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randomised version on a tree and they found that the trees with the worst

expected ratio of size of matching found to maximum size are caterpillars

in which case the ratio is about .769... . The average performance of this

algorithm when the input is random has been analysed by Tinhofer [9]. He

considered its performance on the random graph Gn,p (the p-model) in which

each edge of the complete graph is independently included with probabil-

ity p. He only considered the dense case where p is fixed independent of

n. In this case it is fairly easy to show that the algorithm produces a near

perfect matching with high probability. The algorithm is deceptively simple

but it requires a non-trivial analysis to handle the conditioning introduced

at each stage. Unfortunately Tinhofer makes an incorrect assertion and the

analysis is consequently flawed. (The statement Prob(M | G) = 1/m! on

p244 is incorrect). In this paper we consider sparse random graphs. We deal

with the random graph Gn,m which has vertex set [n] = {1 ,2 , . . . ,n} and

m = ^cn random edges where c > 0 is a constant. Closely related is the

p-model with p = c/n. (In both models the average degree is asymptotic

to c.) Let X = X(n,m) (X(n,p) resp.) be the random number of edges in

the matching produced by GREEDY applied to Gn,m {Gn# resp.) when the

edge choice in statement A is uniformly random. We will not only compute

an asymptotic formula for the mean, but also for the variance and we will

establish the asymptotic distribution. Let

^ ' " 6 (c+l ) 4 *

Theorem 1 Asn —» oo (X(n,m) — n<l>(c))l\Jnxl>{c) converges in distribution

and with all its moments to the standard normal variable with mean zero and



variance one.

Roughly X(n, m) is asymptotically Gaussian with mean n<f>(c) and variance

n\l>(c). As one should expect, ^(oo) = 1/2 which corresponds to a (near)

perfect matching.

Using a general rule, which relates Gn,m and Gn,p, (Pittel [8]), we can assert

then that X(n,p) is asymptotically Gaussian as well, with the same mean

n<j>{c), and variance

x2x c3 + 3c2 + 3c
') ) = n (c + i)4 -

We also discuss the performance of GREEDY on a randomly chosen labeled

tree. So now let Y = Yn be the random number of edges in the matching

produced by GREEDY on a random labelled tree with n vertices. We prove

Theorem 2

Vary =

Furthermore (F — |n) /^/^n converges in distribution to the standard normal

variable with mean zero and variance one.

This should be compared with the result of Meir and Moon [7] who showed

that Y* « (1 — p)n, in probability and mean, where Y* is the size of the



largest matching in a random labelled tree on n vertices and p = .5671 • • •

is the unique solution to xex = 1. The above results mean that with high

probability Yn/Y* « .87, i.e. GREEDY falls short of the mark by about 13%

most of the time.

It is possible to modify the algorithm without considerable complications, so

as to improve its likely performance. Perhaps the simplest modification is

to first choose a vertex v at random and then to randomly choose an edge

incident with v. We refer to this as MODIFIED GREEDY.

MODIFIED GREEDY

begin

M<-0;
while E{G) ^ 0 do

begin

B: Choose v eV

C: Choose u € T(v) and let e = {u, v}

G*-G\{u,v};

M *- M U{e}

end;

Output M

end

We have analysed the performance of MODIFIED GREEDY in the same

settings as for GREEDY. First of all, let X = X(n,m), (X(n,p)) be the

random number of edges in the matching produced by MODIFIED GREEDY



on Gn,m (Gn,p). Let

r v ; 2 2c

Theorem 3 As n —• oo (X(n,m) — n<£(c))/ym/>(c) converges in distribu-

tion, and with all its moments, to the standard normal variable with mean

zero and variance one. (Here r(>(c) is the solution of the differential equa-

tion (50) below, whose closed form solution, if any, has eluded us, Maple

and Mathematical Consequently X(n>p) is also asymptotically normal with

mean n<f>(c) and variance n(xj)(c) + 2c<£'(c)2).

D

MODIFIED GREEDY was also discussed in Tinhofer [9] as well as Gold-

schmidt and Hochbaum [3] who proved probabilistic lower bounds on the size

of the matching produced in Gn>p. In particular Goldschmidt and Hochbaum

prove a probabilistic lower bound of n(l — (1 + c)/c)/2 for any fixed t > 0.

