
E X I S T E N C E A N D C O N S T R U C T I O N OF E D G E

D I S J O I N T P A T H S ON E X P A N D E R G R A P H S

by

Andrei Z. Broder
DEC Systems Research Center

130 Lytton Avenue,
Palo Alto, CA USA

and

Alan Frieze
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA U.S.A.

and

Eli Upfal
IBM Almaden Research Center

San Jose, CA USA

and

Department of Mathematics
Weizmann Institute of Science

Rehovot, Israel

Research Report No. 92-141
January, 1992

Output: A set of K edge disjoint paths, {Pi,.. .,PK} such that F, connects a, to
bi.

Phase 1. Split G into two spanning expanders GR = (V,ER) and GB = (V,EB)

such that E = ER U EB and ERD EB = 0. We require GR to be a 1-expander,
and GB to be a /^'-expander, for some/?7 > 0. (The details of this procedure are
presented in Section 4.1.)

The steady state distribution of the random walk on GB is easily seen to be
given by

*) = - v ,
where dB(v) denotes the degree of the vertex v in G#. Our construction guarantees
that

— <7r (t ;)<- f o r a l l ^ e F . (1)
2n n

Phase 2. Choose independently (with replacement) according to the distribution
7r(G#), a multiset of 4K vertices in V. Let R = {ri, . . . , r ^ } be the multiset of
vertices so chosen.

Phase 3. Select a set Q C R of 2K vertices, such that every pair of vertices in Q
are K\ In In n apart from each other, as follows:

Q <- 0 for i; = 1,... ,4K while |Q| < 2K do

if dist(Q,rt) < KX In Inn then Qf-QU {rj fi

od

If at the end of this procedure \Q\ < 2K then stop. The algorithm has failed.

Phase 4. Let 5 = {ai, . . . , a#, &i..., 6*-}. Using a flow algorithm in G#, connect
in an arbitrary manner the vertices of S to the vertices of Q by 2K edge disjoint
paths. (Except for the edges on these paths, no other edges of GR are used for the
final construction.) If such a flow can not be constructed then stop. The algorithm
has failed. (This can happen only if GR did not have sufficient edge expansion.)

Phase 5. Let at- (resp. 6t-) be the vertex in Q that was connected to a; (resp. 6t-).
For each pair (2,-, 6t) construct m = (In n)2 paths, Piyi,..., Pi?m connecting a{ to 6t-,
as follows:

for j = 1,2,.. . ,ra do

Pick a vertex X(j according to the distribution 7T(GB)-

Choose a trajectory W(j (resp. W(j) of length r = «3 lnn
that goes from 2t- to x, j (resp. 6t- to x,j) in G#, according
to the distribution on trajectories, conditioned on
Wijfl = a,- and w,j?r = x,-j. (The distribution for W(j is
analogous.)

Let Wij be the walk formed by W(j followed by W(j
reversed.

Reduce Wij to a path P{j by removing cycles.

od

(The purpose of the remainder of the algorithm is to find among the set ofK-m
paths constructed in this phase, a solution set, that is, a subset of K edge-disjoint
paths, one for each pair (2t-,6t-).)

Phase 6. (This phase is only needed for the proof and can be dispensed with in
the algorithm.)

We shall refer to the set of paths B{ = {î ,i,-F\-,2> • • • ,Pi,m} a s bundle i. The
purpose of this phase is to prune from each bundle those paths that go "too close"
to the endpoints of other bundles or to each other.

Let Wij,f>Wij,t denote the t'th vertices of W/j, Wij"" respectively. Let M,-j =

for t = 1,2,...,AT do

for j = 1,2,... ,m do

(a) if dist(Mt- j , \Jk<j M{ *) < 2K^ In In n then
Bt *- Bt \ {hj} fi [

(b) if dist(Ptj,(5 \ {a,-,6t}) < K3lnlnn then
Bi^BMP^fL

od

od

(Condition (a) ensures that outside the /q In Inn neighborhood of the common end-
points, all paths remaining in B{ are at least 2/̂ 3 In Inn apart. Condition (b) ensures
that all paths in J5t- are at least K3lnlnn from the endpoints of other bundles.)

