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1 Introduction

A matrix is totally unimodular if all its subdeterminants are 0 ,± l . Totally

unimodular matrices are known to be the matrix representations of regular

matroids [20]. Let A b e a totally unimodular m x n matrix with columns

<*i» <*2* • • •»an- Let B denote the set of bases of J4, i.e. the set of m x m non-

singular submatrices of A. These correspond to the bases of the associated

regular matroid. We will, by abuse of terminology, identify A, or a basis JB,

with the set of columns they contain. Now, assuming A has full row rank

(i.e. B ^ 0), we can define a simple random walk on B:

NATURAL RANDOM WALK

Starting at an arbitrary basis Bo = B 6 B, generate a random sequence

Bo, 2?i,... , 2?t,... € B as follows. At Bt, randomly choose columns a € Bt,

a' £ A\ Bt. Let B't = Bt U {a'} \ {a}. If B\ € B then J5t+i = £{, otherwise

B%+\ = Bt.

Now the steady state distribution of this chain is uniform over B. (This

is clear from the fact that the probability transition matrix is symmetric.)

The crucial question is how quickly does the chain settle down ? Does it

mix rapidly-Aldous [1] ? In the particular case of our problem in which

A is the node-arc incidence matrice of a (di)graph, or correspondingly the

regular matroid is graphic^ the answer is known to be affirmative-Aldous [2],

Broder [7]. We will extend this result and prove

Theorem 1 For any B € B

IPrfA, - iq - |B|-| S (l
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It is clear from this theorem that in time polynomial in m,n,ln(l/6) we can

generate a basis B of A such that for any B € B we have

i.e. B is an "almost uniformly generated" basis. We will prove the above

theorem by relating the walk to one in a certain convex polytope ((A) asso-

ciated with A, called its zonotope. For an arbitrary matrix A, the associated

zonotope is defined by

((A) = {x € Hm : x = Ay for some y € [0, l ]n}.

The mixing time of Markov chains has attracted much attention lately in

the Computer Science community, since the efficiency of various algorithms

depends on this, e.g. Broder [6], Jerrum and Sinclair [21,13,14], Dyer, Frieze

and Kannan [12], Karzanov and Khachyan [16], Lovasz and Simonovits [17],

Applegate and Kannan [3], Applegate, Kannan and Poison [4], Dyer and

Frieze [11], Mihail and Winkler [19]. Theorem 1 could be used, in particular,

to show how to estimate \B\ although as we shall see, this can be done more

efficiently using the Binet-Cauchy formula for the determinant of the product

of two rectangular matrices.

As already observed, one can consider \B\ to be the set of bases of the regular

matroid associated with A. We note that, if one could generalise Theorem 1

to an arbitrary matroid, then one could (for example) efficiently estimate the

reliability of a graph. This would be an important result.

Our second result concerns linear programs with totally unimodulax matrices



of coefficients. We consider the problem

LP(6) : minimise cy
subject to Ay = b

y > 0 .

Although it is already known, through the work of Tardos [23], that a strongly

polynomial time algorithm exists for this problem when A is totally unimod-

ular, we will show that random walks may be used to give a randomised

version of this result. We will defer the exact statement until later. What

we show, in essence, is that the above problem can be solved by a ran-

domised dual simplex algorithm, where pivots are chosen by executing a

random walk. This is discussed in Section 4. As a corollary we will be

able to give a polynomial upper bound on the combinatorial diameter of the

polytope P = {x € Rm : ATx < c} when A is totally unimodular.

2 Notation and terminolgy

Conductance

Consider a Markov chain with state space ft, transition matrix P = (ptJ) and

steady state distribution TT,-. If J C ft with K(I) = Y^iei** — 2> ^e*

i.e. $ / is the conditional probability that the next state will be in I given

that the current state is in / , assuming the steady state distribution of the

chain. The conductance of the chain is then $ = minj $/ . The following

theorem is implicit in [21], and stated more directly in [17].



