
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

ON K E Y S T O R A G E IN S E C U R E N E T W O R K S

by

Martin Dyer
School of Computer Studies,

University of Leeds, Leeds, U. K.

and

Trevor Fennor
Department of Computer Science, Birkbeck College

University of London,London, U. K.

and

Alan Frieze

Department of Mathematics, Carnegie Mellon University,
Pittsburgh, PA USA

and

Andrew Thomason
Department of Pure Mathematics and Mathematical Statistics

University of Cambridge, Cambridge, U.K.

Research Report No. 92-142

January, 1992

510.6
C28R
92-142

On Key Storage In Secure Networks

Martin Dyer*
School of Computer Studies, University of Leeds,

Leeds, U.K.

Trevor Fenner
Department of Computer Science, Birkbeck College

University of London, London, U.K.

Alan Frieze*
Department of Mathematics, Carnegie-Mellon University,

Pittsburgh, U.S.A.

Andrew Thomason
Department of Pure Mathematics and Mathematical Statistics

University of Cambridge, Cambridge, U.K.

January 17, 1992

Abstract

We consider systems where the keys for encrypting messages are
derived from the pairwise intersections of sets of private keys issued
to the users. We give improved bounds on the storage requirements
of systems of this type for secure communication in a large network.

•Supported by NATO grant RG0088/89
Supported by NSF grant CCR-8900112 and NATO grant RG0088/89

1 Introduction

The problem of secure communication in a network with multiple users

has been considered by Blom [2, 3], Mitchell and Piper [6], Li Gong and

Wheeler [5] and other authors. These papers consider a solution in which

a key distribution centre (KDC) must, in principle, issue a unique crypto-

graphic key to each of the pairs of users in a network whenever they choose

to begin communication. Suppose N is the set of users, with \N\ = n. Then,

since there are f!M possible pairs, if n is large a direct implementation will

involve the storage of about | n 2 keys. In modern computer networks, it is

in fact very likely that n will be rather large, and current trends seem likely

to increase the number of users attached to such networks.

In [6] Mitchell and Piper, inspired by a proposal of Blom [2, 3], considered

a scheme in which the KDC stores some global set K of keys (\K\ = k)

and issues to each user i (i = 1,2,... ,n) a subset Si C K of these keys.

We will assume these keys are numbered arbitrarily 1,2,... ,fc. There is a

directory, which need not be secure, which lists the numbers of the keys held

by each user. Now, if user i wishes to communicate with user j , the key to

be used is constructed from the set of keys contained in Si H Sj. (Information

about which numbered keys users i and j hold can be exchanged without

secure communication.) We insist that for no other user, t, is it true that

Si fl Sj C St. The required keys are then clearly available to both users but

to no other single user. These keys can then be transformed, possibly via

some one-way function, into the key to be used to encrypt all communication

between users i and j . Mitchell and Piper discuss various schemes, some of

which require only 0{n) keys in total, as opposed to the Q(n2) required by

a direct implementation. Li Gong and Wheeler [5] give a different scheme,

requiring O(n) keys in total, with each user required only to hold O(y/n)

keys.

We will call schemes of the type discussed above set intersection schemes.

In this paper, in Section 2, we will demonstrate the existence of set inter-

section schemes requiring only O(logn) keys in total, and hence a fortiori

each user has to hold only 0(log n) keys. We will show that this is optimal

to within constant factors. Constant factors are of course, very important in

applications, but we will also show that they are of quite reasonable size in

our scheme. Our construction is an application of the probabilistic method in

combinatorics [7]. This is a simple yet robust method for obtaining combi-

natorial constructions, which perhaps deserves to be more widely known in

the cryptography community. In Section 3 we give some experimental evalu-

ations of our proposals to demonstrate their practical feasibility. To counter

possible objections to the use of random methods, we will further show, in

Section 4, that if necessary, the construction can be "derandomized" by the

method of conditional probabilities [7].