Since <f>(c) > (1 — c~x)/2, Theorem 1 already provides a better lower bound
A

for the matching number. Since, for any c > 0, <f>(c) > <t>(c) Theorem 3 yields

a further improvement.

We have also analysed the performance of MODIFIED GREEDY on random
A A

labelled trees. Let now Y = Yn be the random number of edges in the

matching produced by MODIFIED GREEDY on a random labelled tree with

n vertices. We prove

Theorem 4

VarF = 0n + O(l).
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where
18c4 - 42c3 + 32c2 - 9e + 20 =

(2c -

Furthermore (Y — ^ f n)/\/5n converges in distribution to the standard nor-

mal variable with mean zero and variance one.

Here (c - l)/(2e - 1) = .3873 • • •, i.e. MODIFIED GREEDY performs (with

high probability) about 3% better than GREEDY.

We note that Karp and Sipser [5] have considered a similar greedy type of

algorithm to ours. Their algorithm chooses an edge incident to a vertex of

degree 1 while there is one and otherwise chooses a random edge. They show

that this algorithm is asymptotically optimal in the sense that with high

probability it finds a matching which is within o(n) of the optimum size.

What this optimum size actually is remains a mystery.

The main techniques employed in this paper are diffusion type approxima-

tions to moment generating functions for establishing normality and the anal-

ysis of regular generating functions in the case of trees.

2 Greedy on Gn,m

In this section we prove Theorem 1 on the behaviour of randomized greedy

applied to the random graph Gn,m- We assume that m = [|cnj, where c is

a constant. Thus c is (approximately) the average degree of the graph.



Generically, let Xy^ be the (random) number of matching edges delivered by

the algorithm in G,,fM, and let fy%ll be its moment generating function. Thus

R)),

r), (1)

where R is the random number of edges in Gj,tM adjacent to the chosen edge.

(When a chosen edge e and R adjacent edges are deleted, we are left with a

random graph G'. Conditioned on e = (fi,!^) and R = r, G' has the same

distribution as C_2fM-i-.r up to a relabelling of vertices.)

Let us denote the number of edges in the complete graph Ku-i by Ni = ("Jf)

for i = 0 ,1 , . . . . We will simply write N for JV0. Now, since there are 2(v - 2)

of edges of Kv adjacent to a given edge, iV2 edges in AV_2> and \JL—1 edges still

to be chosen in Gy%ti once any one is fixed, it follows that R has distribution

?v(R = r) = V i ^

say. If r = O(v^) and ^ = 2^/i/ = 0(1), then

Also, we have

/ 2 ( P - 2)\ - 5) • • • (2i/ - 3 - r)
r!



• (•*<>©)•<?

Thus

We will only need an upper bound on Pr(.R > r) for large r. Let A be

the maximum vertex degree of Gv>ll. A straightforward application of the

"first-moment method" now gives

Pr(i?>2r) < Pr (A>r) (3)

/V-l\
~ \ r J

- " ^ (4)

It now follows easily from (2) and (4) that

E(R) = 2£ + O(l/v), E(R2) = 2^ + 4 ^ + 0 ( 1 / 0 , (5)

and more generally, for any fixed A;, E(i?*) = 0(1). We will denote E(Rk)

by r*.

In our analysis of the randomized greedy algorithm, we need to assume that

the average degree of the graph "remains bounded" as we select sufficiently

many edges. Suppose that at a general stage of the algorithm we have v



vertices and fi edges remaining, so our graph is Gv^. We wish to have a

constant Co such that 2fi/u < CQ if v is "large". To make this precise,

Lemma 1 Let v0 = \y/n/ In n] and Co = 6max{2c, 1}. 77ien

Pr(3i> > i/0 «uc/i i/iat 2^/i/ > Co) < exp(—Vnlnn)

/or a// /an/e enough n.

Proof Let S be the event that there exists any induced subgraph G^

of Gn,m such that 2/z/i/ > CQ and v > v0. Then clearly

\ co/2 x) fe)C W2>

5nJ
/n/]nn

^ — y/n\nn

for large enough n. This is clearly stronger than the lemma.
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Remark 1 In fact, we can prove the following stronger result here, using

an inductive method similar to the proof of Lemma 2 below. Let CQ > c

and 0 < 7 < 1 be arbitrary constants. Then there exist positive constants

A(co, 7) and /?(c, Co, 7) such that the probability of having 2fi/v > CQ at any

stage in the algorithm is at most j4exp(—/?n7). We omit the proof, since

this stronger result is not true for all choice rules A in GREEDY. It fails, for

example, for that used in MODIFIED GREEDY.