Theorem 2 // J C ft and ir^\j) is the probability that the chain is in a

state of J at time t when started in state 1, then

D

Norms

For a vector x € Hn we use ||x|| to denote the Euclidean or L2 norm. We

will also need to use the L\ and L^ norms which are written ||z||i, ||^||oo

respectively.

3 Analysis of the walk

We start by proving a result on the volume volm(£(A)) which is attributed

by Stanley [22] to McMuUen. We give a proof which provides us with a de-

composition of ((A) into parallelopipeds which is fundamental to our walks.

Here A need not be totally unimodular.

Theorem 3 volm(((A)) = £ B € B | det B\.

Proof If B € B then ((B) is a parallelopiped with edges parallel to the

columns of B and it is well known that

volm(C(B)) = |det£ | . (1)

Let c € Rn be arbitrary, 0 > 0 be arbitrarily small, and



For each x € ((A)y let Px = {y € [0,l]n : Ay = x}, and let £(x) be the

unique optimal solution to

minimise c$y : y 6 Px- (2)

Since 0 is small, ((x) is the (unique) lexicographical optimum to the above

problem. Thus there is some basis Bx € B with columns at,t € /* such

that ij{x) 6 {0,1} for j £ Ix. (If there is a choice of Ix due to degeneracy,

choose the lexicographically first such.) Let now £(x) be defined by £,(x) =

6(*),J £ J* and £(x) = 0,t G Ix. Then

x € ft*) + C(BX).

Observe also that if xf € £(x) + C(BX) and 0 < x • < 1 for i € i* then /x/ = Ix

and J5X = Sx/. This is because changing the right hand side of the linear

program (2) in this way does not affect the optimality of the basis Bx.

Conversely, suppose B € B with columns a», i € /. There is a unique

r)(B) € {0 , l } n , with r]i = 0 (i € / ) , such that if x € rf{B) + C(#) and

0 < Xi < 1 for t € /, then Bx = B and £(x) = »7(B). Indeed, for any such x,

the optimality conditions

C,-+«M«,+«•.,...,«.,+«•")*-*,> 2 5 £ : J; m w
where / = {i\ < ... < tm} , will ensure Bx = B. Since 0 is arbitrarily

small, the conditions (3) can of course be rewritten to be independent of 0.

Summarising, the set S of parallelopipeds {£(x) + C(BX) : x 6 C(^)} cover

C(A), intersect on a set of zero volume and each B € B gives rise to a unique

PB € £. The theorem now follows. D



Returning to the case where A is totally unimodular, we see immediately

that

Thus we could approximate \B\ by estimating the volume of (,(A). This

is however, not the easiest way of accomplishing this. By the identity of

Binet-Cauchy (see, for example, [5, p327]) we have

where the above sum ranges over all m-sets / C [n] = {1 ,2 , . . . , n} and Bj is

the mxm submatrixof A with columns a,-,i € / . Thus |B| can be computed

exactly by evaluating a determinant. This can be done in polynomial time,

and even in NC.

This observation can be generalised somewhat. We can compute, for exam-

ple, the number ctk of h x k nonsingular submatrices of A. Let A' be the

m x (m + n) matrix obtained from A by adding an m x m identity matrix

Jm. Then a* is the number of bases of A' which have (m — k) columns in

Jm. In general suppose we have an M x N totally unimodular matrix /?,

S C [iV], and we wish to compute the numbers /?*, k = 0 , 1 , . . . , M of bases

of D which have k columns with indices in S. After column rearrangement,

let D = [D\ | D2], where D\ contains the columns with indices in S. Suppose

z is a complex variable, and let Dz = [y/zD\ \ D2}. (The choice of branch for

the square-root is unimportant.) The Binet-Cauchy theorem implies that

det DZDT
Z = detizDtD* + D2D?) = £ pkz

k, (4)

and we can compute the fa by evaluating the coefficients of the above poly-

nomial by interpolation, using only rational values of z.



More generally still, suppose for any fixed r, we partition the columns of

D into sets 5i, 52 , . . . , ST and ask for the number of bases with k\ columns

in Si, . . . , kr columns in 5r, where kx + \- kr = M. Call this number

P(ku...,kr). Le t t ing D = [Dx | ••. | Dr) and D z =

gives

det DZDT
Z =

£ ...,M^--^r. (5)

The right hand side is a homogeneous polynomial in ziy...,zr whose coeffi-

cients can again be determined by interpolation.