A known difficulty with set intersection schemes [6, 5] is the problem of

collusion. If all members of some group W C N (\W\ = w) choose to

disclose their keys to one of their number, this user may then possess the

subset of keys which two others, not in the group, are using to communicate,

i.e. for some i, j and W C N we have

Si nSjC [j St.
tew

This clearly compromises the network for secure communication between the

users i and j . We will examine this problem in section 5 and give upper

and lower bounds on the number of keys required to ensure network security

against groups of at most w colluders, for any given w. In section 6 we

consider a generalization of the problem to communication between groups

of (more than two) users, and in Section 7 we make some concluding remarks.

2 A space efficient key storage system

We will use lg n for log2 n. Our first simple result also appears, in a different

form, in [6].

Lemma 1 Any set intersection scheme requires each user to hold at least

lgn keys, and at least 2 lgn keys in total (n > 4).

Proof Any user who has less than lgn keys can form less than n - 1

distinct nonempty subsets from their keys. Thus they cannot have a different

intersection with each of the other n — 1 users. There are (2) P^irs of users,

and their key intersections must form a set antichain. It follows that we must

have

U) >- 0-
This implies k > 2lgn for all n > 4. •

We now show

Theorem 1 There exists a set intersection requiring only [13lgn] keys in

total.

Proof Suppose the sets are generated randomly in some way. Let Xis

be the random variable which is the indicator of the event s E S{. A "bad

triple" is a triple (i, j,t) such that S{ D Sj C St. Thus the expected number

of bad triples is

fE E E II(i - xsixsj(i - xst))) . (i)
t=l t=l j=\ 5=1 /

This is an upper bound on the probability of the existence of any bad triple.

Thus, if the Xis are independent Bernoulli variables with Pr(X^ = 1) = p,

then

Pr(Any bad triple) < n Q (l ~P2(1 ~ P)t < \n\l -p2(l-p)f. (2)

This is minimized by choosing p = 2/3. Then if k = 131gn, it is easy to

check that

Pr(Any bad triple) < in3(23/27)131gn < ^ - 0 0 7 < \. (3)

Thus if we generate the sets randomly in this manner, we have a probability

of at least \ that the scheme we generate will be "good". •

Observe that we may check that the generated scheme has the required prop-

erties. This can be done by an O(n3k) computation, by checking all triples to

ensure that they are not bad. This is feasible for small n, and could easily be

implemented in parallel. In fact, this checking problem is easily seen to be in

the class NC of efficiently parallelizable problems. It may be observed that

the whole scheme could be generated and checked by a randomized parallel

computation. Thus generating and checking is in the parallel complexity

class RNC.

3 Practical schemes

From a practical point of view, the moral of the previous section is that

set intersection schemes are best generated at random. For example, it is

instructive to compare the bound of Theorem 1 with those of [5]. The matrix

scheme of [5] requires n keys. Now 131gn < n for all n > 83. If n = 1,000

say, we have [~131gn] = 130, less than one-seventh of the key requirement.

The total number of keys stored by all users is at least 3n3/2 for the method

of [5], whereas ours is approximately y n l g n . This is smaller for n > 800,

say. Lest this should appear a disadvantage of our method, it should be

observed that these comparisons are not entirely fair to our scheme, since

those of [5] are not proven to be free of bad triples. Also, we have based

our bound for of k on estimates of probabilities which may be pessimistic for

small n.

In practice, we can in fact do rather better than Theorem 1 would imply. We

chose a very simple random model to make the theoretical analysis easy; in

practice it is more efficient to choose other models. In particular, rather than

select, for each user, a random subset of the k keys by selecting each with

probability p, it is better to give each user a random subset of size i, for some

fixed t. The best value oft to choose would seem to be that which minimises

the probability that a randomly chosen triple is "bad", in the sense of the

proof of Theorem 1. This probability is

t / + \ / / * \ / i \ / i \ -2I T \ I iC — f \ I IC — 9/ \ I IC \% •> 1 1 1 l l i l l

u being the size of the intersection S{ C\ Sj. The value of pkj is usually less

than (23/27)*, and can be substituted for (23/27)fc in (3) to demonstrate the

existence of a scheme for n users with fewer keys than required by Theorem 1.