Let mi denote the number of paths left in bundle i for i = 1,2, ...,/f, and
rename the paths such that B(= {i^-,i,..., -Pf,m,-}«

Check that for all i G [AT], the number of paths in i?t- satisfies rat- > (lnn)2/2. If
this does not hold then stop. The algorithm has failed.

Phase 7. Let H = (V#, EH) be the graph defined by

and
£* = {{(iJ), (*V)} I * ± *' and Pw n P*j ± 0.}

The z'th row of i7 is the set of vertices {(i, j) | 1 < j < m,-}. A row represents
the bundle of paths associated to a certain pair of endpoints, and a solution set
corresponds to an independent set of size K that spans all the K rows of H.

Let A# denote the maximum degree of a vertex in H. If there is an i such
that rrii < 8A# then stop, the algorithm has failed. The condition raz- > 8A# is
sufficient for the existence of at least one such independent set. This follows from
an application of the local lemma and explains the relevance of Phase 6 which is
needed in the proof'that AH is not too large. More details are given below.

Phase 8. Let H' = ([-K], EH9) be the graph on K vertices defined by

Ew = {{«,*'} | 3 j , / s.t. Pij n PVj # 0.}

(In other words H' contains an edge from i to i' iff any of the paths from 5,- to hi
intersects any of the paths from 2,v to by. Clearly H1 can be obtained from H by
contracting each row of H to a single vertex.)

If any connected component of Hf has size greater than 31nn/(21nlnn) then
stop. The algorithm has failed.

Phase 9. For each connected component J of H\ find by exhaustive search, an
independent set in i/, of size | J|, that spans the rows of H corresponding to the
vertices of J. (We checked in Phase 7 that such sets exists, and we checked in Phase
8 that the components of Hf are sufficiently small to ensure that the exhaustive
search takes only polynomial time.)

The union of independent sets thus found is independent and spans all the rows
of if, and hence corresponds to a solution set.

The final path from a,- to &,- is the union of the paths from az- to 5;, and from 6t-
to b{ found in Phase 4, and the path from at- to 6,- selected here.

End DisjPaths

4 Analysis of the algorithm

4.1 Splitting Expanders

In this subsection we present an algorithm which partitions the edge set of the input
graph into two spanning expanders.

Algorithm Split

Input: An r-regular (a, /?, 7)-expander graph G = (V, E). For simplicity we assume
that r = 4s, for an integer s.

Output: Two spanning /^'-expanders GR = (V, ER) and G# = (V,EB) such that
E = ERU EB and ERD EB = 0. (The constant /?' is greater than 1 and will be
exposed in the proof.)

1. Using an arbitrary Euler tour, orient the edges of G so that each vertex has
indegree and outdegree 25.

2. For each vertex v, randomly divide the edges from v into a red set and a blue
set, each of size s.

End Split

It should be clear that our construction guarantees that (1) holds.
We now analyze the probability that Split will produce useful results. We start

by defining two functions, H and ^, on [0,1]:

(Observe that ip(e) > e2/2.)
Let in#, out# refer to in and out as applied to GR.

Theorem 3 Suppose that G is an (a, (3,7) -expander and let 0 < e < 1 be such that

For every set S C V, \S\ < \V\/2, we have

min{outil(5'), outB(5)} > min{a, (1 - e)/3/2} \S\, (3)

with probability 1 — o(l) as n —> 00.

Proof: We obtain a lower bound for out#. We consider two cases.

Case 1: \S\ < ^n. By construction every vertex has degree at least s in GR. Hence

s\S\ < 2mR(S) + outR(S)
< 2in(S) +outR(S). (4)

8

On the other hand

r\S\ = 2in(5)+out(5)

(5)

Inequalities (4) and (5) imply

ontR(S) > a\S\. (6)

Case 2: ^n < \S\ < n/2. Partition out(5) so that 2 edges are in the same subset
if in the Euler orientation they have the same start vertex.

