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Abstract

Suppose that n tokens are arbitrarily placed on the n nodes of a graph.
At each parallel step one token may be moved from each node to an adjacent
node. An algorithm for the near-perfect token distribution problem redis-
tributes the tokens in a minimum number of steps, so that, at the end, no
more than O(l) tokens reside at each node. (In perfect distribution, at the
end, exactly one token resides at each node.)

In this paper we present a simple algorithm that works for all extrovert
graphs, a new property which we define and study. In terms of connectivity
requirements, extrovert graphs are in-between expanders and compressors.
Our results lead to an optimal solution for the near-perfect token distribution
problem on almost all cubic graphs. The new solution is conceptually simpler
than previous algorithms, and applies to graphs of minimum possible degree.
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1 Introduction

Suppose that n tokens are arbitrarily placed on the n nodes of a graph, with no more
than M tokens at each site. At each parallel step one token may be moved from
each node to an adjacent node. An algorithm for the near-perfect token distribution
problem redistributes the tokens in a minimum number of steps, so that, at the end,
no more than 0(1) tokens reside at each node. (In perfect distribution, at the end,
exactly one token resides at each node.)

Algorithms for the near-perfect token distribution have direct applications to
fundamental problems in parallel and distributed systems. We give two examples
here: First, consider each node as a processor, each edge as a communication line,
and each token as a message. An efficient solution to the near-perfect token distri-
bution problem can be combined with an efficient permutation routing algorithm to
give an efficient routing algorithm for an arbitrary communication request. Second,
consider each token as an independent process awaiting execution and each node
as a processor. Then an efficient algorithm for the near-perfect token distribution
problem can be used for workload distribution among the processors.

These, and other applications, require a solution in a fully distributed model,
where all information processing are done by processors that reside at the nodes of
the graph. When the computation is initiated, each process has no information on
the status (e.g. number of tokens) of other processors in the system. Information
is transmitted via messages along the edges of the graph. In each step a processor
can either send one token through an edge, or one O(logn)-bit message. Further-
more, most applications require an efficient solution on graphs that are as sparse as
possible.

Peleg and Upfal [PU89] have shown that any solution to the near-perfect token
distribution problem requires Cl(M + logn) parallel steps, and this runtime can be
achieved only on expander graphs. They gave an optimal 0(M + logn) algorithm
for sqrt (a, /3)-expander graphs. These are n node, d-regular expander graphs with
the following additional strong properties: there exist constants a > 1 and /3 > 0
such that any set of vertices X, with \X\ < /?n, has at least a \X\ neighbors outside
X and there exists an i with 0 < i < d such that a > (d + i2)/(i + 1). These two
conditions imply that the expansion is at least y/d.

In this paper we present an optimal solution for almost all cubic graphs, which
is the best one can hope for from the point of view of the minimum degree required.

Our solution is based on identifying a novel property, called extrovertness which
replaces the sqrt-expander property of [PU89]. Extrovertness is stronger than the
expansion property but weaker than the compression property of [Pi85] (i.e every
extrovert graph is an expander, and every compressor graph is an extrovert graph).
In Section 2 we present an asymptotically optimal solution for any extrovert graph,
which immediately leads to a solution for any graph G such that for some bounded
constant c, the union Ui<cG

l is extrovert. The main result of this paper, which is
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perhaps of independent significance, is given in Section 3: we show that for almost
all cubic graphs G, the graph G U G2 (that is, the graph of all paths of length at
most two in G) is extrovert. (In fact, it can be even shown that for almost all cubic
graphs the graph G2 is extrovert, but the proof is rather intricate and the constants
are much worse.)

2 The New Algorithm
Our new approach to the token distribution problem is based on the extrovertness
property:

Definition 1 A vertex v e S C V is called extrovert in S if v has strictly more
neighbors inV \ S than it has in S.

Definition 2 A set S C V is called 6-extrovert if at least b\S\ of its vertices are
extrovert

Definition 3 A graph G is called (a, 6)-extrovert if any set S CV of size at most
a\V\ is b-extrovert.

Our algorithm gives an optimal solution for any n-node (a, 6)-extrovert graph

Let d be the maximum degree in G and let 7 = (2d+ l)/(2d + 2). The algorithm
works in log^ M phases. (Recall that M is the initial maximum number of tokens
in any node.)