For small values of n the gain is striking. For 100 users, Theorem 1 (or its

proof) shows the existence of a scheme with 86 keys, the number of keys

rising to 116 for 500 users, 129 for 1000 users and 258 for a million users.

This is already dramatically less than [5], but the method of choosing i-sets

allows these figures to be reduced to 56 keys, 75 keys, 83 keys and 165 keys

respectively. Table 1 gives further data; in this table the column labelled

"Thm. 1" gives the upper bound on the number of keys required by the

proof of Theorem 1, and the column labelled "£-sets" gives the improved

upper bound given by the method of choosing i-sets.

Table 1: The existence of set intersection schemes

Users
50
75

100
200
500
103

104

105

106

108

Number
Thm. 1

73
80
86
99
116
129
172
215
258
344

f-sets
48
53
56
64
75
83
111
138
165
220

of keys required
risk 10"10

152
163
171
199
226
253
308

risk 10~20

254
262
290
317
344
399

The method is genuinely practical. For 500 users the schemes generated can

be tested on a SUN SPARCstation 1 in two minutes, rising to 16 minutes

for 1000 users, with an eightfold increase in time for every doubling of the

number of users. For much larger numbers of users, each user could be

asked to check his own keys, thus performing the checking computation in a

"distributed" manner; with one hundred thousand users a user can check his

own keys in about five hours (sequential) time on the SPARC.

If an astronomically large number of users is envisaged, a value of k can be

chosen to ensure the probability of an incorrect scheme being generated is

less than, say, 10~20. For 100 million users, k = 399 would suffice. This is

verified by checking that, with n = 108 and k = 399, \nzpk,t < 10~20 holds.

Values for k ensuring that a randomly chosen collection of t-sets will give

a set intersection scheme for n users with probability at least 1 — 10~20 are

given in the "risk 10~20" column of Table 1; the "risk lO"10" column has an

analogous meaning.

An efficient way to generate schemes in practice is to select a suitable value

of fc, compute the best value of t as above, and then randomly select, one by

one, subsets of size t, stopping when one of them forms a bad triple with two

previous choices. In this way quite large schemes can be found with relatively

few keys. Sometimes a bad choice is made early on; the method can be made

less susceptible to such bad luck by allowing another random choice after a

failed choice, and another choice again if necessary, up to a specified limit

on the number of successive failures before stopping. This method, which

we call the "retry" method, has been tried in practice and the results are

summarised in Table 2. For each value of k (in the "keys" column), and

number of failures allowed (in the "fails" column), ten attempts were made

to generate schemes by this method. The table shows the minimum, mean

and maximum number of users in the final schemes. Note that the number

of keys needed for a given number of users is dramatically less even than that

given by Table 1; for instance a scheme for 3000 users with only 70 keys can

8

Table 2: Set intersection schemes found by the 'retry' method

keys
40
40
40
40
50
50
50
50
60
60
60
60
70
70
70
70

fails
0
1
2
5
0
1
2
5
0
1
2
5
0
1
2
5

Number of users
min
14
49
84
106
41
115
190
314
92
201
307
1111
186
663
1481
3236

mean
33
68
97
137
84
168
248
414
141
470
711
1260
392
1292
2141
3787

max
69
89
111
153
155
237
303
489
201
637
962
1387
503
1732
2571
4408

be found in just minutes of computer time.

4 Derandomization

While in practice, we believe that an efficient randomized scheme is always

practically acceptable (see Section 7 below), from a theoretical point of view

we might wish to dispense with the requirement for randomization. This can

easily be achieved using the method of conditional probabilities [7].

