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ABSTRACT

Kinematical definitions of deformations with and without microslip are presented.
Transformation properties for such deformations are shown to follow directly from their
definitions, and Burgers vector is related to the deformation without microslip. A limit
procedure provides a concept of stress without microslip and leads to a natural concept of
elastic response. Various decompositions of local deformation into elastic and plastic parts
proposed in the literature are shown to be compatible with this kinematical setting.

INTRODUCTION

One of the principal methods for incorporating the inelastic behavior of metals into
continuum models of materials is to employ classical notions of deformation and stress in
describing the kinematics and dynamics of an inelastic body, but to introduce additional
measures of deformation, usually called elastic and plastic deformation, into the constitutive
equations for the material under consideration. Although generally successful, this approach
has drawbacks that merit consideration: 1) The variety of possible choices of elastic and
plastic deformation and the difficulty in comparing models based on different choices has led
to a lingering controversy in the literature; 2) the underlying classical kinematics does not
directly incorporate the physical processes of slip at the microscopic level.

My goal in this paper is to present a different method for incorporating the inelastic
behavior of metals into a continuum model that is not subject to these drawbacks. This
utilizes the research still in progress of Del Piero and Owen (forthcoming) on the kinematics
of fractured continua in which classes of deformations broad enough to include explicitly slip
at the microscopic level are defined and developed.

In the second and third sections I describe a collection of deformations called
invertible structured deformations that includes classical deformations, and I show how the
results of Del Piero and Owen (forthcoming) lead to natural notions of deformation without
microslip and deformation due to microslip. All of the considerations in the second and
third sections are purely kinematical, so that these new notions of deformation are not
variables that appear for the first time in constitutive equations. Among the kinematical
properties of invertible structured deformations summarized in the second section is the
Approximation Theorem, which shows that each invertible structured deformation is a limit
of "piecewise classical deformations", or "simple deformations". It is this property of
invertible structured deformations that permits one to interpret their effect on a body in
terms of complicated slip mechanisms occurring in the approximating simple deformations.
The other results in the second section motivate and justify not only multiplicative, but also
additive decompositions of local deformation into parts without microslip and parts due to
microslip. All of the terms and factors in these decompositions have definite transformation
properties under changes in observer and reference configuration that are direct consequences
of the kinematical definitions.

In the fourth section, new results are given that lead to a notion of stress without
microslip for an invertible structured deformation. This stress takes into account differences
between a given element of surface area in the deformed configuration and a corresponding
element of surface generated by an approximation to the given invertible structured
deformation. A passage to the limit yields a simple formula for the stress without microslip
in terms of the Cauchy stress and the left microslip tensor introduced in the third section.

The discussion in the fifth section shows how the availability of both deformation
without microslip and stress without microslip provides a natural concept of elastic response
for a body undergoing invertible structured deformations: the stress without microslip is a
function of deformation without microslip. If the body undergoes a classical deformation
and, in particular, undergoes no microslip, then the elastic response reduces to the classical
relation: the Cauchy stress is a function of the deformation gradient. The relation between
stress without microslip and deformation without microslip is equivalent to an equation that
gives the Cauchy stress as a function of deformation without microslip and of deformation
due to microslip in which the dependence on deformation due to microslip enters through a



multiplicative factor (the transpose of the left microslip tensor).
The final section of the paper is devoted to showing how various decompositions of

deformation into elastic and plastic parts that have been proposed in the literature (Lee and
Liu, 1967), (Clifton, 1972), (Nemat-Nasser, 1979), (Green and Naghdi, 1965) fit naturally
into the present framework of invertible structed deformations. If for each proposed
decomposition the elastic deformation in that decomposition is identified as deformation
without microslip, then the plastic deformation in that decomposition is easily related to one
of the measures of deformation due to microslip introduced in the third section, and the
transformation properties of both elastic and plastic deformation immediately follow. Thus,
in the setting of invertible structured deformations, all the decompositions considered in the
last section are consistent with one another: none has any special status, and each one
identifies a particular measure of deformation due to microslip in the present theory.

The present approach has some connections with theories of continuous distributions
of dislocations and theories of defective crystals. The emergence in a natural way of Burgers
vector, as shown in relation (10), shows that important physical ideas incorporated into
theories of continuous distribution of dislocations (Kroner, 1958) have counterparts in the
kinematics of fractured continua (Del Piero and Owen, forthcoming). Within the class of
invertible structured deformations described here one can identify a smaller collection of
deformations, the neutral deformations discussed by (Davini and Parry, 1991) (Fonseca and
Parry, forthcoming): these correspond in the present theory to the invertible structured
deformations whose right microslip tensor is the gradient of a vector field.