Let tj(v) be the number of tokens at node v at the start of phase jf, and let
Mj = maXt, {tj(v)}. Let Uj = {v : tj(v) > Mj/2} denote the set of "heavily loaded"
nodes.

Each phase reduces the maximum number of tokens in any node by a factor
of 7, until no vertex has more than 2/a = 0(1) tokens. Note that in any phase
\Uj\ < a \V\ because Mj > 2/a and the total number of tokens is \V\.

At the beginning of phase j the algorithm constructs a dag (directed acyclic
graph) Dj = (Vj,Ej) with the following properties:

1. Uj C Vj C V. (All heavily loaded vertices are in the dag.)

2. Each edge in D is the directed version of some edge in G, and each edge in G
has at most one directed version in D.

3. For every v 6 Ujy outdegree(v) > indegree(t;).

After the dag is constructed, phase j consists of Mj/(2d + 2) iterations; in each
iteration each node in Vj sends one token (if it has one) through each of its outgoing
edges in Dj.



Lemma 1 M7+1 <

Proof: Let v be an arbitrary vertex in G. If v is not in Dj, and therefore not in Uj,
then it does not receive (or send) any tokens in phase j , and thus it has less than
Mj/2 < jMj tokens at the end of this phase.

If v is in the dag but not in Uj, it starts the phase with less than Mj/2 tokens,
and it may receive in this phase no more than dMj/(2d + 2) tokens. Thus at the
end of the phase it has no more than (2d + l)/(2d + 2)Mj = ̂ Mj tokens.

Finally, if v G Uj, it sends more tokens than it receives in each iteration. Thus,
it loses at least Mj/(2d + 2) tokens in phase j and has less than jMj tokens at the
end of the phase. •

For a set of vertices 5 C V let $(S) = {v G S : v is extrovert}. Given an
(a, 6)-extrovert graph we construct the dag Dj, "bottom-up," using the following
procedure.

1. Set W +- Uj.

2. Repeat until W = 0:

(a) Connect all vertices in $(W) to all of their G neighbors outside W.

(b) W := W

Lemma 2 The above procedure constructs a dag with the required properties, and
terminates in O(logiV) iterations.

Proof: Clearly when the procedure terminates, all of Uj is in the dag, and each edge
in G was used no more than once. When a vertex v G Uj joins the dag it has more
neighbors in the dag than in the remaining W, thus outdegree(v) > indegree(v) in
the final dag. Since the graph G is (a,6)-extrovert, and \W\ < \Uj\ < a\V\} in each
iteration |$(W)| > 6|W|, and the procedure terminates within O(logn) iterations.
•

Corollary 3 If G is an (a,b)-extrovert graph, then the algorithm solves the near-
perfect token distribution problem on G in O(log M) phases. When phase jr — 1 ends,
no vertex has more than Mj = 7J~1M tokens and phase j takes 0{^~lM + logn)
parallel steps.

If we execute the O(logM) phases sequentially the total run time is O(M +
log n log M). Peleg and Upfal [PU89] have shown that all the dags for the last
O(loglogn) phases can be constructed in parallel. Since logn becomes dominant
only when Mj < logn, this suffices to reduce the total run-time to O(M + logn).
The same idea can be applied to our algorithm. We briefly sketch the construction
here, the reader is referred to [PU89] for a more detailed description.



The difficulty in constructing the dags in parallel is that in order to construct
the dag Dj one needs to know the set Uj, and the set Uj is defined in turn, by the
dag Dj-\. This difficulty is overcome by replacing the set Uj in the construction, by
an overestimate set Uj that contains Uj and is easier to compute. We also compute,
for each node, an overestimate of the number of tokens it will have at the end of
each phase.

The overestimate sets are constructed sequentially as follows: Assume that we
have already constructed the set Uj, and that each node has a bound on the number
of tokens it will have at the end of phase j — 1. We run the first clog log n phases
of the construction of Dj, assuming that Uj = Uj. Let Wj denote the set W at
the end of these O(loglogn) phases. We fix the number of phase we run so that
\Wj\ = O(n/(logn)2).