Let there be m such sets, A\,... ,Am, with |A,| = fc,- < 2s, and J27Li k, = k,
where k > /3\S\ by the definition of G. Let Z,- be the number of edges of Ai which
are colored red. Clearly the Z;'s are independent. For any t > 0 and k/2 > u > 0
we have

Pr(Zi + --- + Zm<k/2-u)

_ el(fc/2-«)

But

P
-1

< exp((e-* - l)fci/2)

For a proof of the first inequality see either Hoeffding [10] (Section 6) or Chvatal
[5]-

Hence

Pr(Zi + • • • + Zm < k/2 - u) < exp(*(fc/2 - u) + (fc/2)(C-* - 1)) (7)

Putting t = — ln(l — 2u/k) minimizes the RHS of (7) which then becomes
exp(-(fc/2 - «)(ln(l - 2u/k)) - «). Hence if u = ek/2, then

Pr(Zi + ... + Zm < (1 - e)k/2) < e-
k^e)l2

9

and consequently

Pr(outR(5) < (1 - e)P\S\/2) < e

Thus

Pr(3|5| > in : outfl(S) < (1 - e)/3\S\/2) < £ Q e - ^ ^ (8)

Now if k = 0n, for 0 > 7 then

e

and the summand, Uk say, on the RHS of (8) is then

exp(n(o(l) + In H(9) - (36*/;

Now

clearly decreases with 9 and so if/? satisfies (2) then Uk is exponentially small. The
result follows. •

Corollary 1 Suppose that G is an (a, /?, 7)-expander. Let 0 < e0 < 1 be the unique
solution to

7 (9)

If a > 1 and (3 > /?o iften 6of/i G^ and G^ are /3'-expanders for some (3f > I, with
probability 1 — o(l).

Proof: The existence of e0 follows from the fact that the LHS of (9) decreases from
00 to 0 as 6 increases from 0 to 1. •

It is fairly easy to apply this result to the Ramanujan graphs of Lubotsky, Phillips
and Sarnak [13] and to random regular graphs.

It follows from Lemma 2.3 of Alon and Chung [2] that

\X\ = Sn implies out(X) > r(l - A)(l - 6)\X\, (10)

where A is the second largest eigenvalue of the transition probability matrix asso-
ciated with the random walk on G. If G is one of the Ramanujan graphs then
A = 2y/r — 1/r and if G is a large random r-regular graph then A «

10

(see Friedman, Kahn and Szemeredi [9]). One can then show that in these cases
min{outi*(S),outG(S')} > (r/4 - o(l)) |5| for |5 | < \V\ /2, as r grows. (For sim-
plicity take 7 = 6 = r"1/3.)

The above ideas can be extended to arbitrary graphs. We need to be able to
assert that (i) small sets of vertices, \S\ < 771, contain few edges; and that (ii) one
can orient the edges so that every vertex has large outdegree. Given (ii) we can then
randomly split the edges into two sets. It is known (Fenner and Frieze [7], Frank [8])
that the edge set of a graph can be oriented so that the out-degree of each vertex
is at least k iff \fi(S)\ > k\S\ for all S C V where /i(5) = {e e E : e n S ^ 0},
and that this can be checked in polynomial time. We do not however consider this
generalization in this paper.

4.2 Analysis of the Main Algorithm

Let P denote the transition probability matrix of the random walk on G#, and let
Pfy denote the probability that the walk is at w at step t given that it started at
v. Let A be the second largest eigenvalue of P. (All eigenvalues of P are real.) It is
known that

H% ^HMv)). (ii)
To ensure rapid convergence we will need A < 1 — e for some constant e > 0.

This is achieved if

ontB(S) > (3'\S\ for all 5CV, |5| < \V\/2, (12)

for some constant (3' > 0. For instance Sinclair and Jerrum [15] show that (12)
implies

We will now explicitly state our claims about the performance of our algorithm. As
input, G is an n-vertex, bounded degree, r-regular (a,/?,7)-expander graph where

a >! , /?> ft,

(/?o as in Corollary 1.)
Suppose that

K > max{7, Kilnr, 2 + K3lnr}, (13)
4 + 2K3 In r

K >
3

«2,«3 > j ^ n , (is)

n

Theorem 4 Under the above assumptions with n sufficiently large, given any set of
K = n/(logn)K disjoint pairs of vertices in G such that a > 1 and /3 > (3Q, with high
probability our algorithm finds in o(n3) time, edge disjoint paths connecting these K
pairs.

In Section 3 we pointed out for each phase the conditions under which it might
fail. We now proceed to bound the associated failure probabilities.