£ £(3 + £)
We turn now to the functions <f>(£) = — rr?^(O == TT 7w which appear

2(1+ f) 6(1 + f)4

in the mean and variance of Xn,m in the statement of Theorem 1. We observe

that these satisfy the differential equations

1 - 2 ^ - 2 ^ ( 1 + 0 = 0, <£(0) = 0 (6)

-tf - tf'(i + 0 + W ) 2 = 0, v(o) = o (7)

Note that <̂ ,xj) are "well behaved", i.e. they, and all their derivatives, are

uniformly bounded on [0,oo). In particular <£(oo) = |, ^(00) = 0.

We now proceed to analyse the approximation which will enable us to prove

Theorem 1. Let gn,m(z) = exp(n(z<£(2n/m) + ±z2tj>(2n/m))). We will show

that

fn.m(z) = fc|WW(l + O^-^ logn ) ) , (8)

provided z = O(n"1^2). This will imply Theorem 1, that XntTn is asymp-

totically Gaussian with mean n<f>(c), variance n%l>(c), by a limit theorem on

moment generating functions due to Curtis [1]. As we will see, the func-

tions <t>,%l> are chosen to ensure that gv^ satisfies (1) up to terms quadratic

in z. Thus, let us choose CQ as in Lemma 1, and consider a stage of the

algorithm at which we have v > v0 = yjn/ In n vertices, fi edges remaining,

with 2fi/v < Co. Then

11



Lemma 2 For z = un"1/2 (u ^ 0),

Proof We will estimate the sum

Using the quantities

we may write

Using Taylor's theorem, we may easily establish

uniformly for £ € (0,co). Thus, using (9) and (10),

1 - r)) + O ( r 2 ^ ) - (11)

Denote the right side of (11) by r{r). Thus we wish to show that

r) = l + O(z/u). (12)

12



We deal first with large r in the sum of (12). Specifically this will mean

r > n1/3, say. Note, since r < 2i/, and z = o(l),

r2*/*/ < 2rz = o(r),

and hence r(r) = o(r). Then, using (4),

£ JVe'M < » £ (ee°(1))7r! = n-fi<«1/3>, (13)

say, since the first term dominates the sum and its denominator dominates

its numerator. Thus large r do not effectively contribute to the sum in (12).

But now, if r < n1/3,

r(r) = O(«) = ^(n"1/6),

since ^ = (^(n""1/2). Thus we can expand eT^ uniformly over r in this region.

Therefore, using (13),

r<n»/3

+ \z2{-2tf> + 20'U - 1 - r) + (1 - 2^ + 2(t>\i - 1 - r))2)

+ 0 ( r V ) + O(r25r/i/)] + n-"(nl/3)

= 1 + z(l - 2<f> + 2^'U - 1 - f)) + ^ 2 ( - 2 ^ + 2V-'(e - 1 - f)

+ E P r ( l - 2^ + 2/(f - 1 - r))2) + O(r"3z3) + O(H*/i/),
r

(14)

We will now examine in turn the coefficient of z, of \z2 and the remainder

terms in (14). By comparison with (5), we have f = 2£ + 0{\jv). Thus the

13



coefficient of z is

1 - 2<f> - 24>'(l +0

on using (6). Now, the summation in the coefficient of \z2 involves

(1 - 2* + 2<j>\i - 1 - r))2 = 4(<j>')\r -

on using (6) again. Thus the summation is

on expanding the bracket and using (5). Thus the coefficient of \z2 is, on

substituting for f,

+ 0(1/./) =

in view of (7). Finally, for the remainder terms,

O(f3z3) = 0(z3) = 0(z/n) = 0(z/i/), 0{r2z/v) = 0(^/i/),

using z = 0(n"x/2), i/ < n and the boundedness of rk for fixed k. Combining

these results we see that the right side of (14) is (1 + 0(z/v)), completing

the proof of the lemma. •

We are now in a position to prove Theorem 1. Applying Lemma 1 we can

assert that the event 2fi/v > CQ will rarely be encountered during the algo-

rithm until v < VQ = yn/ lnn . We may therefore use an "approximating"