Now we compute for each node, a bound on the number of tokens it will have at
the end of phase j . If a node v has a neighbor in Wj, it assumes that this neighbor
will be connected to it in Dj, and will send to it 7J~1M tokens. Besides this, if v
is in the partially computed dag, it can compute in O(loglogn) time, a bound on
how many tokens it will receive in phase j . Thus, every node which potentially is
in the dag Dj, has an estimate on the number of tokens it will receive in phase j .
Vertex v is in Uj+i if according to this estimate it has more than jjM/2 tokens, at
the end of phase j .

These estimates add no more than d|W |̂My "dummy" tokens in each phase. We
can fix the parameters so that no more than n dummy tokens are created in the
whole process, thus, this procedure can be executed until Mj < 4/6. Once the sets
Uj are constructed, the O(loglogn) dags can be constructed in parallel in O(logn)
parallel steps, with messages of size O(loglogn) bits. Thus, we prove:

Theorem 4 The near-perfect token distribution problem can be solved on any (a, b)-
extrovert graph G in O(M + logn) time.

Let H{G,c) = \Jj<cG
{, for some constant c (i.e., the graph H{G,c) has an edge

for any path of length c or less in G). Clearly, a parallel step on the graph H(G, c)
can be simulated on the original graph G in constant time. Thus, our result applies
to any graph G such that H(G, c) is extrovert for some constant c.

The main result of this paper, which we prove in the next section, is that if G is a
random cubic graph, then with high probability the graph H = GUG2 is extrovert.
Thus we prove:

Theorem 5 There is an 0(M + logn) solution for the near-perfect token distribu-
tion problem on almost all cubic graphs.



3 Extrovert graphs via random cubic graphs

We first state three properties that almost all random cubic graphs possess; then
we show that if a cubic graph G has these properties, then the graph H = GU G2

is extrovert.
In the definition of these properties G = (V, E) is a cubic graph on n vertices,

S is a subset of V, and i{S) is the number of edges that are contained in S. All
constants were chosen for convenience and no attempt was made to optimize them.

Property 1 / / S C V and \S\ < (lnn)/4 then i(S) <\S\.

Property 2 For any fixed e > 0 there exists a function a(e) > 0 such that for
SCV,if \S\ < a(e)n then i(S) < (1 + c)

Property 3 There are fewer than In Inn vertices on cycles of length less than
In In In n

We will now prove that almost all cubic graphs have these three properties. We
will use the model of Bender and Canfield [BC78] and Bollobas [Bo85]. Specifically,
we will adopt the notation of [Bo85].

Let [k] stand for the set {1 , . . . , fc}. Let W = [3n] and let W{ = {3(i - 1) +
1,3(i — 1) + 2,3z}, for i = 1,2,..., n be a partition of W into n sets of size 3, called
blocks. For w G W we define ^(w) = [w/3] s o that w € W^w). The elements of W
are called points to distinguish them from the vertices of the graph.

A configuration is a partition of W into m = 3n/2 pairs. The set of configurations
is denoted $. For F € $ let /i(F) be the multigraph with vertex set [n] and m edges

We consider $ as a probability space in which each F G $ is equally likely. In
this setting, for large n, the probability that /i(F) is a simple graph is at least 1/10
and conditional on this, each cubic graph with vertex set [n] is equally likely. We
need only show therefore that almost all /i(F) have the above three properties.

Proof of Property 1:

(lnn)/4

Pr(Prop. 1 fails) < ]T E(# of fc-sets with at least k + 1 edges)
Ar=4

(In



Explanation of second inequality: (?J counts sets of k blocks. Focus now on the
blocks W\) W2,..., Wk^ If vertex set {1,2,.. . , k} contains more than k edges then
there are k + 1 pairs contained in X = W\ U W2 U . . . U Wk. We can choose the
lowest numbered point of each pair in at most (k+i) ways- Having fixed these as
ai, a2, . . . , ak say, the probability that they are each paired in X is at most (k/n)k+1,
for given the pairings of ai, a2,..., a,-, the probability that al+i is paired in X is at
most k/n. •

Proof of Property 2: For definiteness let

a(e) =

Then

Pr(Prop. 2 fails) <

(Split the range at, say, k = y/n. \i k < y/n then k/n < 1/^/n so the sum up to
k = y/n is O(l/n2c); for A: > ŷ n the summand is at most 2~~fc.) •

Proof of Property 3: Say that a cycle is small if it has at most t = In In Inn
vertices. Then

