffe := Skfc o (Id,Trp).
(4.18)

Given V € FDLS, we have

Lnffc(V):=Lin,(V*,F), (4.19)

the space of all fc-multilinear forms on Vk. We have

Lnffc(A)u; := u> o(A~1)xfc for all u> G Linib((Dom A)*,F) (4.20)

and all A € LIS. The formulas (4.19) and (4.20) remain valid if Lin is replaced
by Sym or Skew and Lnf by Smf or Skf correspondingly.

Remark : In much of the literature (see [K-N]7 Sect. 2 of Ch.I or [M-T-W],
§3.2) the use of the term "tensor" is limited to tensor functors of the form
T£ := Lin o (Lnf5, Lnfr) : LIS —> LIS with r, s G N, or to tensor functors that
are naturally equivalent to one of this form. Given V G FDLS a member of the
linear space T£(V) is called a "tensor of contravariant degree r and covariant
degree s" |
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5- Natural assignments in LIS, identifications

Again, we fix a field F and we consider the isocategory LIS described in
Sect. 4. We say that a natural assignment a of degree n G N is linear if, for
every T G FDLSn, the mapping otT : Dmfa(7*) - • Cdf a(^) is linear. We give a
list of important natural assignments.

(1) The trace tr : Ln —> Trp assigns to each V the linear mapping

trv :Ln(V)-+F (5.1)

described, for example, by the Characterization of the Trace in [FDS], Sect. 26.
tr is linear.

(2) The determinant det : Ln —> Trp assigns to each V the linear mapping

detv : Ln(V) -> F (5.2)

whose values are determinants of lineons in the usual sense. Of course, det is
not linear.

Remark 1: The term lineonic invariant would be appropriate for any natural
assignment from Ln to Trp. The literature describes special lineonic invariants
called "principal invariants", which include tr and det. (See, for example, [FDS],
Vol 2, Ch.l.) A part of "Invariant Theory" deals with classifying all posible
lineonic invariants. The term lineonic covariant would be appropriate for
any natural assignment from Ln to Ln. Among the lineonic covariants are the
"adjugate" and the "principal covariants" described in [FDS], Vol 2, Ch.l. |

(3) The transposition tp : Lin —> Lin o (D1,D1) o Sw assigns to each pair
(V, W) G FDLS2 the mapping

tp (VfW) : Lin(V, W) -> Lin(W*, V*) (5.3)

defined by
tP ( V | W )(L) := L T for all LGLin(V,W) (5.4)

where L T is the transpose of L as defined, for example, in [FDS], Sect.21. Trans-
position is a natural equivalence.

It is useful and customary to employ certain natural equivalences as iden-
tifications in the following way: Let tensor functors $ and $ ' of a given degree
n G N be given. We single out a certain natural equivalence from $ to $ ' and
use it to treat $ and $ ' as if they were the same tensor functor. We write
$(/•) £ $'(JF) for all T G FDLSn and $(F) = $'(F) for all F G LIS".

One must be very cautious with introducing identifications because they can
lead to unexpected ambiguities or clashes. The following three identifications
are customary and useful.
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(4) The biduality identification bdi : Id -> Dl o Dl assigns to each V €
FDLS the mapping bdiv : V -> V** defined by

bdiv(v)A:=Av for all v <E V,A € V*. (5.5)

We write V = V** and v = bdiv(v) for all v € V, so that (5.5) reduces to
vA := Av.

(5) The bilinearity-identification bli : Lin2 —• Lin o (Id, Lin) assigns to
each triple (Vi,V2,W) € FDLS3 the mapping

bli(Vl,V2)W) : Lin2(Vx x V2, W) -> Lin(V1,Lin(V2, W)) (5.6)

defined by
(bli(Vl)V2)W)(B)v1)v2 := B(Vl ,v2) (5.7)

for all B € Lin2(Vi x V2,W) and all vx <E Vi, v2 € V2. We
write Lin2(Vi x V2,W) S Lin(Vi,Lin(V2, W)) and B = bli(Vl,Va>w)(B) for all
B € Lin2(Vi x V2,W), so that (5.7) reduces to (Bva)v2 = B(v'i,v2).