INVERTIBLE STRUCTURED DEFORMATIONS

Let a region ji in space represent a reference configuration for a body. An invertible
structured deformation from <A is specified by giving a deformation g and a tensor field
G. The fields g and G are required to satisfy

det G = det Vg (1)

throughout <A, where det denotes the determinant and v the gradient. For reasons to be
discussed in detail in the next section g is called the macroscopic deformation, G is called
the local deformation without microslip, and (1) then has the interpretation: local volume
changes associated with macroscopic deformation are accounted for entirely by local volume
changes without microslip.

Let s denote a simple shear of a rectangular block Si with unit height; in Cartesian
coordinates,

s ( x r x2, x3) = (xx + a x3, x2, x3) (2)

with a > 0, and consider two invertible structured deformations: (s, vs), called a classical
simple shear, and (s, I), called a simple shear due to microslip. Here, I is the identity
tensor. Results presented below justify the following description: the simple shear due to
microslip is accomplished as if the body were sliced into infinitely many, infinitely thin
parallel slabs, each of which is rigidly displaced an infinitesimal amount parallel to itself,
whereas the classical simple shear is accomplished by smooth deformation without slicing.

The collection of invertible structured represents a broadening of the collection of
classical deformations used in continuum mechanics. In fact, classical deformations are
invertible structured deformations of the form (g, vg), i.e., deformations in which the local
deformation vg is the same as the deformation without microslip G. Invertible structured
deformations were introduced by Del Piero and Owen (forthcoming). We here need only



consider a few of the principal results of that study.

Approximation Theorem: Every invertible structured deformation is a limit of simple
deformations.

A simple deformation is determined by giving 2 "piecewise classical deformation" f which
fractures the body into pieces along crack sites K in J€ and then deforms each piece via a
classical deformation. For example, the rectangular block 9t undergoes a simple
deformation (a , s ) if it is sliced into m slabs by m-1 equally spaced parallel planes

with the slabs then displaced by parallel translations giving relative displacement of
magnitude a / m to adjacent slabs. Here, the crack site <?m is the union of the slicing
planes, and the mapping s displaces each slab by a translation. It is natural to think of
s as a shearing displacement of a deck of cards, where each card represents one of the m
slabs. The term "limit of simple deformations" in the statement of the Approximation
Theorem means that there is a sequence m 1—• (&m, fm) of simple deformations such that
the given invertible structured deformations (g, G) satisfies

g = l im fm (3)

G = 1 im vfm (4)

along with the following condition on the sequence of crack sites m •—• K : no point
x in <A occurs in all the crack sites *. for all j > m for some m = m(x). The limits

in (3) and (4) are taken in the sense of L00 — convergence of deformations and tensor fields.
Relation (3) means that the sequence m •—* f of piecewise classical deformations
approximates the macroscopic deformation g to within any desired accuracy, and relation
(4) means that the gradients vt (away from the crack sites K ) approximate the local
deformation without microslip G as accurately as desired. For example, the deck of cards
sequence
m i—• (<r, s ) satisfies

l i m sm = s (5)

and

Urn vsm = I, (6)

the latter because vsm = I for all m. In fact, the simple shear due to microslip (s, I) is
the limit of the " deck of cards" sequence m i—• (a , s ) of simple deformations. This
conclusion justifies our earlier description of (s, I) in terms of an "infinite deck of
infinitesimally thin cards."



It is important to realize that no crack sites are present in the description of an
invertible structured deformation (g, G), even though crack sites do occur in the
description of the approximating simple deformations (K , f ). This fact is
mathematically accounted for by the condition on m •—• Acm described above, and it is
best understood by regarding the crack sites /cm as vehicles for implementing slip at the
microscopic level: the vehicles K leave no macroscopic trace as fractures but do leave a
macroscopic trace through the difference

vg - G = v l i m f m - Hmvfm, (7)
TT1-» OD m *

when this difference is non-zero. This fact is expressed by the following result from
(Del Piero and Owen, forthcoming).