E ( # of vertices on small cycles) < Y, k ( u)o(k "" 1)!6*? ( ^ ^
10 \kj £ \in — Z

Jb=3

and so we can use the Markov inequality. (Explanation of first inequality: having
chosen k vertices and a cyclic ordering in (l)^(k — 1)! ways, there are Sk choices for
the points in pairs not in edges of the cycle and 2k~l ways of pairing up the points
in the blocks to make the edges of the cycle. The probability that these k pairs exist
is at most (3n - 2k)~k.) D



Theorem 6 If G is a cubic graph that has properties 1, 2, and 3, then the graph
H = G U G2 is extrovert.

Proof: For a set S C V let

= {v G S : v is extrovert in S with respect to H}

From now until the end of the proof all adjacency and neighborhood relations,
when not specified otherwise, are with respect to G.

Let 6 be a sufficiently small constant and let S be a set of vertices with | 5 | <
\a(e)n. Let T = T(S) be the set of neighbors of 5 in G. (Thus \S U T\ < a(e)n.)
Let i = i(S), the number of edges in S. Now partition S and T as follows: Let

Sj = {v € S : t; has j neighbors in 5} , j = 0,1,2,3.

7} = {t> ^ 5 : t; has j neighbors in S} , j = 1,2,3.

Finally let 5 = l^l, Sj = |5y|, and ^ = |Tj|.
We first prove that S is extrovert in H under two assumptions:

1. No vertex of S lies on a cycle of length < 4 in G.
2. | 5 | > 5* > 0 where 5* is an absolute constant.
These assumptions are removed in the last part of the proof.

Under Assumption 1, each vertex in V has 9 distinct neighbors in H. For v to
be extrovert with respect to S in / / , it must have at least 5 neighbors in H outside
S. Having two G-neighbors in 7\ is sufficient, but if v has no neighbor in S3, then
one G-neighbor in T\ is sufficient.

There are two cases in the proof. In the first case, i > (1 — oc)s for a suitable
chosen a > 0. In this case T2 U T3 is quite small, and the proof works readily; In
the second case, i < (1 — a)s, and the graph induced by S breaks into k > as
components out of which kf > (1 — 2a)k are trees of size at most or2. Here we
estimate the number of extrovert vertices in terms of ak.

We start by deriving a series of relations among the Sj's and the tj's.
From Property 2 applied to S U T2 U T3 we deduce that

or

(1 - e)t2 + (2 - e)t3 < (1 + e)s - i. (1)

Let
Sf = [v e S2 : v has no neighbor in S3}

and let s | = |S | | . Observe that if v e 5 | is adjacent to w G Tx then v G $(5).
Clearly

s9
2>s2- 3s3 (2)

8



Claim 7
$1 > ss — 2es

Proof:
Consider the graph Gs induced by S. Let C be a component of Gs with at least

one edge. Let C have G{ vertices of degree t, for i = 1,2,3, and let a = \C\. Due
to Property 2, by removing at most ea + 1 edges from C we can obtain a spanning
tree C. Observe that in C

a\ =

Now add back the removed edges. Each additions reduces the difference between
the number of degree 3 vertices and degree 1 vertices by at most two. Hence

<7i — 03 > 0*i ~ <*z — 2(ea + 1) = — 2ea.

Now add up over all the components of S. •

Now from equations (2) and Claim 7 we obtain that

= s0 + si
< so + Sl
< SQ + S\

+
+
+
4
4

+
+
+

S3

4s3
4si + 8es

Hence

s0 + 5*i + sf > (1 - 86)5. (3)

Now choose a small but large compared with e. There are two cases.

Case 1: i > (1 — a)s.

We deduce from (1) that

2
2*2 + 3t3 < — ( a + e)s < 3as. (4)

The number of edges coming from T2 U T3 into 5 is 2*2 + 3*3. Delete from S all
the vertices hit by such edges. A remaining vertex v has out-of-5 neighbors only
in T\, thus v has at least two such neighbors if v G So U 5i and at least one such
neighbor if v G S2 - Hence

g(S) >

(5)

> r(s0 + si + ŝ ) - 3as
o



Case 2: i < (1 — a)s.

In this case the number of components k of Gs satisfies

k > as. (6)

The number of components of Gs of size greater than s/(ak) is at most ak. Hence
there are at least (1 — a)k components of size < s/(ak) < a~2.

