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Abstract

There are two significant differences between the simply typed A claculus and the
simply typed A calculus with surjective pairing. These differences are summarized by
our two principal results

Theorem 1. If ji is any non trivial model of /? r\ S P

then

M = N

Theorem 2. The collection of all sets of projections of (3 t\ S P unification problems is

precisely the collection of all recursively enumeable sets of terms of the same type closed under

P Tj S P conversion.

In this note we consider the simply typed A-calculus over a single ground type 0 ([1]

pg. 561) together with surjective pairing ([1] pg. 403) at type 0. More precisely, we add to the

simply typed A calculus A new constants 6 e 0 —»(0 —» 0), 6^ € 0 —> 0, and #2
 G ° —> °

and new reduction rules

p . ) ^ x 1 Xj) — Xj i e { i , 2 }

\{6) 6(61 X) (62X)^X

for X G A 6 6^ #2-
 I n I6! 1* i s shown that (3 TJ S P is Church — Rosser and strongly

normalizable.

Let a be a closed term of type 0 —> 0 in long ([9] pg. 533) /? 77 S P normal form.

Then a has one of the forms Aa. a , Aa. £tjt2 , Aa. tf.t for first order terms t. We consider

the Bohm tree of a less the prefix Aa. It consists of a full binary tree whose nodes are



labelled 6, called the A of a, followed by paths whose nodes are labelled 6^ except for the

leaves labelled a. This variable a will remain fixed throughout. It is useful to note here that

6 expansions of a have a similar shape.

For each type a we define £. G 0 —»0 and S G a —> (a —><J) recursively by

S{ = Axz 6{(xz) i G {1, 2}

6 = Axyz 6(xz) (yz).

We have

6.(6X 1 X 2 ) - > X.
1 1 2 /377SP 2

S (6* X) (So X) > X
1 z /377SP

When a = 0 —» 0 we shall write <x, y> for 6xy. Let at k 6 6^2 be a closed long

/? 77 S P normal form € 0 —» 0 ; as above a has one of 3 forms. We can write a = I, a =
tyS

< Aa. t j , Aa. t 2 > , or a = ^ ° Aa.t.

Thus each such a can, modulo /? 77 S P conversion, be built up from I, 6^ , #2 by o and

< >. A Cartesian monoid (M, o, I, L, R, < >) is a structure s.t. (M, o, I) is a monoid,
2

with L, R G M and < > : M —>M satisfying

L o < x , y > = x ,

R o < x , y > = y ,



< x, y > o z = < x o z , y o z > , and

< L , R > = 1 .

([4] pg. 389). The free Cartesian monoid generated by L and R (and I) is denoted >JC\ We

have seen that there is an obvious homomorphism from JC onto the closed terms of type

0—»0.

Now the embedding of JC into M —» M by left multiplications a •—• a = Ax. a o x

extends to the Cartesian structure of JC. In particular, < a* , Og > = Ax < o^ (x) ,

c*2 (x) >. Thus by the Church - Rosser theorem the above homomorphism is an isomorphism.

In summary,

Proposition 1. JC is isomorphic to

Ix 62 /I , B, I, 6X , 62 , A(x, y) ftcy)]

Similarly, the "polynomial" Cartesian monoids JC [x^ ... , x ] are isomorphic to the

structures

( 0 -* 0 ) -* ( . . . ( ( 0 -• 0 ) - * ( 0 - 4 0 ) ) . . . )

where

B n = Auv Axr..xn.Aa. ux r . .xn (vx r . .xn a) and I n s Ax1...xn . Aa. a ([10] pg. 186), 6in =

6,n s Xxl - xn *•



For many purposes all of A 6 6+ 8* can be reduced to (0 —> 0) —> (0 —> 0) and

therefore JC [x]

Proposition 2. For each type a there exists M G A 6 6, 6O
 a "* " ' "* * "* " such that

f o r a l l N ^ T T S 6 1 6 2
a

 y i e { 1 , 2 }

Nx = ' N2 « MNX = MN2

Proof. We can copy the proof of [9] pg. 517 propositon 1 to reduce each type a to

(0 -> (0 -4 0)) —i (0 -4 0). This type in turn is reducible to (0 -» 0) —* (0 -> 0) by

AM AX Adi. MKAL-iLcy A \v IAZ-. I XXZicy)) )<X

Proposition 3. Suppose M and N are closed terms G (0 -> 0)—»(0 -» 0) and M ^ N,

then there exist a closed 0 G 0 -> 0 s.t.