stochastic process X^, defined for 0 < v < n,0 < fi < (%) as follows,

i/ < Co, and v

otherwise,

14



where R is an independent random variable with distibution pr (i/, / J ) , and Yv^

is a Gaussian random variable with mean u<f>(2fi/u)^ variance i/tp(2fi/u). We

can think of this as running GREEDY until v < u0 or possibly 2fi/v > Co and

then adding Yv^ to the edge count in place of the number of edges found by

GREEDY on the remaining GUyil. Note that Yv^ is the constant zero if fi = 0

in view of the initial conditions in (6) and (7). Clearly, fViti{z) = E(ezjfl/''i)

satisfies, for 2\ijv < CQ and v > z/0>

Let now S refer to the event that in applying GREEDY we reach a point

where v > v$ and 2fi/v > CQ. Lemma 1 tells us that

Pr(£) < exp{-Vnlnn} .

Now let

x — x(a) 4- x^

where X^ counts the edges added before v < v0. Define a similar decom-

position for Xnim except that if S occurs then Xv>li = Xfy and otherwise

ffy = Yv,n where v < v0. Then dropping the subscripts n,m,

E(e*x) = E

since X^b) < v0.

Similarly

But

15



E(e^ ( o ) | S) Pr(£),

since X ( a ) = X ( o ) if S does not occur,

Therefore E(ez*) ~ E(e*x). Hence it is sufficient to show that the asymp-

totic distribution of XUytx is as described in Theorem 1. But this is now easy.

Let us prove by induction that fw(z) = E(ez*l/>tx) satisfies

< /„„.(*) < e+Cl'hk"g*A*), (16)

for some constant C\ > 0. If 2/i/u > Co, this is true by definition. Otherwise

if v < 3, say, then // < 3 and hence gu^{z), E(ez^)axe both eo(z ) . Hence,

by suitable choice of Ci, (16) will be true for v < 3. Now, for v > 3, from

Lemma 2 there is a constant C2 such that

We will assume without loss that C\ > 5C2. Hence, by induction, for v >

and 2fi/v < CQ we have (see (15)):

zln(i/-2) «y^ / \

Similarly /„,„ > e-°1' lni'^ l l,(«), proving (16).

But, putting f = n, /i = m in (16) gives (8) and completes the proof of

Theorem 1.

16



3 Greedy on random trees

We will devote this section to the proof of Theorem 2. Our first task is to

prove the claims about the mean and variance of Yn, the number of edges in

the matching produced by GREEDY on a random tree. So for n > 1 let

fn(z) = E(zY»)

denote the probability generating function for this random variable and let

fc, d) = {a e [k - 1]* : ax + a2 + ... ad = k - 1}.

The deletion of the edge e = {u, v) chosen in statement A produces two trees,

one containing u and the other v. If the degrees of u and v in those trees

axe d and 8, respectively, after deleting the edges incident to e in the original

tree, two forests of trees will be left, of sizes a € ft(kj d), b G 0>(n — &, 6)

for some &, d, 5, where the sub-trees with sizes in a, b are associated with

different endpoints of e. Let 7r(a, b) denote the probability of the occurrence

of a particular unordered pair a, 6.

Now let

Then for n > 2

and

17



for a ^ b.

Explanation: there are (n — l)nn"2 (tree,chosen edge) pairs in total;

counts the choices for a set K of k vertices; k counts the choices for a vertex

u € K] &JT& njLi ij counts the ways of partitioning K\ {u} into the subsets

of cardinalities a € H(fc, d)\ Ylt=i a$r~l <^o\xats the number of ways of forming

trees of sizes a i ,a 2 , . . . ,a^ and designating the vertices (roots) in the trees

which will be attached to tx; the final factor in p(a, 6) is constructed similarly.

When a = 6 there is a double counting but there is none when a ^ b.

Now, the deletion of the edge e, chosen uniformly at random, produces a

forestof random trees, which-conditioned on their vertex sets-are indepen-

dently uniform. So, in distribution,

where the variables on the right side are independent.