We note in passing that equation (4) gives strong information about the

numbers /?*. It follows easily, by simultaneous diagonalisation of the pair of

positive semi definite matrices DxDj (see [5]), D2D21 that the polynomial

Hfclo PkZk has only nonpositive real roots. This answers a question of Stan-

ley [22], and implies (as he observes) that 7* = (fy /3k is a log-concave

sequence, i.e. 7̂  > 7*-i7jt+i (k = 1,2, . . . , M — 1). (See [5, p53] for a proof

of the log-concavity of the sequence {7*} in this situation.)

It follows further that the coefficients j0(&i,...,fcr) are IlLi^*' times the

mixed discriminants of the quadratic forms xT(DiDf)x (i = 1 , . . . , r), where

x € Rn. See [8, pl69] for definitions and properties. It is now easy to

derive Stanley's theorem (Theorem 2.1 of [22]) on the log-concavity properties

of the /?(&!,...,fcr) from the theory of mixed discriminants, in a similar

way to which Stanley derives it from the theory of mixed volumes. Mixed

volumes and discriminants have many close relationships with enumeration.

Approximation of mixed volumes is considered in [10]. We will consider

a random walk on B which is slightly different from the one described in

8



Theorem 1. We call it the restricted random walk. Take c = 0 in Theorem 3

and consider the graph F = (B,£) in which B,B* are adjacent if PB,PB'

share an (m — l)-dimensional face. If B now has degree ds in F we add

(4m — ds) loops at B. We consider the usual random walk on F.

We start at an arbitrary basis Bo, which we can find in O(m2n) time. We

then re-arrange the columns of A so that those of BQ are last and then we

have PB0 = C(^o)- In a general step of the walk, at basis Bu we randomly

choose one of the 4m edges of F that are incident with Bt and traverse it.

If the edge is not a loop, then moving to the associated neighbouring base

requires a dual simplex pivot and this can be carried out in O(rnn) time.

(We select the column to leave the basis, whether its associated variable is to

become non-basic at 0 or 1, and then find the unique column to replace it, if

one exists. Furthermore there is no need to keep an explicit value for 6 since

the replacing column is independent of 0 whenever 6 is sufficiently small.) For

B G B let *£ = Pr(jBt = B). We are interested in the variational distance

between the distribution *W and the (uniform) steady state distribution.

This can be bounded in terms of the conductance $ of the associated Markov

chain. Theorem 2 implies that for our random walk

ki?-|Sn<(l-yy (6)

where, for 5 C B,

$ = min $5.
\S\<\\B\

Here, letting e(S : S) denote the number of edges between S and 5 in F, it

follows easily that

4m|5| '

9



To put a lower bound on $, fix 5 and let R = U*€S^s* W = \dR \ d((A)l

where d denotes boundary and | | denotes (m — l)-dimensional measure.

Now, by a theorem of Lovasz and Simonovits [17], with a small improvement

from Dyer and Frieze [11],

2volm(/*)
w >

diam(CJ
9 LCI

(8)
where we have used the fact that, since A has entries 0, ±1,

tSBl

On the other hand

W<y/me(S:S)y (9)

since the area of each facet of each PB is at most y/m. To see this suppose that

<*i, a2 , . . . , am are linearly independent. Let 6 be the normal to the hyperplane