Characterization of the zone without microslip: the relation vg = G holds throughout a
given region 3 in J& if and only if the invertible structured deformation (g, G) is a limit
of a sequence m »—• (/c f ) of simple deformations whose crack sites K all are

disjoint from the given region 3L

The largest region in ji on which Vg = G holds is called the zone without microslip for
(g, G), and (7) tells us that this region is characterized by the relation

limVfm = Vlimfm . (8)
m+

For the classical simple shear (s, Vs) of 9t, the zone without microslip is all of 9t, while
for the simple shear due to microslip (s, I), the zone without microslip is empty.

The next result from (Del Piero and Owen, forthcoming) gives a further relation
between Vg — G and the presence of crack sites.

Fundamental Theorem of Calculus for Structured Deformations: On line segments
[xv x2]

*2

I (vg(x) - G(x ) )dx = l i m S [ f m ( z m ) ] (9)
z m

where the integral is a line integral over the segment [x^ x2] and the sum E [^m(z
m)] *

19zm
the (finite) sum of the jumps of the deformation f at points z in [x., Xg] where fm is

discontinuous.

Each jump [f (z )] occurs only when the crack site K intersects the segment [xp
so the line integral in (9) provides a further trace of the crack sites m i—• K . When (9)



is applied to a closed polygonal path p, the line integral of vg vanishes and one obtains

- l G ( x ) d x = l i m E [fm(zm)]-
J m-»a> z
p m

This relation identifies — d> G(x)dx as an analogue of the Burgers vector employed in

p
materials science and in theories of continuous distributions of dislocations in continua
(Kroner, 1958).

DEFORMATION WITH AND WITHOUT MICROSLIP

The Approximation Theorem discussed above tells us that, for each invertible
structured deformation (g, G), there is a sequence m •—• (/cm, fm) of simple deformations

satisfying (3) and (4). The latter relation tells us that G is a limit of deformation gradients
Vf computed away from the crack sites * m and, hence, not affected by the jumps in fm

that can occur only across the crack sites. For example, each card of the "deck of cards"
example, translates rigidly relative to the others, so that Vfm = I and G = l i m Vfm = I;

m*oo
thus, G is not affected by the relative slip between the cards in the deck at any stage in the
approximations as m —̂  GO. For these reasons we earlier have described G as (local)
deformation without microslip.

B e c a u s e G is a l i m i t of deformat ion gradients V f , t h e fo l lowing transformat ion
laws for G are i m m e d i a t e consequences of t h o s e for Vf :

Transformation law for G under change in observer.

G —i QG (11)

where Q is the orthogonal tensor associated with the change in observer.

Transformation law for G under change in reference configuration:

G - ^ GH (12)

where H is the tensor associated with the change in reference configuration.

The deformation g = 1 im fm will be called the macroscopic deformation, and Vg
m-*<D

will be called (macroscopic) local deformation associated with (g, G). Relations (11), (12),
and the usual transformation laws for deformation gradients tell us that the local
deformation Vg and the local deformation without microslip G transform in the same way
under changes in observer and under changes in reference configuration.



It is important to use both the local deformation Vg and the local deformation
without microslip G associated with (g, G) to define and study various measures of
"deformation due to microslip". We here shall consider three such measures M ,̂ Mr, and

M defined in terms of Vg and G via the relations

Vg = M^ G (13)

Vg = GM r (14)

and

Vg = G + M. (15).

Although the relation (15) is an additive, rather than a multiplicative relation of the
type (13) and (14), relation (15) is a natural decomposition of local deformation for two
reasons. First of all, because M = Vg — G and because Vg and G have the same
transformation laws, it follows that Vg, G, and M all transform in the same way under
changes in observer and under changes in reference configuration. Second of all, the relations
(9) and (15) yield the formula

X2
f M(x)dx = 1 im S [ f j z j ] (16)
** X- m-* GO z' x l m — zm

and we recall that 1 im E [fm(znJ *s *^e ^^^ °* *^e s u m °^ *ke J11111?8 in ^m
 o n t-ne line

m
segment [x ,̂ x2]. Therefore, integrating (15) from Xj to x 2 along [x ,̂ x2] yields the

relation

X 2 X 2
g(x2)-g(X l)=[ G(x)dx+f M(x)dx, . (17)

2
and (16) then tells us that M(x)dx represents the portion of the relative deformation

x

g(x2) — g(x1) that is due to microslip. Consequently, we are led to call M the (local)

deformation due to microslip.