It follows then that we have for n > 2

n—1 oo oo

2 d=0 6=0 a£Q(dfk) b€O(6tn-k)

We can simplify the above expression by introducing two bivariate generating

functions

and

Observe that

18



We multiply (17) by n""'|j"'1>iB and sum from n = 2 to oo. The left side

becomes F(x, z) — G(x, z). The right side becomes

ht E
= x*±

2

So we have the equation

F(xyz)-G(x,z) = ^ e x p { 2 F ( x , z ) } . (18)

Even though the equation appears to be extremely hard to solve in a closed

form, it is ideally suited to determine (asymptotically) the mean and variance

ofyn .

Let En = E(Yn) and
oo « n — 1

E(x) = £ En—-xn.

Since En = /«(!) we have

c, 1), (19)

and if E(x) = ££L2 E n 2 ^ x n = |f (x, 1) then

oo n n - l
Also

the tree function ([10]) defined for |x| < e"1. It is well known that

T(x) = xeT<*>, |x| < e"1 (21)

19



and so

Differentiating (18) with respect to z gives

Putting z = 1 and using (19)-(21) we obtain

4_
dx

or

and on using (22)
dE ~ T2

T(l + T ) ^ - E = y • (23)

Now E(0) = T(0) = 0. Solving (23) with this initial condition gives

E
2(1+ T)'

We then apply (20) and (22) to obtain

_ H T + 2)
2(1 + T ) 2 ) ( 1 T ) ' v ;

Thus
n! 1

2(1 + T)2(l - T)

where Co is a circle of small radius (less than e"1 around the origin in the

complex x plane). We now make the substitution x = te~* and work in the

complex t plane. (Since Co has a small radius the transformation is well

20



behaved.) Cancelling (1 — t) in the denominator and in dx = (1 — t)e tdt^

we arrive at
n! 1 / t* + 2t e«

ty~^ ( }
n!

where now C\ is a simple contour around the origin in the complex t plane

which does not enclose the point t = — 1. To estimate the integral, we use

an identity

(n-i-l)V

—; / — dt = T - ^ — — for m > 1.

which follows from

_L/ ^ =

( m - l ) !

Putting ûk = -^rh we find in particular that

i _ i _ 2 5 6

wo = n; ui = —1; u>2 = - 1 + —; ̂ 3 = 7.

(26)
n n n*

Suppose now that C is the circle of radius 1 around the origin and k is fixed.

On putting t = eie

= O(en

since | l - e w | < \6\. Now 1-cos 6 > 02/A for 0 < 3/2 and 1-cos 0 > 1-cos 3/4

for 3/4 < 0 < n and so substituting u = 0y/n we obtain

entdt = O(enn- r
Jo

*ukdu)

(27)

21



It is easy to see that (27) remains valid if C has a circular dent of a sufficiently

small, but fixed, radius at t = — 1. We return to (25) and expand the function

2/1l.t\i around t = 1 to obtain

t2 + It _ 3 t - 1 3(t - I)2 (t - I)3 (t - l)4(2t + 3)
2(1 + tf ~~ 8 + 8 32 + 16 32(t + 1 ) 2 '

Integrating over the dented C and using (26), (27) we obtain

3 1 3 1 A . , ,
£n = - « 0 + - « 1 - - ^ + I 5 « , + 0 ( n - )

(Note that ^ ? a is bounded on the integration contour.)

We now estimate the variance of Yn. So let

vn = E(yn(Fn -1)) = /:(i),

and

y(x\ = y^ y 1 x
n

n=2 n *

so that V = x ^ .

Differentiating (18) twice with respect to z gives

2
1 i Ji.

Putting z = 1 we obtain

22



which becomes on using (22)

dV
T(l + T)— - V = 2T2E(E + 1). (28)

The boundary condition for V comes from V2 = 0 (Y2 = 0 always.) Integrat-

ing (28) gives

V = ^ £ E(T)(E(T) + l)dr

T\6T2 + 1ZT + 8)
i 2 ( i - r ) ( r + i)4* K '

Now

"' ' ' 4 ? * (30)n""1 2ni Jci dt tn

It follows from (29) that

dV _ 9 139 11(1 -t) (t - l)2(Ut2 + 21U3 + 333f2 + 223* + 41)

< f t ~ 6 4 ( l - < ) 2 384 + 96 + 384(< + 1 ) 5

(The absence of a term (1 — t)-1 is crucially important.) Now

1 y 1 ent n f ent

2lri Jci (1 -t)2~F l = 2lr?yc1r+T

n n + 1

dt

where the first equation comes from integrating by parts. Thus using (26),

(27) and (30) we obtain

23



Now

and the expression for Var Yn in the statement of Theorem 2 follows.