M0

Proof. More generally suppose x = x^, ... , xn, a(x) and 0(x) G JC [x] and a(x) ^ /?(x). We

shall find ^ = $v ... , ^n s.t. a(^) ^ jS(̂ ). The proof consists of 2 parts. In the first part n

may be increased. W.l.o.g. we can assume that a(x) and /?(x) are in long /?7/SP normal

form. The 1st part of the construction removes subexpressions L(x^ t) and R(xj t) by

making substitutions < y, z > | x. and renormalizing. It is easily seen that this process

teminates a(x) and /?(x) can be recovered by making substitutions L o x | y , R o x | z .

Thus we can assume that a(x) and P(x) are normal, distinct and without such

subexpressions.



Now let m exceed the length of the longest path in the Bohm tree of a(x) or /3(x).

We shall set 0. =

< < w, < . . . < w, I > . . . > > , w >
m + i

where w = R for sufficiently large k. Note that if t is normal, contains only the variable

a, and k exceeds the length of the longest path in the A of t then 0.t =

(*) < < t1, < ... < t1 , t > . . . > > , t1 >

where t is < > free, and the longest path in the A increases by at most m + i + 1 <

m + n + 1.

Put k = m(m + n + l). We shall show that a(x) and fi(x) are reconstructive from

the normal forms of a{6) and fi{6) and thus a(Q)tfi{0). These normal forms can be

computed recursively bottom — up as above in (*). Observe that no 6 redex is introduced

since each t begins with R. In order to reconstruct a(x) and fi(x) proceed top — down on

the results. Find subterms (*) as above with t < > free. By choice of m such a subterm

is not the trace ([2] pg. 18) of a subterm in a(0) or fi($) disjoint from 0. Such subterms

cannot overlap since their left components have < >. Now consider any of the pairs < >

in (*). Such a pair cannot be the trace of a pair < > in a{0) or fi{0) disjoint from 0

since the left component of 0. contains < >. Thus (*) = 0.t as above.

Given /*, v e 0 —> 0 set fiV = Xx. fi o x o v.

Proposition 4. If a, fi 6 A 6 6+ So "* and a # fi then 3 u v av a =6, uu3 = 6n

EIQQL Suppose a, 0 are normal and £ . Again it is convenient to speak as if we are in JC.
fifiP



By 6 expansions we can assume a and 0 have the same A. Thus 3 / ^ s.t., for ^ = ^ o

a and 0^ = /^ o /?, we have a^ ± 0^ and Op 0^ are < > free. We can also assume that

there is no < > free 7 s.t. a^ = 7 o 0^ or ^ = 7 0 a^. For suppose ^ = 7 0 ^ and 7

= 7 0 .̂. Then if /^ is replaced by £g . o ^ y a^ is replaced by 6o± ° ^ and ^ by

° Py Thus there are < > free c^, /?2 and k , / > 0 such that

k /
a^ o < I, I >* o < ^2, ^ > = Og o ^

o < I, I > k o

and there exist n, m > 0 such that

O j o ^ o < < I, I > n o S1 , < I, I > m o 62 > = Sx

02 o ^ o < < I, I > n o £ p < I, I > m o 82> = 62

Propositions 2, 3 and 4 yield the following completeness result

Theorem 1. Let M, N € A b 6^ f>2 and let J6 be any non-trivial model. Then

<^HM = N <=> M = N
/?*?SP

Let EQ = | < ax o ^ < Og o 5X o ^2 , ag o ^2 > > : aj € lsv $2, If i = 1, 2, 3J U

{< I, < I, I > >}



i For any a^, a^, a% < > free < Oj, < a^, c*3 > > can be generated from

by o.