H through the origin generated by ai, a 2 , . . . , am-i- Assume, after relabelling

coordinates if necessary, that 6i ^ 0 and scale so that &i = 1. It follows from

Cramer's rule applied to the equations 6i = 1, b • at- = 0,1 < i < m — 1 that

6, G {0, ±1}, 1 < i < m — 1. Now the perpendicular distance h from the point

am to H is |6 • am|/||6||. But b • am is a non-zero integer and ||6|| < y/m. The

area upper bound follows since h~l is the area of the face of the parallelopiped

generated by au a 2 , . . . , am-i. Applying (9) in (8) gives

To obtain Theorem 1 we need only argue that the conductance $ ; of the

natural random walk is at least $/n. But this follows easily from the defini-

tion of conductance. Fix a set S C B. Let Bj^w and Bpw refer to the Vth

10



of the natural and restricted random walks respectively, assuming they are

both started in their steady state, i.e. uniformly on B. Let

#k € 5) = Pr(i?j& € S) =

Then, in an obvious notation,

)& = B and B% = B')
B€SfB'€S

1
n — rn

where the inequality follows from the fact that at any basis B the natural

random walk has probability ^r °^ m akinS the same move as the restricted

random walk. This clearly proves $' > $/n and Theorem 1 follows.

4 Linear Programming

In this section we consider the effectiveness of a random walk in solving

the linear program LP(6) of Section 1. Our randomised algorithm works on

the assumption that LP(6) is feasible, in which case it solves it with high

probability. The assumption of feasibility is no restriction, since we can use,

for example, the ttbig-M" method [20, pl36] if we suspect the problem may

be infeasible.

We first describe an algorithm METROPLEX which (almost) solves the prob-

lem LP'(6) in which y > 0 is replaced by 0 < yj < 1, j = 1,2, . . . , n. We will

then use this algorithm as a subroutine to solve LP(6).

11



Assume that we are given 0 < d,6 < 1. Our result will be

Theorem 4 With probability at least (1-6), METROPLEX computes y
A

such that, if b = Ay,

i.\\b-b\\<d

2. y solves LP(b)

Furthermore METROPLEX runs in O(mllsn4d"3hi3(m/(d6)) time.

METROPLEX uses a random walk to choose dual simplex pivots in a manner

to be described shortly. We start conceptually with the decomposition of

((A) into parallelopipeds induced by c as given in Theorem 3. Let

M =

N = \5Mm3'2],

T = 4 2 2

Each paxallelopiped PB is divided into Nm sub-parallelopipeds (which we

will call cells) of equal size in an obvious way. Denote these by PB,M« =

l ,2 , . . . , iV m and let aB,% denote the centre of Pa,,. Also for x 6 C(^) let

-*l" and

We do a random walk on the cells as follows. We start with an arbitrary basis

B and choose a cell in PBj any will do. Suppose now that P = PB,%, P1 — PB\V

share a common facet. When the walk is at P the (transition) probability

A(P, P') that the next state is Pf is given by

12



This is achieved by choosing a neighbouring cell at random (as in our first

random walk) and moving to it with probability il>(P')/if>(P)- This is an

example of the Metropolis algorithm [18]. It is straightforward to check that

the steady state probabilities v(P) are proportional to rl>(P). We run the

walk for T steps and then with high probability the current cell P is "close"

to the cell which contains 6. If in fact P C PB where 6 € PB then B will be

an optimal basis for LP'(6) and this will be easily recognisable and we will

have solved LP'(6). In general we cannot conclude this although, when d is

small and b is chosen randomly from C(̂ )> this is likely to be the case.

Before analysing the mixing time of this walk we remark that the algorithm

does have the flavour of a randomised dual simplex algorithm. Moving from

cell to cell in the same parallelopiped requires adjusting the value of one

basic variable and moving from parallelopiped to parallelopiped requires a

dual simplex pivot as before. The random walk between pivots is used to

determine which column should leave the basis.

We now discuss the conductance of the walk. Let ft denote the set of all

cells. Let S C ft satisfy TT(S) < \ and let S = ft \ S. Let

(S:S) = {(P, P'):PeS,P'€S and P, P' share a facet}.

_
w{S)

Observe next that if x, x' lie in the same cell P then

') < exp{Afdiam(P)}

13



< c1/5

Thus, if R = \J{P : P € 5} and W = dR \ dC(A), then

Pes

and
mm{x(>(P),xi>(Pf)} > e"1/5 I <f>{x)dx.