(6) The dual-linmap-identification dli : Lino(Dl x Dl) —> DloLin assigns
each pair (V, W) € FDLS2 the mapping

dli(V)W) : Lin(V*, W*) -(Lin(V, W))* (5.8)

defined by
(dli(ViW)(M))L := trv(MTL) (5.9)

for all M € Lin(V*,W*) and all L € Lin(V,W). We write Lin(V*,W*) ^
Lin(V, W)* and M = dli(v>w)(M) for all M e Lin(V*, W ) , so that (5.9) reduces
to ML = trv(MTL).

The implications of the first two of above identifications are described, in
some detail, in [FDS], Ch.2.

Let tensor functors $i , <J>2, ^ , all of degree n € N, be given. We say that
a natural assignment fi : Pr o ($i ,$2) —> ty is a bilinear assignment if, for
every T € LISn, the mapping

(5.10)

is bilinear. The following are examples.

(7) The dual-evaluation de : Pro(Dl, Id) -• Trp assigns to each V £ FDLS
the mapping

dev : V* x V -^ F (5.11)

defined by
dev(A,v) = Av for all A€V*,v€V. (5.12)
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(8) The lineonic composition lc : Pr o (Ln, Ln) —• Ln assigns to each
V G FDLS the mapping

lcv : Ln(V) x Ln(V) -> Ln(V) (5.13)

defined by
lcv(L,M) = LM for all L,MGLn(V). (5.14)

(9) The tensor product tpr : Pr o (Id x Id) —> Lin o (Dl x Id) o Sw assigns
each pair (V, VV) G FDLS2 the mapping

tpr(V)Vv) : V x W - ^ Lin(H>*, V) (5.15)

defined by
tpr(V|VV)(v,w) := v ® w for all v G V,w G W, (5.16)

where v® w is the tensor product defined according to [FDS], Def. 1 of Sect. 25,
with the identification W = W** (see (4) above).

Remark 2: In accord with definitions common in the literature (see for example
[CC], Ch.3, Sect. 8), one might use the term "tensor product" for any bilinear
assignment r : Pro (Id x Id) x $, where $ is a tensor functor of degree 2, provided
that the following condition is satisfied: For every pair (V,W) G FDLS2 and
every bilinear mapping B with DomB = V x W, there is exactly one linear
mapping B r with DomB7" = $(V, W) such that B r o T(v?vv) = B. The tensor
product tpr defined in (9) satisfies this condition by [FDS], Prop.6 of Sect.26. |

A special case of the dual-linmap-identification (6) can be expressed by the
formula

MTL = trv(ML) for all M,L G Ln(V), (5.17)

valid for all V G FDLS. In terms of the operations involving natural assignments
and isofunctors described in Sect.3, the fact that (5.17) is valid for all V G FDLS
can be expressed by

(de o Ln) o ((tp o (Id x Id)) x (id o Ln)) = tr o lc (5.18)

where tr, lc, de and tp are described in (1), (8), (7) and (3), and where id is the
identity-assignment defined by (3.2).

6* Analytic tensor functors

We now assume that the field relative to which FDLS and LIS are defined
in Sect.4 is the field R of real number. Given V, VV G FDLS, the set

Lis(V,W):= {AGLIS | Dom A = V,Cod A = VV } (6.1)
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is then an open subset of the linear space Lin(V, VV). (See, for example, the
Differentiation Theorem for Inversion Mappings in Sect.68 of [FDS].).