Claim 8 If i < (I — a)s then the number of components of S of size < a"2 that
are trees is at least (1 — 2a)k.

Proof: We can assume without loss of generality that GSUT is connected.
If s +1 > A In n/ln In n then we use Property 3 to assert that at most o{k) of the

small components are not trees.
If s + t < A In n/ln Inn then at most one of the small components is not a tree;

otherwise two non-tree components can be connected via T and contradict Property
1. By Assumption 2

s > 5* > a~2 (7)

so ak > a2s > 1.
Hence in both cases the number of small components that are not trees is less

than ak. •

Suppose now that the k components have sizes ci,C2,... ,cjb, and that these
components span z*i, 2*2,... ̂ ik edges. We re-write equation (1) as

(1 - e)t2 + (2 - e)t3 < (1 + e) £ ct - £ it
l<t<k l<t<k

c< - *'*) + €s<k + es (8)

Now we divide the components of s of size < a"2 that are trees into three classes:

• k\ trees that are isolated vertices.

• &2 trees that are paths of length > 1.

• £3 trees that have at least one degree 3 vertex.

We now classify the leaves of these trees. Within these trees there are

• l\ isolated vertices adjacent to Ti, and thus k\ —1\ other vertices triply adjacent
toT2UT3 .

10



• l2 end-of-path leaves adjacent to Ti, and thus 2k2 - l2 other vertices doubly
adjacent toT2UT3.

• /3 other leaves doubly adjacent to 7\, and thus at least 3A;3 — /3 other vertices
adjacent to T2UT3.

Note that lx + l2 + /3 counts extrovert vertices with respect to H. Counting edges
out of T2 U T3 we get the inequality

2*2 + 3i3 > 3(h - h) + 2(2k2 - l2) + (3ks - Z3)

or
3/i + 2/2 + h > (3^! + Ak2 + 3k3) - (2*2 + 3i3)

and hence
3(h +h + h) > (h +k2 + k3) - -(*2 + 2t3).

Now using Claim 8 and equation (8) and assuming
e < 1/3, we obtain that

\(h + h + h) > (1 - 2a)k - jl—\{k + es)

Hence

9(S) > ((1 - 6a) a - 3e) s/3 (9)

Equations (5) and (9) conclude the proof under the two initial assumptions, since
they show that for any set S C V, if 1*91 < a(e)n, then g(S)/ \S\ is greater than a
certain constant. We now proceed to remove the assumptions that we made.

Let b be the lower bound on g(S)/\S\ derived above. Suppose first that |5 | >
(In n)/4. Remove the k < In In n vertices in 5* that lie on cycles of length < In In In n,
thus obtaining 5". All extrovert vertices in S' are extrovert in S with the possible
exceptions of vertices at distance 1 or 2 from the removed vertices. (Because the
removed vertices are on cycles, there are only 3k neighbors.) Therefore

g(S)>g(S')-3k>(b-o(l))\S\.

Suppose now that

By Property 1, there is at most one cycle in S U T(S) U F2(5). If this cycle has
length less than 4 and contains vertices of 5, remove them to obtain £". Then, as
before

g(S) > g(S') - 12 >b(s - 4 ) - 12 > | .

11



It remains to consider the case 2 < |5 | < s*, where s* = max{8 + 24/6,a 2 } ,
to accommodate also equation (7). We shall argue that 5 contains at least one
extrovert vertex.

Consider the graph K that consists of all edges incident to S in G. (In other
words, K is the graph induced by S U T except for the edges whose both endpoints
are in T.) Without loss of generality we can assume that K is connected.

Clearly K has the following properties:

• Any v £ S has degree 3 in K.

• Any leaf in K belongs to T\.

• Any neighbor of a leaf in K belongs to 5.

• There is at most one cycle in K.

If K is a tree then there must be a v € S that is the neighbor of two leaves in
K, and therefore is extrovert in S. Similarly if K contains a cycle, then if there is
any v € S that does not belong to the cycle, then there must be a v1 G S that is the
neighbor of two leaves in K. (Consider the tree that "hangs" at v away from the
cycle.) It remains to consider the case when all the vertices in S belong to a cycle
in K. But then all vertices in S are extrovert. •
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