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Introduction

Categories in this paper will always be concrete over a fixed base category S, with faith-
ful and amnestic forgetful functors to S, and functors will be concrete functors. A com-
pletion of a concrete category A is a full and dense concrete embedding G : A —• B of A
into a concrete category B which is complete in an appropriate sense. Completions of A
with specified properties usually define a (quasi-)category, with full concrete embeddings
as morphisms. An initial object of such a category is called a hull of A.

Topological completions and hulls with various properties have been studied intensively;
we refer to the papers in the Bibliography for important contributions to this theory, and
for further references. As H. HERRLICH [17] has pointed out, "smaller is better" for comple-
tions: a small completion of a category A is likely to retain more of the desirable properties
of A than a large one. This makes hulls particularly desirable, and it suggests that the word
"dense" should be used in a reasonably restricted sense. Beginning with P. ANTOINE [12],
"dense" has often been used in the least restrictive meaning of finally dense. J. PENON in
[22] introduced epidense extensions, and the author in [29] discussed colimit-dense exten-
sions over a monosieve-complete quasitopos S as base category. Colimit-dense extensions
are too restrictive for a more general base category; we replace them by quotient-dense ex-
tensions which have almost all basic properties established in the literature for other types
of dense extensions.

The existence of at least three different meanings for "dense extension" calls for a
general theory of dense extensions, completions and hulls. Sections 1 through 3 of this
paper develop such a theory for an arbitrary concrete category A, based on factorizations
of sinks in the base category S. We specialize in Sections 4 through 6 to quotient-dense
extensions and quotient-topological completions. This material could also be generalized,
but the finally dense case is well-known, and other cases (if any) seem to be less interesting.
Section 4 deals with cartesian closed completions and hulls, and Section 5 with completions
and hulls with (strong) partial morphisms represented. Section 6 deals with quasitopos
completions and hulls, and with initial lifts for finite sources. We show that almost all
results obtained in the literature for dense completions of some kind remain valid in our
theory.

For every reasonable meaning of the word "dense", there is a largest dense completion
of a concrete category A, a terminal object in the category of dense extensions of A, and
completions of A can only be as complete as this largest completion. Thus dense comple-
tions are in general not topological; we can only expect them to be quotient-topological,
i.e. to admit final lifts for quotient sinks. This raises the problem of existence of initial lifts



for sources in dense completions. We discuss this for finite sources in Section 6; very little
is known about the general situation.

Our terminology follows mostly [6] and [29]; these books will be cited as [ACC] and
[TQT].

1. Factorizations of Sinks

1.1. Sink factorization structures. Throughout this paper, categories will be
concrete categories (A,P) over a fixed base category S, and functors will be concrete
functors over S. As in [TQT] 11.2, we define a sink for P or P-sink, with codomain E
in S, as a class 4> of pairs (A,u) with A an object of A and u : PA —> E in S. A sink
for the functor Id S will be called a sink in S.

Sinks thus defined are structured sinks as defined dually to [ACC] 17.1. For sinks in S,
classes of pairs (A,u) with u : A —> E in S may be replaced by classes of morphisms of S
with codomain E.

We denote by /$ the composition of a sink $ at an object E of S and a morphism
/ : E —> E1 of S; this is the sink at Ef consisting of all pairs (A, fu) with (A,u) in $.

For a collection E of sinks in S and a class M of morphisms in the category S, both
closed under composition with isomorphisms in S, we say that S has (E,M) -factorizations,
or that S is an (E, M)- category, if the following conditions are satisfied.

(1) Every sink $ in E factors $ = m* with * in E and m G M.
(2) If g$ = m\P for sinks $ and $ in S and morphisms m and g of S, with $ in E

and rn £ M, then g = mt and * = t$ for a unique morphism t of S.

1.2. With our definition of sinks as classes, instead of discrete diagrams as in [ACC],
the proof of the dual of [ACC] 15.4 is not valid. We do not know whether M must consist
of monomorphisms of S if S is an (E,M)- category, but we note the following result.

Proposition. If S is an (E,M)- category, then the following are equivalent.
(i) M consists of monomorphisms of S.
(ii) Every morphism f of S factors f — me in S, with {e} in E and m £ M.
(iii) {id#} is in E for every object EofS.