(P,P>)S(S:5) JW

(The volume of each cell is JV~m and each of its facets has area at most

7V1-m
v

/m.) It follows that

S ~ fR<t>(x)dx
2

" ZmHN'

The second inequality is a sharpening of an inequality of Applegate and

Kannan [3] from Dyer and Frieze [11]. This inequality is a generalisation of

the Lovasz-Simonovits isoperimetric inequality used in Theorem 1 and relies

on the fact that <f>(x) is log-concave. Thus the conductance $ satisfies

- Zm*nN

We need an upper bound on the total probability of cells at distance greater

than d from 6. Now each cell Ps,i contains a ball of radius p = (y/inN)'1

centred at <TB,%- Hence the number of cells meeting a ball of radius r is at

14



most ((r + p)/p)m. Hence if 0,* denotes the set of cells with centre at distance

at least d from b then

l^L=L\ «p{-M(«f+(*- l ) )p}
jt=i V P I

-kp)me-Mkp+ £(<*•

" ^ + 10m22m<Te-M<J) .

For the first sum we replace (d + kp) by Id. For the second sum we replace

(d + kp) by 2fcp and then observe that the ratio of successive terms is

(1+1 A)"e~M" < exp {^ - Mp) < exp { ^ - Afp} < e"^ 2 < 1 - ^ ,

since M > 2m/d, and Mp > l/(5m2). Now, using this latter inequality

again, together with M > 4, p < d/2,

4>{Sld)<e-Md'2(lOMm2)m+1. (11)

To bound this, let A = Md/2(m + 1). Then

< (40e-A/2m3/d)m+1

<-l
provided A > 2(log(40m3/<f) + ^ j log(5/4)). Since our value of M is large

enough to ensure this, we have the bound. Moreover, since <f>(b) = 1, we see

that if b lies in a cell P then r/>(P) > \. Thus

*(nd) < 2v>(oo < s/2.
We also need a lower bound on the steady state probability of the initial cell.

If this is Po, then using the bound on the diameter of

> exp{-Mn>/m}.

15



Also, since ij>(P) < 1 for all cells P € ft,

LJ ^ (enN/M)m <

Thus

1 / T ( P 0 ) < (15Mnv^)roexp{Mnv/^} = Co,

say. We now use our conductance bound and Theorem 2. This implies that

after T steps the probability we are in ft* is at most

on substituting the relevant values. The time estimate for METROPLEX is

O(Tmn) and Theorem 4 is proven.

We now return to the solution of LP(6). Let x* be the (lexicographically first)

optimum solution. Since it is a basic solution, and A is totally unimodular,

we have

Now change variables to y = z/2/? so that ||y*|| < | and define b' = b/(2/3).

We now run METROPLEX on the problem U>'(b') with d = ^ and 6 =
A A

5~. Suppose it is successful and produces y and 6 = Ay where ||6||i >

| . It follows from a theorem of Cook, Gerards, Schrijver and Tardos (see

Schrijver [20, pl26]) that \\y - y*||oo < nd = ^ where y* = xm/(2P) solves

LP'(V). Clearly & = 0 for non-basic j (else ||y - y*||oo > \.) Also, since A is

a 0,±l matrix and y is a basic solution, the largest component yt of y is at
least i||6|U > &. Hence

— > —
6m2 ~ 6m2'

16



But this implies that xj is basic. Knowing this we can eliminate xi and one

row from the problem LP(6). Hence after m successful iterations the problem

will be solved. We thus have the following

Theorem 5 With probability at least \ the above algorithm solves LP(b).

The running time is O(rn17Bn7 In3(mn)) and so the algorithm is strongly

polynomial E

Of course repeated applications of the above algorithm will make the failure

probability as small as we like.

Remark

The above analysis can be applied to matrices A whose entries axe 0, ±1, ±2

and in which the sum of the absolute values in each column are at most

2. Call this an S-matrix and observe that the property is preserved under

Gaussian elimination after removing the pivot row and column i.e. after re-

moving the "discovered" basic variable. The crucial property for the success

of METROPLEX is that the ratio of face surface area to volume is polyno-

mially bounded for each cell. With a polynomial ratio of area to volume we

can use (weighted) surface area and volumes as approximations in estimating

conductance.