Phase 1: The failure probability of this phase is o(l) by Corollary 1. Also the time
to carry out the construction is 0{n). •

Phase 3: The K\ In Inn neighborhood of any vertex contains at most s = rKl l n l n n ==
(lnn)Kllnr vertices. The probability that rt- is rejected is thus never more than
3Ks/2n. Thus the probability that this phase fails is at most

Pr(B(4K, 3Ks/2n) > 2K)

and this is o(l) if
K\ lnr < AC, (16)

since K < n/(lnn)K . It is of course straightforward to carry out this selection in
o(n2) time. •

Phase 4: A straightforward application of the Max-Flow Min-Cut Theorem shows
that success is certain provided that GR is a /^'-expander for some /?' > 1. By
Corollary 1 this happens with probability 1 — o(l). Furthermore it only takes o(n3)
time to find the required flow as arc capacities are 1 for the arcs of the network.
D

Phase 5:
The remainder of the proof relies heavily on the fact that the trajectories W[,

have the same distribution (up to negligible factors) as m independent random
trajectories of length r from a,-. The difference being that we pick the endpoint of
the trajectory using ?r instead of P~*]. Using (11) we see that this since

for all Vj w.
In order to to allow us to think of the trajectories W/,j, W(j as having exactly the

same distribution as random trajectories we can imagine generating W/ • as follows:

12

• (a) choose x = xiyj according to the distribution

• (b) choose a random trajectory W(j from 5t- to x.

• (c) if 0{x) = P^l - ic(x) > 0 then with probability 0{x) do

1. discard W/,

2. choose y 6 ft" = {u : 0{v) < 0} with probability 0(y)/0(il").

3. choose a new random trajectory W(j from a,- to y.

It is not hard to see that the endpoint of W-j other than fit- is now chosen according
to the distribution TT. Furthermore if (1) - (3) above are never executed then we can
view W{j as a random walk of length r from a,-. But

Pr((l) — (3) occur during the algorithm) = 0(Km max0(x))
= O((ln n)2-"/n)

This justifies viewing the W/j, W(j as unbiassed random walks.
The next question to answer is as to how, given ar,-j, do we compute a random

trajectory of length r from hi to X(j. This is not difficult.
To simplify notation, suppose we want to compute a random trajectory W =

u = UQ,UI, . . . , ut = v of length t from a vertex u to & vertex v.
If w is a neighbour of v then

p(t~1)pwv
Pr(ut_i = w\ut = v) = tt>w

 r v
 w>tl.

Thus our algorithm to generate W is to choose w according to (18) and then choose a
random trajectory of length t—1 from u to w. To compute pW we need only compute
powers of P. Because G has bounded degree we can compute Pk from Pk~l in O(n2)
time. Thus the total time to compute all the trajectories is 0(Kmrn2) = o(n3) with
our current best value for K. •

Phase 6: We prove several intermediate propositions. Our aim is to show that
relatively few paths get deleted.

Proposition 1 Assume that

Then with probability 1 — o(l) the number of paths deleted due to condition (a) is
O(lnn) simultaneously for each i € [K].

13

Proof: For t > K,\ In In n the probability that wf
ijt = v is O(A* + 1/n) for any vertex

v. Also the 2K3lnlnn neighborhood of \Jk<j Miik is of size O((lnn)3+2*3lnr) and so
the probability that W(j or W(j wander into this neighborhood after KX In Inn steps,
is only

O((lnn)3+2#esInr"'eilllA"1) = O(l/lnn),
given (19). Thus the number of paths deleted from bundle i is dominated by a
binomial random variable B(N,p) with Np = O(lnn). The inequality

/ e \ aNP
Pr(B(N,p) > aNp) < (-J (20)

is, for sufficiently large a, enough to verify the proposition. •

Proposition 2 Assume that

K > 2 + K3lnr. (21)

Let
Ni = {v e R- {ai,bi} : dist(v,Bi) < K3lnlnn}

Then \Ni\ = O(lnn) simultaneously for each i G [K\, with probability 1 — o(l).