Let a tensor functor $ of degree 1 be given. For every pair (V, W) G FDLS2,
we define the mapping

* (V|W) : Lis(V, W) -» Lis(*(V), *(W)) (6.2)

by
*(v,w)(A) := *(A) for all A G Lis(V, W). (6.3)

We say that the tensor functor $ is analytic if $(v,w) ls a n analytic mapping
for every pair (V, W) G FDLS2. We say that a natural assignment a of degree
n G N is an analytic assignment if the mapping aT is an analytic assignment
for every list T G FDLSn. All the tensor functors of degree 1 and all natural
assignments listed in Sects.4 and 5 are in fact analytic. (The fact that they
are of class C°° can easily be inferred from the results of Ch.6 of [FDS]. Proofs
that they are analytic can be inferred, for example, from the results that will be
presented in Ch.2 of Vol.2 of [FDS].)

Theorem : Let an analytic tensor functor $ be given and associate with each
V G FDLS the mapping

$#
v : Ln(V) -+ Ln($(V)) (6.4)

defined by
*v:=Vi v $ ( V | V ) . (6.5)

(The gradient-notation used here is explained in [FDS], Sect.63.) Then $ is a
linear assignment from Ln <o Lno$. We call $ the derivative of $.

Proof: Let (V, W) G FDLS2 and A G Lis(V, W) be given. It follows from (6.3),
from axiom (Fl), and from (2.4) that

^fw^lALA" 1 ) = *(A)*(V,V)(L)*( A)""1 (6.6)

for all L G Lis(V, V). By (4.9) we may write (6.6) as

(*(WfW) o Ln(A))(L) = (Ln(*(A)) o *(V|V))(L) (6.7)

for all L G Lis(V, V). Taking the gradient of (6.7) with respect to L at L := ly
yields

$#
w o Ln(A) = (Ln o $)(A) o <^. (6.8)

In view of (3.1) it follows that $ is a natural assignment from Ln to Ln o $.
The linearity of $ follows from the definition of gradient. |
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We now list the derivatives of a few analytic tensor functors (see (3), (4),
and (9) of Sect.4). The formulas given are valid for every V e FDLS.

(1) We have

Wv = lLn(v)- (6.9)

(2) We have

Dlv = tp ( v > v ) , (6.10)

where tp is the transposition described in (3) of Sect.5.

(3) LnJ, : Ln(V) -> Ln(Ln(V)) is given by

(Ln^L)M = LM - ML for all L, M € Ln(V) (6.11)

(This formula is an easy consequence of (4.8) and, [FDS] (68.9).).

(4) Let k € N be given. In order to describe

(Lnf*)v : Ln(V) -> Ln(Lin*(V*, R)), (6.12)

we define, for every L € Ln(V) and every j € k\ Dj(L) € (Ln(V))* by

f L if i = j )
(Dj(L))i := I \ for all i e k\ (6.13)

I l v if i + 3 J
We then have

^ for all a; € Lin*(V*,R) (6.14)

and all L 6 Ln(V). The formula (6.14) remains valid if Lnf is replaced by Smf
or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition
(6.5) immediately lead to the following

Chain Rule for Analytic Tensor Functors
Let $ and ty be analytic tensor functors. Then the composite functor ty o $

is also an analytic tensor functor and we have

( # o $ ) # = ( # ' o $ ) o $ \ (6.15)

where the composite assignments on the right are explained in Sect. 3.

For example, (6.15) shows that, for each V 6 FDLS,

(Ln o Ln)^, : Ln(V) -+ Ln(Ln(Ln(V)))
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is given by
(Ln o Ln)y = LnLn(v)Lnv. (6.16)

In view of (6.11) above, (6.16) gives

(((Ln o Ln)-VL)K)M = ((Ln#
vL)K - K(Ln#

vL))M

= L(KM) - (KM)L - K(LM - ML)

for all V € FDLS, all K G Ln(Ln(V)), and all L,M G Ln(V).

If $ and \I> are analytic tensor functors so is Pr o ($, #) and we have

(Pr o (*, *))#
v = ( < L ) x l* ( v ) + l* ( v ) x ( < L ) (6.18)

for all V G FDLS and all L G Ln(V).

In the present situation, we can add an important natural assignment to
the list given in Sect.5, namely the lineonic exponential exp : Ln —• Ln; it
assigns to each V G FDLS the lineonic exponential

expv : Ln(V) -+ Ln(V) (6.19)

for V as defined in [FDS], Prop.2 of Sect.612. exp is an analytic assignment of
degree 1.