Assume A is an S-matrix and B is a basis matrix. Observe that B\ is the

matrix formed by deleting column 1 from B then the (m-l)-dimensional

volume of ((B) spanned by the last m-1 columns of B satisfies

S2 = det B*BX

17



t=2

where B l f l is the matrix obtained by deleting row t and column 1. We will

have (almost) justified our remark if we can prove, say, that

|B 1 , 1 |<2 |detB| . (12)

Let the entries of B be denoted 6,-j. If |6lti| = 2 then |det B\ = 2|det B l f l | .

So assume w.l.o.g. that &i,i = 1. Suppose J5i,i has r columns with ±2's in

them. Then det BXti < 2r+1 (since a non-singular S-matrix without ±2's has

determinant ±1,±2). Using Gaussian elimination to remove the (at most

one) non-zero (±1) entry in column 1 of B we see that det B > T and (12)

follows.

The above analysis shows that the conductance is sufficiently large. The

remainder of the proof can easily be justified once we observe that B"1 has

entries in { 0 , ± i , ± l , ± 2 } .

5 Diameter of a polyhedron

In this section we give a polynomial bound on the combinatorial diameter

7Q of the polyhedron

Q = {x e Rm : ATx < c}

where A is a totally unimodular m x n matrix, (By combinatorial diameter

we mean the diameter of the graph induced by the vertices and edges of Q.)

We can assume that Q is non-degenerate. If not then a change of c to c^ will

make it non-degenerate and the combinatorial diameter will not decrease.

18



Take two vertices vi,v2 of Q. For t = 1,2 the support of v, decomposes A

into B{ and JVt and correspondingly c into <?B,c%
N such that

Bjvi = <4, Njvi < 4, i = 1,2.

Let e denote the m-dimensional vector of all l's and A, = ||£te|li (* = 1>2).

Note At- > 1. We then let

61 = 20A tA/^^e '

Clearly 6* G CM- Note that ||6t|| < \\bi\\x = l/(20y/rn). Thus v{ is the

(unique) optimum solution to

maximise bjx subject to x € (?.

By duality £t is also the optimum basis matrix for the problem LP(6t) of

Section 2.

We discuss applying a modification of the random walk of the previous section

starting at 61 with target 62- The modification will be that we will only walk

on cells ft' for which the centre

<, € £>={*: II* - Ml < f ^ } -

Note that the cell containing 61 belongs to ft'. By doing this we ensure

that (in the notation of Theorem 3) £(6) = 0 for each cell centre 6. In fact

|(6) ^ 0 implies ||6|| > l/y/m. To see this observe that now 6 is outside any

of the paxallelopipeds which contain the origin and we have shown (see the

argument following (9)) that the distance from the origin to any facet of any

of these paxallelopipeds is at least l/y/rn.) Thus the upper bounds y; < 1

are inactive in the walk and the bases met axe dual feasible for LP(6)? for

some 6, and so feasible for the polyhedron Q.

19



Once we show that the conductance of this walk is bounded below by l/p(rn, n)

for some polynomial p we will be almost done. For then we will have shown

that we can get from B\ to B2 (with positive probability) by a walk involving

a polynomial number of pivots such that all intermediate bases are feasible

for Q. We will then be able to prove

Theorem 6

7Q = O(m16n3(ln(rnn))3).

D

(Our current estimate for the polynomial must be far from the truth.) Let

us first change the sizes of M, T to

M = riOOm7/2nln(e10mV)l,

T = \10m3/2MN2].

N remains the same function of M and we promise to run METROPLEX

with

In order to prove the theorem we use the notion of //-conductance introduced

by Lovasz and Simonovits [17]. We use the notation of Section 2 here. For

0 < x < 1 we let

ht(x) = max{7r^ - x : u> € [0,1]10'1, xu> = x) (13)

where now xW, ir axe treated as vectors of length |ft'|. Thus ht is a continuous

version of the variational distance between *W and TT. For 0 < \i < 1/2 we

let the //-conductance of the chain be

20



Lovasz and Simonovits proved the following generalisation of Theorem 2:

Theorem 7 Let C=max{ho(x) : x € [0,/x] U [1 - n, I]}. Then

We now proceed to bound C and $M where we let

which from (11) (with d = 8/(9v/m)) is an upper bound to the limiting

probability of the walk being in a cell which meets the boundary of the ball

D.