The equation (18) can be used in principle to find the higher moments of Yn.

Fortunately, there is no need for these increasingly arduous computations.

Once we have established asymptotic linearity of the mean and variance, the

asymptotic normality of Yn follows from the recurence (17) for the moment

generating functions (cf. Mahmoud and Pittel [6].) For u € R let

gn(u) = E(e«y»)

be the moment generating function (m.g.f.) of Yn and

where

Wn = Var yn.

hn(u) is the m.g.f. of a normal variable with the asymptotic mean and

variance of Yn. In particular for n fixed and u —• oo

9n(u) = M«)(l + 0(u3)). (32)

We must show that if u = O(l/y/n) then gn{u) « ^n(u) as n —» oo.

For 2 < v < n let

n,= u
k-2 <i,«

Then, see (17),

(33)

24



Substituting (32) in (33) we obtain

where

| (35)

\Ai(uya,b)\ = ll
r = l

for some absolute constant

and similaxly,

r=l *=1

Now (34) and (35) imply that as u -^ 0

Comparing with (32) we obtain two identities for £ m , Wm(m > 2):

I/,a,6) = 0, (36)

x(af 6)(A?K a, 6) + A2(i/, a, 6)) = 0. (37)

25



From now on let u = v/y/n where v is a constant. Then consider

where

^ i r (a ,b)r ( t / ,a ,b) .

The degree sequence of a random tree d\,d.2,. ..,du is such that

d\ — 1, d2 — 1 , . . . , dv — 1 have the joint distribution of the occupancy numbers

in the uniform allocation of v — 2 distinct balls in v distinct boxes (see e.g.

Moon [10]). So in particular dx has distribution 1+BINOMIAL(*/ - 2, l/i/).

Thus,

But for u = 0(1/y/n), r(u,a,b) = e°<^> and so

d or 6 > J)

= exp{-fi(v/nlogn)}.

Now if d,6 < yjn/logn then uA; = O(l/\/logn),i = 1,2, and so

T(U, a, 6) = M«)[l+«Ai(i/, a, b) + |u2( A?(i/, a, 6)+A2(i>, a, 6)) + i2(u, v, a, 6)]

where

26



for some absolute constant A2. Applying (36) and (37) we obtain

(«) = K(u)

+K(u)
REST

+K(u) £ x(a,
REST

Now the second sum is /il/(w)exp{—fi(\/nlogn}.

Also, where dmax is the maximum degree of a random tree,

|u2(A2 + A2)).

dy6<y/n/\ogn d,6<y/n/log n

A2u
3 £ ic(a,b)(d+6)3

< A2u
z

< A3u
3(logn)3

by an easy computation. Thus for some A4 > 0,

;n)3l * / ^
exp \

rA4(logn)3|

V, )

It is precisely because of the possibility to bound this ratio without having

to take absolute values first, that we work with real w, avoiding the complex

valued characteristic function.
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We can now easily show that

/ A4v(\ogn)*\ (

We proceed inductively, starting with g2 = /&2> to get the base case. Then by

(33)

x(«, 6) ft M«) 6 *».(«
r = l «=1

and we have our upper bound for gvjhv. The lower bound is proved similarly.

Setting v = n, we have finally

Substituting u = v / v ^ we see that

E ( e n ) / V ^ = ev
2/192+O((logn)3/>A)

for every real v and so wJff converges to AT(0, §g), together with all its

moments, and the proof of Theorem 2 is complete.

To illustrate the power of this result, notice that it leads, for instance,to an

asymptotic formula for 22(5^?), exact up to a remainder O(n3/2). A direct

computation would have required plenty of work, without giving a clear idea

of why the final result is so simple.
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4 Modified Greedy on Gn?m

Here we give the proof of Theorem 3. In fact, the method of proof of Theo-

rem 1 carries over with only minimal changes, so we will elaborate only the

points of difference. The notation will correspond with that in Section 2. We

will use "hats" to indicate quantities which differ from their counterparts in

the proof of Theorem 1.