Theorem 2 The set intersection scheme of Theorem 1 can be generated by

an O(n3k) time deterministic algorithm using O(n3) storage.

Proof Suppose we construct the sets by fixing one X{3 at a time in major

order i = 1,2,... , n and minor order s = 1,2,... , k. We ensure that initially

the probability of a bad triple, as given by (2), is less than 1. When we come

to Xis the "previous" X's will have been fixed (at 0 or 1) in (1). The following

"unknown" X's will still be Bernoulli random variables with probability p

(= 2/3 here). Assume the value of (1) at this stage is E < 1. We now, try in

turn, both cases for Xis = 0,1 in (2) and evaluate the expected value. The

reader may check that this can be accomplished by an O(n2) computation

if E and the O(n3) products of which it is the sum are stored and updated

whenever an X{8 "changes" from p to 0 or 1. Let the two expected values

calculated in this way be EQ, E\. Then clearly

E = (l-p)E0+pE1.

Thus if E < 1, then either Eo < 1 or Ex < 1. We fix Xis = 0 if Eo < 1,

X{s = 1 if Ei < 1, and proceed to the next variable. (If both EQ < 1

and Ei < 1, we may choose arbitrarily.) Obviously we must terminate with

E = 0, and hence we will have constructed the desired scheme. The algorithm

takes nk x O(n2) = O(n*k) time. •

It may be observed that this is only of the same complexity as checking the

randomized construction. However, there is an important difference from a

practical point of view. The derandomized algorithm does not appear to be

efficiently parallelizable.

10

5 The problem of collusion

We consider here the collusion problem mentioned in Section 1. Let us first

establish a lower bound on k in this context.

Theorem 3 Any set intersection scheme which is secure against w colluders

must have at least w(2lgn — lg w — 1) keys.

Proof Let A, B be any two communicating sets, and Ci, C2, . . . , Cw be

any possible w colluding sets. Then we must have

A n B % C\ U C2 U • • • U Cw. (4)

Suppose we take all N = MM possible intersections pairs of sets SiDSj. Then

all (^j unions of these intersections must form a set antichain. Otherwise

for some sets

(Ax n Bi) u. . • u (Aw n BW) c (Ci n A) u • • • u (cw n DW).

But this contradicts (4). Note that some of the pairs on the left could be the

same as some on the right, and there is no contradiction for such pairs. But

for some i, the pair A^ Bi is not one of the pairs on the right side. For this

pair we may select, from each pair Cj,Dj, one which is neither A{ nor B{.

This set of choices allows us to construct the contradiction of (4) required.

Thus we must have

The bound follows from this by easy manipulations. •

Thus we must have k growing at least linearly with the number of potential

colluders. However, it seems difficult to achieve this. By a randomized

contruction we can achieve

11

Theorem 4 There exists a set intersection scheme which is secure against

w colluders and has • In n keys.

Proof Suppose we choose the sets randomly as before with probabilities

p. In the notation of the proof of Theorem 3, the probability of a successful

collusion by fixed sets C i , . . . , Cw against A, B is

P r f 4 n R r r (, i i . . . i i r i ^ — (i — <n2d — -nV0^r r i / i i I D L o j \j \j ^w) — v — P v — P)) *

This is minimized by putting p = 2/(w + 2), giving

P r (A n J 5 C C 1 U . . . U C u ;) = f l - + ^ + 2)

Thus the expected number of successful collusions is less than

(w + 2)w+3

ifk>K } Inn. D
— 4 t u

Corollary 1 There exists a set intersection scheme which is secure against

w colluders and has less than \2(w + 2)3 In n] keys.

Proof

4ww 4 - v - • - /

D

The method of Theorem 4 can be derandomized as in Section 4.