2
Proof. First observe recursively that < a, o L < a, o L o L a, o ^ > > can be

generated, for if Pv P2, ^3 € {*!» S2> l\

a3 ° 0̂ ° S2 > > = < a l

3 ° *2 > >> T h e n < flp
c *2
62, a3 o 62

Let x = {< av < 03, a3 > > : ^ < > free i = 1, 2, 3 |

Lemma 2. Every a can be generated from E, by o

Proof. A derivation is an a = < < .... < a ,̂ o^ > ... >, an >

such that n > 3

1. ax = 6X

2. 03 = S2

3. a3 = I

j. 3k, / < j a- = < ok, aj> > A 3k < j 3 /

a. = Sjo a^ when j > 3

Such an a is said to be a derivation of on. Obviously, every 0 has a derivation. Note that

< < tfp 62 > , I > = < I, I > = < I, < £p 62 > > e E. Now suppose that a is as above and

6+0 a can be generated from E. by o. Incase, 0 = < a,, aj> for k, / < n we have



a = < I, < S2 o 6* k , S2 o 6* *> > o Sx o a

(with #2 replaced by 6* if the corresponding k or / i s 1). Incase <*

k < n we have

a = < I, < 6^ o ^ yo ^ ° ^ 1 J ^ 2 ° ^ / ° V ^ l > >

(modified as above if k = 1). Thus by induction every derivation can be generated from S.

by o. In addition 6<y = < 6, o 6<y < 6+ o 6<y ° #2 > 9̂ ° 2̂ > > e ^r ^ ^ s c o m Pl e t e s ^ e

proof.

We have seen

Proposition 5. JC is finitely generated by EQ.

Corollary. JC [x] is finitely generated.

This can be generalized to higher types but we do not do it here.

We close this section with the remark that the wreath product of JC {JC [x]) with

number theoretic functions of finite support can be embedded into JC {JC [x]). For suppose

i i—> a. s.t. Vn > k aR = I i = 0, 1, 2, ... and f: IN —* M s.t. Vn > / f (n) = n. Let m =

max {k, 1}, then the pair (f, M a^) is represented by

< a n o L o R f ( ° ) < <a o L o R f ( m ) , R m + 1 > > >0 m '

A unification problem is an equation Mx = Nx where M, N 6 A 6 6+ 60
a ~* r and

x 6 a. P 6 T~5 6X 62
a is a solution to Mx = Nx if MP = NP. S C T~5 ^ §2°

is said to be protective if there exists a unification problem, as above, s.t.
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Q G E <=> 3P £PQ is a solution to

Mx = Nx.

obviously every projective set is recursively enumerable. Below we shall prove the converse.

The proof first consists of solving the Markov - Lob problem ([7] pg. 1) for JC {JC [x]) in the

negative. Below we work for the most part in JC {JC [x]).

a. 3n a = R n ^ R o a a o R

Proof. Suppose that R o a = a o R, and a is normal. If a has a non-empty A then the A

of the normal form of R o a is smaller but the A of the normal form of a o R is the same.

Thus a is < > free and a = R n for some n > 0.

Let # = < L o L, < L o R o L, < ... < L o R n - 1 o L, R > . . . > > > .n

Lemma 4. 3/3 a = /3 o L <=* a o < L, L > = a.