Let a be an analytic assignment of degree n G N. If we associate with each
V G FDLS the mapping (Va)v := V(av), the gradient of the mapping av , then
Va is again an analytic assignment of degree n and we have Dmfva = Dmfa

and Cdfva = Lin o (Dmfa, Cdfa). We call Va the gradient of a.

Let tensor functors $i , $2, ^S all of degree n G N but not necessarily
analytic, be given. Each bilinear assignment f3 : Pr o ($j ,$2) —» ^ is then
analytic and its gradient V/3 : Pr o ($x,$2) —* Lin o (Pr o ($!,$2)? ^) is given
by

((V/?)v(v1,v2))(u1,u2) = /3v(v1,u2) + /9v(u1,v2) (6.20)
for all V G FDLS, all v^Ui G $i(V), and all v2,u2 G $

If a is an analytic assignment of degree n G N and if $ is any isofunctor
from LIS to LISn with k G N, then a o $ is an analytic assignment of degree k
and we have V(a o $) = (Va) o $.

7. Applications and modifications

We put N := NU {00,u;} and consider N to be totally ordered in such a
way that n < 00 < u> for all n G N. Let a manifold M of class Cr, with r G N
and r > 1, and a linear-space bundle B over Ai and of class Cs with 1 < s < r
be given. The fiber-space of B at a given point x G A4 is denoted by Bx.
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Let an analytic tensor functor $ be given. The set

$(8) := |J *(**) (7-1)

has the natural structure of a linear-space bundle over M of class Cs (see [CS],
Sect.34). If B := TM is the tangent-bundle of M, then Q(TM) is called the
tensor bundle of M associated with $. A cross section of $(TAi) is called a
tensor-field of type $. In particular, a tensor field of type Id or Dl is called a
vector-field or covector-field, respectively. The derivative $* of $ as defined
in Sect.6 is needed when one considers gradients of tensor-fields of type $ or,
more generally, gradients of cross sections of $(B) when B is any linear-space
bundle. (See [CS], Ch.5.)

All of the considerations of Sect.4 can be applied if one replaces the iso-
category considered there by the isocategory whose object-class LS consisting of
all linear spaces over F, finite-dimensional or not, or even the class MOD of all
modules over a given commutative ring. Some of the considerations of Sect.5 can
also be applied if this modifications is made. However, the natural assignments
(1), (2) and (6) lose their meaning and biduality assignment bdi of (4) is no
longer a natural equivalence and cannot be used for identification. Moreover,
the domain-functor of tpr in (9) must be replaced by Pro (Id x Dl oDl) and tpr is
no longer a "tensor-product" in the sense described in Remark 2. (However, suit-
able tensor-product assignments can be constructed by the method described,
for example, in Sect.8 of Ch.2 of [CC].) The considerations of Sect.6 lose their
meaning.

All of the considerations of Sects.4, 5 and 6 can be applied if one replaces the
isocategory considered there by the isocategory whose object-class IPS consists
of all finite-dimensional inner product spaces and whose isomorphism-class OIS
consists of all orthogonal isomorphisms. In this case, there is also a natural
equivalence from Id to Dl, which can be used to deal efficiently with tensor fields
on Riemannian manifolds.

Many of the considerations of Sects.4, 5 and 6 can also be applied if one
replaces the isocategory considered there by the isocategory whose object-class
BS consists of all Banach spaces (in the sense of "Banachable" space as explained
in [L], p.4) and if one interprets LIS appropriately. The necessary details can
be destilled from [L], Ch.l. However, as in the case when FDLS is replaced by
LS the natural assignments (1), (2) and (6) of Sect.5 lose their meaning, the
biduality assignment bdi of (4) is no longer an equivalence, and (9) must be
modified. The isocategory LIS interpreted with the object-class BS can be used
to deal with infinite-dimensional manifolds in the way described in the beginning
of this section.
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