Upper bound for C

Suppose now that b\ lies in a cell Po and that TTO = n(Po)- Then

(15)

Suppose first that 0 < x < fi. Then from (13) and (15) we have

ho(x) = x

21



lil-fi<x<l then (13) implies that ho(x) < n and so

Lower bound for $^

Suppose now that 5 C W and fi < T ( 5 ) < 1/2. Let D = {b € ((A) :

II6 " M ^ lofe " T } ' ^ d ™te that

P C [J P. (17)

Let S = {P € S : a(P) € P} and S = {P € fi' \ 5 : <r(P) € !>}. Next let

R = DD (Upe5 P) and let iV = dR \ dD. Then

5

since (5 : S) C (5 : S) and TT(5) < TT(5) + ft. Applying the reasoning of the

previous section to D we obtain

s -

>

fA<f>(x)dx
e-2/5

~ 4./Vm3/2

> _±_
~ 6mN'

and so

6mN'
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Note that it was important for (17) to hold here. Replacing D by D would

perhaps give an overestimate for the weighted boundary between S and 5.

Applying Theorem 7, (11), (16) and (18) we see that after T steps of METRO-

PLEX the probability we are at a distance greater than d from 62 is at most

C + l/(2rn) < 1. The final part of the proof that we can identify a basic vari-

able goes through as we have scaled d by l/(\0y/m). (We previously solved

LP(6') with H&'ll! = \ but now Ufe^ = l/{20y/m).) Note that identifying

a basic variable is equivalent to identifying a facet of Q containing V2. The

remainder of the path from V\ to V2 will be restricted to this facet. In all

we have to identify m such facets. The total number of pivots required is

therefore O(Tm) and Theorem 6 follows.

6 Concluding remarks

Our results on random generation extend those of Aldous and Broder for

trees. They also differ in one important respect, in that we have showed

that the "conductance" approach succeeds for the most natural random walk

on these objects. The challenge of generalising these results to arbitrary

matroids seems to us most likely to be achieved this way. (Though our

proofs give no clue as to how this might be done.)

The time estimate for our linear programming algorithm is clearly rather

large. We have not attempted to make its time bound as tight as possible,

since our result is merely intended to demonstrate the existence of a poly-

nomial time "simplex" algorithm for this class of problems. There are, of

course, worst case strongly polynomial algorithms for these problems [23],

but none resembles the simplex method except in very special cases. Note
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that since total unimodularity is preserved under duality, our algorithm may

also be regarded as a primal simplex method in which cost-increasing pivots

are allowed with low probability. We believe our result on totally unimodu-

lar linear programs gives the most general problem class for which a strongly

polynomial time variant of the simplex method is known to exist. We in-

clude all network problems, for example, where the usual variants of the

primal simplex method are known not to be even polynomial [25, 9]. The

best (exponential) bound here on the number of pivots which is independent

of the size of the numbers is due to Tarjan [24], who also gives a polynomial

"simplex" algorithm allowing cost-increasing pivots, but with only a weakly

polynomial bound on the number of pivots. It must also be observed that

Tarjan's algorithms use much of the sophisticated machinery of non-simplex

network flow techniques. Thus his methods depart from the spirit of the

simplex method in a way which ours do not. The obvious challenge is to

generalise our results to linear programs in which the A matrix has bounded

entries or, more ambitiously, to arbitrary linear programs. Another issue is

to what extent our linear programming algorithm can be de-randomised.

We have given a bound on the combinatorial diameter of polyhedra defined

by totally unimodular constraint systems. Thus these polyhedra satisfy the

so-called polynomial diameter conjecture [15] which is a weakening of the

famous Hirsch conjecture. Again, as far as we know, this is the richest class

of polyhedra for which the polynomial diameter conjecture is currently known

to be true.
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