=* is proved by induction on the normal form of a.

s. a = # n « = > R n o a = R o = R o a o

< < L , L > , < L o Rn~l o L, R > >

Proof. «= If R n o a = R we can write a = < a^, < ... < a^, R > ... > > and

R o a o < < L , L > , < L o R n - 1 o L, R > > = < o^, < ... < an , R > . . . > > o < < L, L >,

< L o R11"1 o L, R > > = < O 2 0 < < L , L > , < L o R11"1 o L, R > > , < . . . < afl o

< < L, L > , < L o R n - 1 o L, R > >, < L o R11"1 o L, R > > . . . > > . If this = a then we

have a n = L o Rn~ o L and for i = 1 ... n — 1 a- = a- , , o < < L, L >, < L o R n o

L, R > >. Thus ai = Lo R1"1 o L and a = #n-

Define a € Seqn <=» a = < aQ o L, < ... <an_1 o L, R > . . . > > , I = #n o < < I, I >,

L o R11"1 >
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Lemma, fi a e Seqn <=» R n o a = R A I n o a = I n o a o < L, L > .

Proof. «= If R n o a = R we can write a = < 0Q, < ... < /?n_p R > . . . > > and f n o a =

< pQ, < ... < 0n_x , Pn-1 > ... > In addition, fn o a o < L, L > = < 0Q o < L, I > , < . . .

< 0n_i o < L, L > , Pn_^ o < L, L > > . . . > > . If these are = by Lemma 4 /3t = a^ o L for

i = 1 ... n — 1 and a € Seqn>

Let # n ( a , « ) = < a o R f(°) o L, < ... < a o R^11"1) o L, R > . . . > > for £: M —»M.

Note that i =i (L, id). As in Lemma 5

T.pmmft7 0 = iR (a, id) <=» 0 6 Seqn A / ? = R o / ? o < < L , L > , < a o R n - 1 o L, R > >

8 3f a = f n (I, f) «=> a 6 Seqn A a o < R, R > = # n (R o L, id) o < I, R n > o a.

so

Proof. We have # n (R o L, id) o < I, R n > = < R o L, < ... < R o L o R n ~ \

Rn > ... > > . < = . If a G Seqn we can write a = < aQ o L, < ... < a n - 1 o L, R > > >

a o < R, R > = < aQ o R, < ... < a ^ o R, R > ... > >. In addition # n (R o L, id) o < I,

R n ~ > o a = < R o aQ, < ... < R o a ^ , R > . . . > > . If these are = we have for i = 0,...,

n — 1, R o aj = aj o R so, by Lemma 3, a. = R ^'.

Note here that as in Lemma 5 (3 = # n (a, Ax 0) <=> /3 G Seqn A ^ = R o / ? o < L , < a ,

R > >.

Lemma. Q ^ = a11 «=> 37 G Seqn 7 = R o 7 o < a o L, < a o L, R > > A L o 7 = /?.

Proof. Similar to Lemma 5.

Let X n (a, f) = < L o a o R f(°) o L, < ... < L o R n - 1 o a o R f ( n - 1 ) o L, R > ... > >.

Lemma in 0 = XR (a, id) <=> 37X e Seqn 37 2 6 Seqn2 37g .

1. 71 o < I, R n o a > = a

2. 72 = R n o 72 o < < L, L > , < 7 : o < R n - 1 o

L, R > > >

3. 3f 73 = * n (I, f)
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4. 7g = R ° 73 ° < < M
5. 0 = l n (L2, id) o <L, Rn> o 73 o < 72, R >

Proof. Let a = < aQ < ... < a n - 1 , <*n > . . . > > =>. Let 7X = < aQ o L, < ... < an_x o L,

R > . . . > > and 72 = < aQ o L, < ... < an_x o L, < aQ o R o L, < ... < a ^ o R o L, < ...

< aQ o R n - 1 o L, < ... < a n - 1 o R n - 1 o L, R> ... > > . . . > > . . . > > > ... > >• Then (1)

and (2) are satisfied. Set <y3 = < L, < R n + 1 o L, < ... < R11"1 o L, R > . . . > > > . Then 7

satisfies (3) and (4) for f(0) = 0 and f(i + 1) = f(i) + n + 1 i = 0, ... , n - 1. Set 74 =

#n (L2, id) o < L, Rn > o 73. Then 74 = < L2 o L, < L2 o R n + 1 o L, < ... < L2 o R n - 1

o L, R > . . . > > > and 74 o < ^ , R > = Xn (a, id) «= . It is easy to see that i v 72, 73

must be as in =4.