12

From Theorem 4 we can obtain a scheme guaranteed secure against any five

colluders, in a network of 4,000 users, with 3,826 keys. Each user would have

about 1,093 keys on average. To be guaranteed secure for large n against

five colluders, the scheme of [5] requires n keys, with each user holding at

least 18y/n keys. For n = 4,000 this would be 4,000 keys in total, with each

user holding at least 1,139. Moreover, it is not clear that for n = 4,000 the

scheme would in fact be secure against five colluders. For n = 100,000 the

corresponding figures would be 5,310 keys, with each user holding an average

of 1,517 keys for the scheme here, and 100,000 keys, with each user holding

at least 5,693 for the scheme of [5].

There is one drawback of the randomized construction here (and of its deran-

domization). If we wish to check that the scheme meets its security specifica-

tion, the computational burden will grow like ft(nw+2k). This would clearly

be infeasible for large n, if w is not very small. From a practical point of

view, the answer is to make the probabilities sufficiently small. However we

can show that, at the expense of more keys, we can construct schemes which

are checkable (or derandomizable) in time little more than required by the

basic scheme of Section 2.

Theorem 5 There exists a set intersection scheme, secure against w collud-

ers, requiring less than [500w3lnn] keys in total, which can be checked, or

constructed deterministically, in O(nsk) time.

Proof Choose n sets from k = 500w3Inn with probability p = l/(5w). If

A, B are the communicating sets, it is sufficient to ensure that, for any set

c,
\c n A n B\ < \A n B\/w. (5)

13

Clearly this implies (4) for any collection C i , . . . , C w (i = l , . . . , w) . We

bound the probability of (5) as follows, using a version of Chernoff 's bound

for the tails of the binomial distribution. (See, for example, [1].)

Pr(|ATlB| <0.68p2fc) < exp(-i(0.32)2(0.2)2500wlnn)

Hence, I

* Pr(Any such A, B exist) < (n)n"2MS <\. (6)
* \ / .}

Now, for fixed\C,

)BnC\>0.6&p2k/w) = Pr(|A n B n C\ > 3.4p3fc)

* (s) <7)

< n"20.

(For a proof o^(7) see e.g. Bollobas [4], Theorem I.7(ii).)

Hence, .»-

^Pr(Any such A,B,C exist) < n(" Jn~20 < | . (8)

From (6) and (8) it follows that the scheme exists with nonzero probability.

The checking or derandomization of the scheme involves establishing the

conditions (5) for all triples. This can be achieved by a similar method to

that discussed in Theorem 2. I

More practical versions of the schemes suggested here could be developed, as

in section 3, but we will not do so here. •

14

6 Groups of users

Mitchell and Piper [6] also consider a generalization of the problem considered

here, where every subset of users of size at most g, for some given g, needs to

have a key known only to the members of the group. The key is constructed

by using intersections of sets taken g at a time, rather than in pairs as we

have done so far. Let us call such schemes ^-intersection schemes. (Thus

a set intersection scheme is a 2-intersection scheme.) Our methods readily

generalize to this situation. Thus we may prove a lower bound analogous to

Theorem 3.

Theorem 6 Any g-intersection scheme which is secure against w colluders

must have k > w(glgn — Igw —

Proof We use the same method as for Theorem 3, but consider all inter-

sections of sets^taken g at a time, and let N = (n). To avoid cumbersome

notation, let us introduce some temporary terminology. The word block will

mean a set of keys assigned to one of the n users, and a group an intersection

of some g blocks. We use the term collusion to mean a set of w groups. Now

the (^) sets, formed by taking the unions of groups in each possible collusion,

are an antichain. Otherwise, the union of some collusion is contained in some

other. To show that this implies a contradiction to the security assumption,

suppose the union of collusion A is contained in that of collusion B. Now

some group in A clearly does appear in B. Let the blocks forming this group

be Cu...,Cg, the group being flf=i Ci- Now, for each group in B, we can

select a block which is not one of the C,. The union of these w blocks now

15

contains the intersection of the Ct, giving the contradiction. Thus we have

f k\ (N\

which implies'2fc > (N/w)w > ((n/g)9/w)w, giving the bound. •

Corresponding to Theorem 4 we have

Theorem 7 There exists a g-intersection scheme which is secure against w
* Hw + g\w+g+l "I

colluders and /ms In n keys.