We turn now to the multiplicative relations (13) and (14) that define M^ and Mr:

Mt = Vg G"1 (18)

Mr = G"1 Vg. (19)

The tensors M, and M will be called the left—microslip tensor and the right—microslip

tensor, respectively, for (g, G). They arise naturally in the following decompositions for the
given invertible structured deformation (g, G):

(g, G) = (i, M^1) o (g, Vg) (20)

(g. G) = (g, Vg) o (i, M^1) (21)

Relation (20) depicts (g, G) as being carried out first by performing the classical

deformation (g, Vg), followed by the invertible structured deformation (i, M~7 ), where i

denotes the identity deformation: i(x) = x, for all points x. The invertible structured

deformation (i, MT ) is called a pure microslip, because no material points are moved, and

yet, for (i, MT ), the deformation due to microslip need not be zero. Similarly, the

invertible structured deformation (i, M" ) in (21) that precedes the classical deformation

(g> Vg) is also a pure microslip. Thus, we see that the microslip tensors M * and M

determine the pure microslips that occur in relations (20) and (21). Moreover, there are
simple transformation laws for M^ and Mr that follow from those for Vg and G:

Transformation laws for M* and M under changes in observer.

M ^ Q M ^ QT (22)

M r - M r . (23)

Transformation laws for M^ and Mf under changes in reference configuration:

M£ — Mt (24)

M r—.fl^MjH (25)



It is worth recording here the microslip tensors M *, Mf and the deformation due to

microslip M for (s, I), the simple shear due to microslip:

M^ = Mr = Vs (26)

M = V s - L (27)

Finally, we note the following consequence pf (1), (18) and (19):

det Mr = det M^ = 1, (28)

so that there is no volume change associated with the pure microslips (i, MT ) and

(i, M~ ) in (20) and (21). Indeed, this justifies our use of the term "microslip" in place of

the term "microfracture" used in the discussion of general structured deformations
(Del Piero and Owen, forthcoming).

STRESSES WITH AND WITHOUT MICROSLIP

We wish now to explore how the microslip that is included in the kinematics of
invertible structured deformations can affect the measures of stress that enter into
constitutive equations that describe the inelastic behavior of materials. The following simple
consideration suggests that stresses do need to be reexamined when microslip occurs.
Imagine slicing by a plane x.. = constant the image s($) of the rectangular block St

under the simple shear due to microslip (s, I), with s given by (2). The smooth surface
df in s(^) so obtained is a rectangular region in a plane x. = constant whose preimagine

s~~ (df) is a slanted rectangular region in a plane no longer parallel to df. To examine the
effects of microslip, we approximate (s, I) by a piecewise—rigid deformation (<r, s )

(the shearing of a deck of cards). Within the j card, s~ (<f) determines a smaller slanted
rectangular region which, under the piecewise rigid deformation sm , remains slanted, i.e.,

not parallel to the plane x. = constant. Thus, the image under s of the slanted

rectangular region $ (df) under s is a parallel collection of m smaller, slanted

rectangular regions that approximate the rectangular region df^ much as the parallel
slanted slats ol a partially opened Venetian blind approximate the flat, vertical rectangular
region defined by the outside border of the blinds. Moreover, the angle of slant is
independent of m, and so represents a correction to the normal of df due to the presence
of microslip. Thus, away from the slip planes, i.e., within one of the cards, the contact

surface s (s~~ (o^)) would differ from df.

These considerations lead to the following problem: given an invertible structured
deformation (g, G), and a smooth surface df in g ( ^ ) with normal vector field n,
determine how the contact force T(y)n(y)da associated with a given (Cauchy) stress

*df y



field T should be corrected for the presence of microslip. A natural outgrowth of the
considerations in the previous paragraph is the following solution to this problem: find a
sequence m •—• (/c , fm) of simple deformations that approximate (g, G) and use the

following limit

l i m f . _ , T(z)N(z)dA, (29)131

"mvo v~ ' A "m/

as a correction to T(y)n(y)da . The surface f (g {&) \ /cm) represents the material

points g~ (G^) that are away from the crack site K , placed in the positions determined

by the deformation f that approximates g. Thus, each point z in fm(g~ (^) \ * m ) is

away from the images of the crack sites, and the corresponding normal vector Nm(z) to

*m^"" ^^ ^ ^m) ^ ^ differ from the normal vector n(y) to df at y, with y and z
related by

« = y g"1^)). (30)