Proof: The size of the K3lnlnn neighborhood of any B{ is O((lnn)3+/C3lnr). The
number of vertices in R chosen in this neighborhood is a binomial with mean O(ln n),
given (21). The result follows again by using (20). •

We can now bound the number of paths deleted from each bundle in Phase 6
due to condition (b). Recall that the vertices of Q \ {52} are at least K\ In Inn away
from a,-. Hence any v G NidQ can lead to the deletion of a single path via condition
(b), so almost surely only a total O(lnn) paths are deleted from each bundle. •

Phase 7:

Proposition 3 With probability 1 — o(l) A# = O((lnn)2/lnlnn).

Proof: We will show below in the analysis of Phase 8 that with probability 1 — o(l)
the graph H1 has maximum component size O(lnn/lnlnn) and so it suffices to
prove that with probability 1 — o(l) for every i, j , fc, the trajectory W[- meets only
O(lnn) trajectories in the bundle Bk.

Now fix z, j , fc. The pruning done in Phase 6 allows us to assume now that
dist(W/j, {Sfc?fyt}) is at least K3lnlnn. Consider a trajectory W'ki. The probability
that W'kl meets W1^ is by (11) of order O((lnn)2"/C3lnA"1) = 0('l/(lnn)) provided
that

3
*3 > j ^ z r (22)

Treating the construction of each Wkl as an independent trial we see that the
expected number of trials in which W(j fl Wkl ^ 0 is O(lnn). We can now use (20).
D

14

We now show that if we reach the start of Phase 7 and m,- > 8A# for each i
then we can be sure that there is a set of disjoint paths contained in our bundles.
We use the following lemma [6, 16]:

Lovasz Local Lemma. Let A\,..., AN be events with dependency graph GA- Let
deg(i) be the degree of Ai in GA- If

Pr(A-)
deg(»)

Apd

<
<

<

P,
d,

1,

for
for

all i}

all i,

then

Consider the experiment in which a random vertex is chosen from each row of
H. The events A{ (the "bad" events) are defined by the choice of 2 vertices joined
by an edge. The maximum degree in the dependency graph for the Lovasz Local
Lemma is 2mAH and each bad event has probability at most 4/ra2. The Local
Lemma now proves easily that our independent set exists, since m = (In n)2 and
AH = O((lnn)2 / lnlnn). •

Phase 8: Define a supergraph H" D H' obtained from H' by adding K additional
vertices corresponding to bundles of paths from the vertices of R\ Q, and by adding
extra edges in an obvious way.

Observe first that if two indices i, if are chosen prior to construction of the
bundles then there exists a constant K4 such that

(\r\ri)6

PrUBi, BA is an edge of H") < KA- '-. (23)
n

To see this, consider a random walk from a,/ of length r. Since a^ is chosen indepen-
dently of B{ and from the steady state of the random walk, the expected number
of vertices of B{ visited is O(mr2/n), Summing over all walks in J92/ we obtain
O(m2r2/n) as the expected number of visits to 2?t-. Since the probability of at least
one visit is bounded by this expectation we have (23).

Furthermore

Pr(H" contains a component of size > k)

< E E P'(£T) = (2f) E[j

where fls denotes the set of trees with vertex set 5, and £? denotes the event that
H" contains the tree corresponding to replacing i by B{ in T. The inequality is

15

immediate because any component of size > k must contain a tree of size k, and
the equality follows from symmetry.

It follows from (23) that Pr(£T) < (KA(lnn)6/n)k'1. (Consider the edges of T
in a breadth first search order from some arbitrary root; the existence of each edge
is clearly probabilistically independent of the existence of previous edges.) Since

= kk~2 we obtain that

Pr(iJ" contains a component of size > k)

= O

= o

for K > 7 and k > k$ = 31nn/(21nlnn). The expected execution time of Phase 8,
given there are no large components in H", is by the above

(** n (2eKA\k A 3,
O V rr) m* = o(n3).

y ^ (Inn)6 V lnn / J v y

n
This completes the proof of Theorem 4

5 Random MC Algorithms
Algorithm Split is clearly in MC since computing an Euler Path is in MC [3].

To convert the algorithm DisjPaths to a random MC algorithm we need to
modify steps 2 and 3 of the algorithm. We replace them by the following two steps:

1. Each vertex v G V is included in R with probability 8Kirv independent of the
other vertices.

2. A vertex u G R is in Q if no vertex in its K,\ In Inn neighborhood is in R.

With probability 1 — 1/n2, R has at least \K vertices. The probability that a
vertex in R has another vertex in R in its K\ In In n neighborhood is smaller than
1/2, thus with probability 1 — 1/n2, Q has at least 2K vertices. The fact that Q
might have more than 2K vertices does not matter since the flow algorithm gives
an integer solution, and only 2K vertices in Q will participate in the flow.