Most importantly, of course, we have a different distribution for J?, the num-

ber of edges deleted at each step. Here it is possible that no edge is deleted,

since the random vertex choice may select an isolated vertex. Thus we must

allow R = — 1. (Recall that the number of deleted edges was R+ 1.) We will

determine the distribution of R. Clearly

Pr(R = - l ) = vgA. (38)

For R > 0, suppose that the first vertex selected has degree n + 1 > 0, and

its chosen neighbour has degree r^ + 1 > 0. There are

/ f/ — 1 \ /z/ — 2\

ways of selecting the (ri +T2 +1) edges attached to the chosen pair of vertices,

and then ( _r
NJr _J ways of selecting the rest. Thus

Pv(R = r) = ^ m
ri+r2=r ^
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• W((<:;:)-U)
where, in the last equality, we have made use of a simple combinatorial iden-

tity which may be proved easily using generating functions and the binomial

theorem. Thus, using approximations similar to those leading to (2), we

obtain

)) (41)

T)! (1 + 0(rVl/ ) ) ( r" 0 ) (42)

^From these we may obtain by straightforward computations

A ^ ) . (43)

provided that £ = 0(1). We now let gv,»{z) = exv(v(z<i>(2v/ii)+\z2xj>(2v/n))),

and we will derive the differential equations analogous to (6) and (7) which

<f>i%l> must satisfy. We will show later that (in the complex domain) these

functions are analytic on an open region containing the nonnegative real

axis. Hence they and their derivatives are uniformly bounded on the interval

[0,co]. This will justify the Taylor expansions (c.f. (9) and (10))

ir) = fa) + ftoftf - 1 - r) + 0 (^pj (44)

) = M£) + J>'{Z)\{i - 1 - r) + 0 (pj . (45)

Hence (c.f. (11))

- 1 - r) + 0{r2zlv). (46)
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A similar calculation leads to

In&.n./k,) = *(e#(0 - id)) + §*2(£0'(O - *(0) + 0(z/v). (47)

Now (c.f. Lemma 2) we must examine

r>0

As in the proof of Lemma 2, we may ignore r > n1^3 in this sum. (Note

that the estimate in (4) remains valid here.) Then we expand uniformly for

r < n1/3, giving

r>0

2^ + 2(f - 1 - r)^') + 0(r2z/i^)) (48)

We need this quantity to be (1 + 0(z/v)). The conditions for this are clearly

that the coefficients of z and z2 in (48) must be zero. The coefficent of z is

A

Equating this to zero, substituting for E(/?) using (43) and rearranging gives

Similarly, the coefficient of z2 is

- 4(1 -
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Again equating this to zero, substituting for E(/2), E(#2) using (43) and

rearranging gives

(50)

We have the initial conditions <£(0) = V>(0) = 0. Equation (49) clearly has

solution

Ki) = \ H Yz^dx = Y^ -ln(2 - e"')}' (51)

as claimed in the statement of Theorem 3. Now consider (50). If its right

hand side is denoted by u(£), then it is clear that u(0) = 0. Then (50) has

the solution

such that */?(0) = 0. Also, ^(oo) = 0 since f£° u(z)dz converges.

The rest of the proof of Theorem 3 follows closely the lines of that of Theo-

rem 1, as the reader may check.

5 Modified Greedy on random trees

We now consider the proof of Theorem 4. The proof is similax to that of

Theorem 2 and so we will give somewhat fewer details. We use the same

notation as that in Section 3 except that we will put aA over the corresponding

quantity. Then as in equation (17) we have, for n > 2,

,n-k) r=l
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where now

Hub)- I 3 «'! / I « JJ
Explanation nn 1 counts (tree, chosen vertex) pairs; v denotes the chosen

vertex; vw is the chosen edge; having fixed v,w there are ( j l j ) choices for

the vertices of the trees attached to v; in the tree in question v has degree

d + 1 and j4y is the probability that vw is the chosen edge. The remaining

terms count the number of possible forests on the remaining vertices.

Putting

Hx,z) =

/ oo j oo s y>»—i f (z\ \

we obtain the equation

or
p2 _ xp i x

2
z(e

2F — eF\ (§2)

Unlike GREEDY, this is not a differential equation! As a partial check, set

z = 1 and notice that F(x, 1) = T(x), so that (53) becomes
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This is certainly correct since T = a:eT, see (21). Differentiating (52) with

respect to z gives

or
dF

=

dz 2F - x - x*z(2e*F - ep)'
Now

and

n=l n !

where

En = E(fn).