3f /? = Xn (o, f) <=> 3^ 372 ^ = \ (a, id) A 3f 72 = f n (I, f) A /? = ^ o

72>

Proof. Obvious

Given a = < aQ < ... < an_1 , R > . . . > > and /? = < PQ ,<...< 0^ , R > ... >

> set a 9 0 = < aQ o pQ < ... < aJJ_1 o / S ^ , R > ... >. We have a ® 0 = Xn (a o L, id)

< I, Rn > o p. In addition, note that I n (a, f) = Xn (f n (a, Ax 0), f).

Let a e Permn ^ 3f a = #n (L, f) A f: [0, n - 1] P e r m u t a t i o n , [o, n - 1]

9 a € Permn <=> 3f a = § n (L, f) A 3m (a o < I, Rn > ) m = I.

Proof. Clear

a 6 Bitn «=> a = < aQ o L, < ... < an_j o L, R > . . . > > where atj e {L, R}
df

i = 0, 1,..., n - 1 .

la a 6 Bit « = * 3 k 3 / k + / = n A 3)86 Perm a = 0 o < I, Rn > o #, (L, AxO) o
n n i£

, AxO)>.
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Proof. Obvious

Let a £ Stringn «=> a = aQ o o a ^ where c. € {L, R} i = 0, 1,..., n — 1

LCTmnft lit a 6 Stringn *=> 30 6 Bi t n 37 6 S e q n + 1 a = L o ) o < I , R > A ) = (i8o < I, R >

R o 7) o < L, < I o L, R > >.

Proof, => Let j J = < y L , < ... < a j o L, R > . . . > > and 7 = < aQo o a ^ o L,

< ttj 0...0 a - o L < ... < a 1 o L, < I o L, R > > . . . > > > . « = . It is easy to see that /?

and 7 must be as above.

If a = R m we write Binary (a, fi) if /? is a binary representation of a i.e. 3n /? e

Stringn so /? = /? ^ o O/?Q with /?. e {L, R} and if bj is defined by

K if ^ = L

1 [0 if / l r R

m = \ x 2n - 1 + + bQ 2°

Lemma i s Binary (a, 0) <=> 3m a = R m A 3n 0 € Stringn A 3 7̂  72 73 7^ 75-

1. ? 1 e Bitn , 72 6 Seq n + 1 , 73 6 Seqn , 74 6 Seqn , ? 5 € Seq n + 1

2. ^ = L o 72 o < I, R >

3. 72 = (7 o < I, R > « R o 72) o < L, < I o L, R > >

4. L o R n - 1 o 73 = R o L

5. 73 = (R o 73 o < I, R > • 73) o < L, < R o L, R > >

6- 73 = * n (L2» id) o < I, Rn > o ? 4

7. * n (I, Ax 0) = #n (R o L, id) o < I, Rn > o 74

8- 5̂ = (((^3 «>< I, R > • 74) » < I, R >) • (R ° 75)) o < L, < I o L, R > >

9. a = L o 7g o < I, I >

Proof. We do «=. From this =4 will become clear. Suppose 7-p 72> 73. 74. 75 are given as
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above. As in the proof of Lemma 14, 7X = < Mn_! ° L, < ... < /iQ o L, R > ... > > for ^ G

{L, R} and 72 = < Mn_x o ... o MQ L < ... < /iQ o L, < I o L, R > > . . . > > , so /? = / ^ °

(4) 73 = < ^ ! ° L < < ^ o L, < R o L, R > >
3 ^ ! ^

2 2
... > > and by (5) i / .+ 1 = i* o j/. for i = 0 n - 2. Thus 73 = < R o L, < ... < R o L,

< R o L, R > > . . . > > . By (1), (5), and (6) 74 = < < R2 , I > ° L, R < ... < < R, I >

L, R > ... > >. Thus 73 o < I, R > • 74 = < (n_x o L , < < £Q o L, R > > >

where

if

if

By (1) and (8) 7g = < £n_x o ... o (Q O L, < ... < £Q o L, < I, R > > ... > >. Thus

b 1 2 n ~ 1 , , K 9o
R n - 1 + + b Q 2

where b. is as above.