This relation tells us that

Nm(z)dAz = det(V(fm o g-1)(y))(V(fm o g- 1)rT(y)n(y)da y (31)

where we have used the transformation law for elements of area. By using the chain rule we

obtain from (31), with x = g (y),

N m « d A z " d e t 1 1 1 1 T

as m —» OD. This relation, together with (1) and (18), tells us that

1 i m (N (2)dA ) = MlJ(g-1(y))n(y)da (32)
m-»oo <*



so that

1 im [ , T(z)N (z)dA = f T M M T
m-ct JfTn(g K ) \ «m) >

(33)
All * J <, J

"m̂

We may now identify the tensor field

O g"1) (34)

as the stress without microslip for the invertible structured deformation (g, G) and stress

field T
briefly
field T. It is convenient to omit the compositional factor g in (34) and write more

(35)

Twith the understanding that, when T is evaluated at a point y in g (^ ) , M * is to be
i

evaluated at the corresponding point x = g (y) in <A.

Of course, the relation (32) also permits us to identify

(nda)v : = MT
£ nda (36)

(with the same understanding about evaluation) as the element of area without microslip for
a surface <*f in g ( ^ ) , where in (36) nda is the actual element of area for of.

The relation (33) and the definition (34) permit us to regard T\ and (nda)v as the

stress field and element of area that would be felt if one could isolate a material element
from the microslip that generally occurs throughout the body. We note that the actual
element of area nda agrees with (nda)i if and only if

M'J n = n <=> (M'J - 1 ) n = 0

<=» (M^ - I ) T n = 0 <=* G~TMT n = 0

<=>MTn = 0, (37)



where we have used the relation

M,G = G + M

J.
and the invertibility of G in the last two steps of the above argument. For M n = 0 to
hold, it is equivalent to have

n • Mv = 0 (38)

for all vectors v which means that the relative deformation Mv due to microslip for line
elements parallel to v has zero component in the direction n. Thus, a surface with normal
n satisfies

(nda)y = nda (39)

if and only if the relative deformation due to microslip is perpendicular to n, i.e., is tangent
to the given surface. For the simple shear due to microslip (s,I), relations (27) and (37)
easily yield the conclusion: (39) holds if and only if n • e^ = 0, with e.̂  the unit vector in

the positive x. — direction. In particular, if df is any plane parallel to the x. — axis, then

relation (39) holds on <$f.

It is natural to define the stress due to microslip

In general, Ty and T m need not be symmetric, but there are important situations for

applications in which one can deduce the symmetry of T m and Ty as noted in the next

section. In spite of the lack of symmetry of T m and Ty , relations (22), (24) and (35) tell

us that each transforms in the same way as T under changes in observer and changes in
reference configuration:

QT

Tm

(41)



and

\ * 1
\ I (42)

T
m

A DEFINITION OF ELASTIC RESPONSE

In classical continuum mechanics, the notions of an elastic material and of elastic
response are direct generalizations of Hooke's Law that allow for non-linear and anisotropic
response. Thus, for a classical deformation (g, vg), elastic response is defined by the
constitutive equation

T = y(vg) (43)

relating the Cauchy stress T and the macroscopic local deformation vg. In the present
non-classical setting of invertible structured deformations (g, G), a natural definition of
elastic response emerges immediately:

(44)

This relation gives the stress without microslip as a function of the deformation without
microslip. We call «9\ the response without microslip: &K is a function that can be

determined by subjecting the body to classical deformations (g, vg) alone, because, for
classical deformations, there holds G = vg, so that M * = I and Ti = T.

The transformation laws (41), (42) for Ty and (11), (12) for G permit us to write

the condition of independence of observer for the response without microslip as:

(45)

for all orthogonal tensors Q and all G, and permit us to write the condition that H be a
symmetry transformation for the response without microslip as

(46)

for all G. In particular, we say that the response without microslip is isotropic if (46) holds
for all orthogonal tensors H.



Let us suppose that the response without microslip is isotropic. Relations (45) and
(46) then tell us that

= J\0\), (47)

where G = V» Ri is the polar decomposition of G, and also that

(48)

for all orthogonal tensors Q. It is not difficult to show from (48) that <?\ is
symmetric—valued, i.e., «9\(G) is a symmetric tensor for all choices of G, and we may

conclude that the stress without microslip is symmetric when the response without microslip
is isotropic:

T* = Ty (49)

In addition, (35), (49) and the symmetry of the Cauchy stress then yield

TM'J = M^T. (50)

In the case of isotropic response without microslip, relations (35), (44), (47), and (50) then
imply

T = M / y^(V^) = ^(V^)M^T , (51)

where S'x satisfies the condition (48).