Proof The proof is similar to that of Theorem 4. Selecting the sets ran-

domly with probability p, now the probability of successful collusion is

- p)w)k.

This is minimized by putting p = g/(w + g). Then

The expected number of successful collusions is at most

nw+* exp(-kg9ww/(w + g)w+9) <
g\w\ / v ' f -~ g\w\

(w + q)w

if k > V y ; Inn. D

Again we can derandomize the construction if required.

16

Concluding remarks

he basic scheme we propose is within a small factor (i.e. less than 6.5

mes) of optimal. In practice, using the method of section 3, we can do

/en better than this. It would be exceedingly difficult to find deterministic

nnbinatorial constructions having the required property which are as small,

owever, collusion-proof schemes seem much harder to produce. Note that

le order of growth in w of the upper bound of Corollary 1 is $Xw3), as

pposed to tt(w) in the lower bound of Theorem 3. Establishing the correct

:der of growth remains an open question. This is a crucial question since

le bound of Theorem 4 is rather large if w is appreciable (and the bound of

heorem 5 is larger). When we consider groups, as in Section 6, the situation

even worse.

possible criticism of our scheme, by comparison with those based on block

3signs [6], might be that the set intersections will vary in size. This is not

tally a practical difficulty however, since if required we can always "pad

it" all intersections to a standard length using "dummy" keys known to all

>ers.

le have given methods for checking and derandomization, but these are

early practicable only for relatively small n, unless massive parallelism is

bailable. In practice, the schemes we propose would be generated randomly

n is large, ensuring that the failure probabilities remain very small. This

ay raise questions about the practical production of large numbers of ran-

)m bits. However, the same question could be raised for the myriad other

iccessful applications of random numbers It is usual practice to employ a

litably guaranteed pseudo-random source, and at present this seems the

17

path one must follow. However, pseudo-randomness seems to be an unnec-

essary device when (at least according to the quantum theory) nature itself

is subject to continual and unavoidable random fluctuation. Randomized

algorithms and constructions are becoming widely used, in addition to the

already widespread use of random simulations. Consequently, there seems a

clear need for the development of cheap physical devices for generating truly

random bits, rather than cleverer ways of generating pseudo-random bits. As

a modest example, such devices would allow the schemes proposed here to be

generated simply and conveniently, and easily extended whenever desired.

References

[1] D. Angluin and L. G. Valiant, "Fast probabilistic algorithms for Hamil-

tonian circuits and matchings", Journal of Computer and System Sci-

ences 18 (1979), 155-193.

[2] R. Blom,, "Non-public key distribution", in Advances in Cryptology:

Proceedings of Eurocrypt 82, Plenum Press, New York, 1983, pp 231-

236.

[3] R. Blom, "An optimal class of symmetric key generation systems", in

Advances in Cryptology: Proceedings of Eurocrypt 84> Lecture Notes in

Computer Science 209, Springer-Verlag, Berlin, 1984, pp 335-338.

[4] B.Bollobas, "Random Graphs", Academic press, London 1985.

[5] Li Gong and D. H. Wheeler, "A matrix key storage scheme", Journal of

Cryptology 2 (1990), 51-59.

18

FEB 1 3 2004

sity Librari

3 fliflS 01373 5b30

[6] C. J. Mitchell and F. C. Piper, "Key storage in secure networks", Dis-

crete Applied Mathematics 21 (1988), 215-228.

[7] J. Spencer, Ten lectures on the probabilistic method, SIAM, Philadelphia,

1987.

19