We shall now give a Godel numbering of the members of Ji {Ji [x]) by positive

integers. First note that any finitely generated Cartesian monoid can be generated by 2

elements L, 0 where 6 = < R, < a^ < ... « * n , R > . . . > > . for generators a^..., an- Let

m = b n - 1 2 n - 1 + + bQ, where bj G {(

Godel number of 0 , o .„ o jj where

m = b n - 1 2 n 1 + + bQ, where bj G {0, 1} i = 0 ... n - 2, and b n - 1 = 1. Then m is the

b . = L i f

1 [$ if
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Note that every element has at least one Godel number since L o < I, I > = I. Write Num

(a, /?) <=> a = R m and m is a Godel number of /?.

Proposition 6: Num (a, /?)<=» 3m a = R m A 3n 3 ^ 0^ e Stringn A Binary (a, 0^) 3 71 72

7X € Bitn A 72 e Stringn+1 A ^ = L o ? 2 o < I, R > A 72 = ((J1 o < I , R > ) » R o ) 2 ) o < L ,

< I o L, R > > 373 73 = (7X o < <L, ^ >, R > • R o 73) o < L, < I o L, R > > A (5 = L o 73

o < I, I >

Proof. As in Lemmas 14 and 15.

Let S L <M {JC [x]). E is said to be Diophantine if 3a(x), 0{x) e JC [x] s.t.

9 6 £ <=> 37 € JC {JC [x]) a (< 7, 0 >) =

H< 1, 9 >)•

Obviously, every Diophantine subset of JC (JC [x]) is recursively enumerable. Here we solve

the Markov-Lob problem ( [7] pg. 1) for JC (JC [x]).

Theorem 2. Every recursively enumerable subset of JC (JC [x]) is Diophantine.

Proof, First observe that there is no ambiguity in the statement of the theorem since the word

problem for JC (JC [x]) is decidable (infact, polynomial time). We give the proof for JC.

First note that if df £ W is RE then df' = {Rn ; n € <£f} is Diophantine. For, by

Lemmas 3 and 9, the sets and relations {Rn ; n e W} {(Rn, Rm, R n + m ) : n, m e W}, {(Rn, Rm,

Rn m) : n, m 6 W} are Diophantine. Thus by Matiyasevich's solution to Hilbert's 10th problem

([5] pg [7]) every RE such df* is Diophantine.

Now if E is RE then the set of Godel numbers of members of E is an RE subset of

W, say df. Thus 3o(x), /?(x) 6 JC [x] s.t..

72 € df' & 3^eJC o(< 7X , 72 > ) = P (< 7X , 72 >)
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Hence

0 e E ttljeJC 0(7) = 0(7) A

Num (R o 7, 0).

Lemmas 3—15 and Proposition 6 show that the relation Num is Diophantine. Thus £ is

Diophantine.

Corollary, Suppose E L A 6 6* dJ* i s /fySP closed and recursively enumerable. Then S is

projective.

Proof. Let M be as in Proposition 2. The set of /fySP normal forms of terms MNx for

N 6 E generates an RE subset of JC [x], say E', so by the theorem 3a(x), /?(x) s.t. 37 £ JC

w

a(< 7> 0 >) = /j(< 7 , 0 >) <=* tf e S'. Thus N 6 S <=* 3P e F~5 ^ ^ ° ^ °) "* (° - °)

Ax a(< Px, MNx >) = Xx 0(< Px, MNx >)
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