16

Flow with unit capacities is in Random MC, [11], [14], thus step 4 of the algorithm
is in Random MC.

By attaching one processor to each of the K(lnn)2 paths, steps 5-7 can be
computed in O(lnn) time. Step 8 is in MC since computing connected components
is in MC.

To compute step 9 we observe that there are no more than n components, and
with probability 1 - 1/n2, there are no more than (12(lnn)2) l n n / l n l n n = O(n2)
choices of paths for each component. Given a possible choice, it can be checked by
one processor in 0(log2 n) steps. Thus, step 9 can be computed by O(n3) processors
in O(log2 n) parallel steps.

References

[1] N. Alon. A Parallel Algorithmic Version of the Local Lemma. Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science, San Juan,
Puerto Rico, 1991.

[2] N. Alon and F.R.K. Chung. Explicit construction of linear sized tolerant
networks. Discrete Mathematics, 72:15-19, 1989.

[3] B. Awerbuch, A. Israeli, and Y. Shiloach. Finind Euler circuits in logarithmic
parallel time. In Advence in Computing Research 4' Parallel and Distributed
Algorithms. Ed. F.P. Preparata. JAI Press, Greenwich CT, 1987, 69-78.

[4] J. Beck. An Algorithmic Approach to the Lovasz Local Lemma. To appear in
Random Structure and Algorithms, 1991.

[5] V. Chvatal Probabilistic methods in graph theory In Stochastics and Op-
timization (F.Archetti and F.Maffioli Eds.), Annals of Operations Research,
1:171-182, 1984.

[6] P. Erdos and L. Lovasz. Problems and Results on 3-Chromatic Hypergraphs
and Some Related Questions. In Infinite and Finite Sets, (A. Hajnal et. al.
eds), Colloq. Math. Soc. J. Bolyai 11, North Holland, 1975, pp. 609-627.

[7] T.I. Fenner and A.M. Frieze. On the connectivity of random m-orientable
graphs and digraphs. Combinatorica, 2:347-359, 1982.

[8] A. Frank and A. Gyarfas. How to orient the edges of a graph? Colloq. Math.
Soc. J. Bolyai, 18:353-364, 1978.

[9] J. Friedman, J. Kahn, and E. Szemeredi. On the second eigenvalue in random
regular graphs. In Proceedings of the 21sth Annual ACM Symposium on Theory
of Computing, pages 587-598, 1989.

17

[10] W. Hoeffding. Probability Inequalities for Sums of Bounded Random variables.
In Journal of the American Statistical Association, 58:13-30, 1963.

[11] R.M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is
in random NC. Combinatorica, 6:35-48, 1986.

[12] T. Leighton and B. Maggs. Expanders might be practical: Fast algorithms for
routing around faults in multibutterflies. In Proceedings of the 30th Annual
Sumposium on Foundations of Computer Science, 264-274. IEEE, 1990.

[13] A. Lubotsky, R. Phillips, and P. Sarnak. Ramanujan graphs, Combinatorica,
8:261-277, 1988.

[14] K. Mulmuley, V. Vazirani, and V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7:105-113, 1987.

[15] A.Sinclair and M.Jerrum Approximate Counting, Uniform Generation, and
Rapidly Mixing Markov Chains. Information and Computation, 82:93-133,
1989.

[16] J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, 1987.

[17] D. Peleg and E. Upfal. Construction Disjoint Paths on Expander Graphs.
Combinatorica, 9:289-313, 1989.

[18] D. Peleg and E. Upfal. The token distribution problem. SIAM Journal of
Computing, 18:229-243, 1989.

[19] N.Robertson and P.D.Seymour Graph minors-XIII: The disjoint paths problem.
to appear

[20] E. Upfal. An O(log N) deterministic packet routing scheme. In Proceedings of
21st Annual ACM Symposium on Theory of Computing, 241-250, 1989.

18

3 6465 Q1371 071,5