PROOF. If {/} = m§ with m monomorphic, then $ is a singleton; thus (i)=>(ii).
If we factor id# = me by (ii), then it follows easily from 1.1.(2) that e and m are inverse
isomorphisms; thus (ii)=>(iii). If ma = mb in S with m in M, then we can factor
m{a,b} = ma{idj5;} for the common domain E of a and 6. If {id^} is in E, then
{a,b} = {t} for a morphism t with mt = ma. Thus a—b, and (ii

1.3. Example and remarks. Every category S is an (E,M)- category for E con-
sisting of all sinks in S and M the class of all isomorphisms of S.

For an (E, M)- category structure of S, the collection E is determined by M; it consists
of all sinks $ which satisfy (2) for all factorizations g$ — m\£ with m 6 M.



a largest finally dense full extension of A. We may find it convenient to denote a P-sieve
by a single letter, in which case |X| denotes the underlying S-object of a P- sieve X.

If (B,(5) is a concrete category, then a sink $ at an object B of B induces a <5 - sink
at QB, consisting of all pairs (B\ u) with u : B' —> B in $ , and a Q - sink has an underlying
sink in S. We shall say that a sink in B or a Q-sink is E- dense if the underlying sink in
S is in E. This definition applies in particular to P- sieves, and we denote by Acd the full
subcategory of Acr with E-dense P-sieves as its objects.

2.2. Factorization of P-sieves. If we factor the underlying sink of a P-sieve (E, $)
as m*, with 771 : Ef —> E in 3Vt and $ in E, then $ is the underlying sink of an E-dense
P-sieve $' at Er, consisting of all pairs (A,uf) with (A^mu1) in $, and m becomes a
coarse ([TQT] 11.8) monomorphism m : (£' ,$ ') -> (£ ,$) of Acr.

We denote by M^ the class of all coarse monomorphisms m : X1 —» X in Acr with rn
in M. With this notation, Acr becomes an (E-dense P- sieve,M^) category, and we have
the following result.

Proposition. E- dense P-sieves define an M81"- coreflective full subcategory Acd

ofAc r .

PROOF. For the morphism m : (JE',3?') —> (-£,$) in Mgr constructed above, and a
morphism g : (F, $) —> (JS,$) in Acr, we have a factorization gv = mvf in E for every
pair (A,v) in * . Then g = mt for a unique £ : i*7 —> E1 if * is E-dense, and we have
t : (F,^) —> (£' ,$ ') in Acd since m is coarse. Thus m is the desired coreflection.

2.3. E-dense extensions and E-cotopological completions. We recall that a full
concrete embedding G : (A,P) -+ (B,Q) is finally dense ([ACC] 10.72, [TQT] 68.1) if every
object B of B has the final structure for the sink of morphisms u : GA —» B in B. We say
that G, or by abus de langage (B,Q), is an E-dense extension of (A,P) if G is finally
dense, and for every object B of B, the P-sieve of pairs (A,u) with u : Ĝ 4 —> B in B is
E-dense. In this situation, we say that G or (B,£J) is an E-cotopological completion of
(A,P) if (B, Q) is E-cotopological, i.e. if every E-sink of objects B{ of B and morphisms
fi : QBi -* E in S has a final lift B in B, with QJ5 = £ . It follows that E-cotopological
completions are transportable.

E- dense extensions G : (A, P) —> (B, Q) are the objects of a category, with full concrete
embeddings / satisfying IG — H as morphisms I : G —> H.

For E the collection of all sinks, we get finally dense extensions, and E-cotopological
completions are topological categories. For E the collection of all episinks or all quotient
sinks, we get epidense and quotient-dense extensions, and E-cotopological categories are
dual to M-topological categories for M the collections of all monosinks and all strong
monosinks respectively.

2.4. Proposition ([ACC] 10.71). For E-dense extensions G : (A,P) -* (B,<?) and
H : (A ,P) —> ( C , J R ) , every morphism I: G —> H preserves initial lifts of sources.