So putting z = 1 in (53) we obtain, using (21), that

Thus

n! 1 / T-Te~T dxF = — - - f T~
Co(2-e-r)(l-T)xn+1

l-e-*ewt

p =
 v ;

2T - a: - x2(2e2T - eT)
T — Te~T

~ n""1 2*1 Jd 2- e-* F

Here Co is a circular contour in the a; plane, of radius less than e""1. (Notice

that |2 — e"-T(x)| is bounded away from zero in the closed disc |x| < e"1.)

As for Ci, it consists of two circular arcs L\ and Li , where L\ — {t = e'8 :
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—f < 0 < y, and 2̂ 2 passes through the points e±t7r/2 and the point t0 on

the negative real line, such that — In 2 < t0 < 0. The contribution of L2

to the value of En is of order O(n3/2(e|t0|)""n), which is exponentially small,

provided that \to\ is sufficiently close to In 2 (because eln2 > 1.) We now

expand \Zl-t around t = 1 to obtain

2-e-« " 27^1 + (2e - 1)*(< 1} 2(2e -

where <f> is bounded on L\.

While integrating the first four summands we can, and do, extend the integral

over the whole unit circle making an exponentially small error. So using (26)

and (27) we now obtain

h e~1 , e e(2e+l) , e(4e2 + 8e+l) ,
E = 1"+ ^ T » + " +

/1
In

e - 3e - 2e2

2 e - i n 2 (2e - l ) 3 +

as claimed.

We continue by estimating Vn = E(K(K — 1)). Differentiating (52) twice

with respect to z gives

Putting z = 1 and using (21) we obtain

+ 27V = *V + x2(2e2T - eT)(2E + V) + x2E2(4e2T - eT)
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= Te~TV + T2(2 - e~T)(2E + V) + E2T2(4 - e~T)

where V = V(x) = E~=i K ^ x " .

Thus
V - TE(4 ~ e~T) + 2T2£(2 - e~T) - 2E2

Also, as in (30),

P. = A— / — * • - * • (57)Jcl
It follows from (54) and (56) that in terms of t

where a is an absolute constant and /? is bounded on C\. Thus, using (26),

(27) and (57)

Using this and (55) we obtain the variance estimate given in the theorem.

We finally consider asymptotic normality. Fortunately, no work is needed. If

we examine the proof of cisymptotic normality in Theorem 2 we see that all

we need do is replace 7r(a,6) by x(a,6) throughout to obtain the result for

MODIFIED GREEDY.

References

[1] I. M. Curtis, A note on the theory of moment generating functions,

Annals of mathematical Statistics 13 (1972) 430-433.

36



[2] M. E. Dyer and A. M. Frieze, Randomized greedy matching, Random

Structures and Algorithms 2 (1991) 29-45.

[3] O. Goldschmidt and D. S. Hochbaum, A fast perfect-matching algorithm

in random graphs, SIAM Journal on Discrete mathematics 3 (1990) 48-

57.

[4] B. Korte and D. Hausmann, An analysis of the greedy algorithm for inde-

pendence systems in Algorithmic Aspects of Combinatorics, B. Alspach,

P. Hall and D. J. Miller Eds., Annals of Discrete Mathematics 2 (1978)

65-74.

[5] R. M. Karp and M. Sipser, Maximum matchings in sparse random

graphs, Proceedings of the 22nd Annual IEEE Symposium on Foun-

dations of Computing (1981) 364-375.

[6] H. M. Mahmoud and B. Pittel, Analysis of the space of search trees

under the random insertion algorithm, Journal of Algorithms 10 (1989)

52-75.

[7] A. Meir and J. W. Moon, The expected node-independence number of

random trees INCOMPLETE REF

[8] B. Pittel, On tree census and the giant component in sparse random

graphs, Random Structures and Algorithms 1 (1990) 311-332.

[9] G. Tinhofer, A probabilistic analysis of some greedy cardinality matching

algorithms, Annals of Operations Research 1 (1984) 239-254.

[10] J. W. Moon, Counting labelled trees, Canadian Mathematical Congress,

Montreal, 1970.

37



 



3 S4fiE 01371 ObHl