Even in the case of anisotropic response without microslip, relations (44) and (35)
permit us to relate T, G, and M /

T = y,(G)M^T. (52)

Thus, when the body has elastic response in the sense 0/(44), the Cauchy stress is given
explicitly as a Junction of the deformation without microslip and the left microslip tensor.



Using relations (13) — (15) we may rewrite (52) in the equivalent forms

T = y^(G) (GM"1 G ^ ) T (53)

and

T = y , (G) (MG"1 + I)"T . (54)

RELATIONSHIP TO PHENOMENOLOGICAL THEORIES OF PLASTICITY

When classical notions of deformation and stresses are employed to describe the
inelastic behavior of materials, it is necessary to introduce additional "interval variables"
into constitutive relations in order to describe deviations from elastic behavior. Such
variables can be introduced in a variety of ways, many of which give a natural physical
interpretation that facilitates their use in detailed models of elastic—plastic behavior.
Nevertheless, the variety of possible choices of variables such as "elastic deformation" and
"plastic deformation" has created a lingering controversy in the literature over the choice of
internal variables and over the choice of transformation laws for such variables. One reason
that this controversy persists lies in the magnitude of the task of using each choice of
variables to give detailed quantitative and qualitative predictions for specific materials and
of comparing the different predictions that arise from different choices of the variables.

I believe that the conceptual framework described here can contribute to settling this
controversy by offering a natural choice of the variable used to describe "elastic
deformation". Thus, I propose to use invertible structured deformations (g, G) to describe
the deformations possible in elastic—plastic bodies and to identify vg as tne macroscopic
deformation gradient and G as the elastic deformation. The advantages of doing so rest
not only on the results from Sections 2 and 3, which show that G has the definite, purely
kinematical identity of deformation without microslip and has definite transformation laws,
but also on the fact that, once a common notion of elastic deformation has been identified,
apparent conflicts among the variety of choices of "plastic deformation" and of
transformation laws for plastic deformation disappear.

To illustrate this last advantage, let us indicate how a variety of proposed
decompositions of deformation into elastic and plastic parts all can be expressed within the
framework of invertible structured deformations.

The decomposition of Lee and Liu (1967)

If we put F e := G, F := vg, then the relation

F = F eFp (55)

proposed by Lee and Liu implies that

FP = Mr, (56)



i.e., the plastic deformation F p equals the right microslip tensor defined in (19), and the

transformation laws for F p become those for Mr:

F — QF =* F p - - F p (57)

F — FH => Fp — H"1 FpH. (58)

The decomposition of Clifton (1972)

If we put F e := G, F := vg, then the relation

F = F p F e (59)

proposed by Clifton implies that

Fp = M ,̂ (60)

i.e., the plastic deformation F p equals the left microslip tensor defined in (18), and the

transformation laws for F p become those for M,:

F —> QF =» Fp —• Q F p Q T (61)

F —» FH => F p —> Fp. (62)

The decomposition of Green and Naghdi (1965)

If we put E e := ^ (GT G - 1 ) and E := J (vgT vg - 1 ) , then the relation

E = E e + Ep (63)

proposed by Green and Naghdi implies that

E
p = 2<76T V6 ~ G T G ) (64)



and yields the transformation laws

F — QF => E p — E p (65)

F —• FH =* E —» HT E H. (66)

The decomposition of Nemat—Nasser (1979)

If we put F e := G, F := vg, then the relation

F = F e + F p - I (67)

arising from Nemat—Nasser's considerations implies that

Fp = M + I (68)

i.e., the plastic deformation Fp equals the deformation due to microslip plus the identity
and yields the transformation laws

F —i QF => F p —i Q F p (69)

F —* FH =» Fp —• FPH, (70)

It should be emphasized that the main step in including within one framework all of
the above decompositions is that of identifying the usual deformation gradient with vg and
identifying elastic deformation with G, the deformation without microslip. Of course, the
more difficult task of deciding which relations between stress and elastic and plastic
deformations are most appropriate in specific contexts has been the subject of a large body of
research and cannot be settled once and for all simply by writing down one set of
constitutive assumptions. However, the definition ol elastic response given in the previous
section and its consequence (52) may provide a useful addition to the many proposals
already under consideration, because it is closely related to the more restrictive constitutive
assumption

T = f (G) (71)

used by many authors and yet provides for an explicit and simple dependence of the Cauchy
stress on deformation due to microslip.
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