P R O O F . If objects Bi of B and morphisms / ; : E —> QB{ define a source for Q with

initial lift B in B , then g : C -> IB in C, for g : RC -> £ in S, iff #u : JKT̂ L -+ 7 5 for

every u : HA —» C in C. This is the case iff ^w : (7̂ 4 - ^ B in B for every such it, hence

iff /{̂ rw : GA —> i?t in B for every ix and every / ; , hence iff / ^ t / : HA —> 7J9Z in C for

every n and every fi, hence iff /z<7 : C —+ 77?; in C for every /t-. Thus 77? is an initial lift

in C for the objects IB{ and morphisms /t- .

2.5. Theorem. For a morphism I : G -* H of E-dense extensions of (A,P),

with J7 : (A,P) -* (C,i£) an E-cotopologicai completion and G : (A,P) -> (B,<?), the

following are equivalent.
(i) G is an E-cotopological completion of (A ,P ) .
(ii) The functor I has a left-inverse concrete left adjoint J.
(iii) The functor I creates initial lifts, i.e. a source of objects Bi of B and morphisms

fi'.E-* QB{ of S has an initial lift in B , preserved by I, if the source of objects IB{ of
C and morphisms fi has an initial lift in C .

P R O O F . For an object C of C, the <J-sink of pairs (GA,u) with u : HA —* C in C
is an E-sink. If (i) holds, let JC be the final lift of this sink in B . Then it is easily seen
that / : JC -> B in B , for / : RC -> QB in S, iff / : C -> 7 5 in C. Thus objects JC
define a concrete left adjoint J of 7, with / left inverse to 7 because 7 is a full embedding
and G amnestic.

If morphisms /; : E —> RIB{ have an initial lift C in C, and if (ii) is valid, then
fi : JC —» B{; we claim that JC is an initial lift for this source. If g : QX —± E in S with
fig : X —> Bi in B for every / ; , then also fig : IX —• IBi in C for every / ; , and thus
g : IX -> C in C. But then # : X -+ J C in B since J7X = X.

For an E-sink I! of objects Bi of B and morphisms fi : QBi —> J5 in S, consider the
source £ ' of all pairs (u,B) with u : E —> QB in S and w/{ : J?4 —> B in B for each
(Bi.fi) in E, and the sink £ " of pairs (J?',v) with v : <2#' -> £ and uv : B' -* B for
every pair (u,i?) in 2 ' . Then £" is an E-sink containing S; let C be its final lift in C.
If g : RX —> E in S with ug : X -^ IB in C for every pair (u, 5 ) in £ ' , then (GA,gx) is
in E", and gx : 77A —> C in C, for every £ : TT^L —> X in C , with A an object of A. But
then g : X —> C in C; thus C is an initial lift for the source of morphism u : E —> i£77?
with (u,J?) in S ; . An initial lift of S' in B is clearly a final lift for S; thus (iii)=»(i).

2.6. The Antoine functor. For an object A of A , we denote by YA = (PA, TA)
the Antoine sieve with (X, u) E T.4 iff u : X —> A in A. The sieve TA is E-dense since
(^4,idp^) G T^4. Antoine sieves clearly define a concrete functor Y : A —> A c d , an E-dense
embedding since (A, u) £ $ for a P-sieve (i?, <£) iff K : YA —> (£ , $ ) .

Theorem. Tie Antoine functor Y : A —» Ac d is an 'E-cotopological completion, and
a terminal object in the category of E-dense extensions of ( A , P ) .

P R O O F . For an E-sink of morphisms /t- : Ei -> E of S and E-dense P-sieves (2?;, ${),
it is easily seen that the final lift (JS, $) in A c r , consisting of all pairs of the form (A, fan)



for some / ; , with (A, u) G 3>i, is E-dense. Thus Y is an E-cotopological completion. For
an E-dense extension G : (A ,P) —> (B,<2) and a full concrete embedding K : B —» A c d

with iiTG = Y, and for u : PA -> QB in S, we have

(A,u)<E if J9 <=> u : Y A - > i T B <^> u: GA -> £.

This determines if uniquely, with each KB E-dense since G is E-dense.

2.7. If C? : (A ,P) —» (B,<5) is an E-dense extension, with IG = Y for a concrete
full embedding I : B -* A c d , then every source of objects B{ of B and morphisms
fi'.E—* QBi of S induces a source of objects IB{ of A c d and morphisms f{:E—> \IBi\
of S. We note the following result.

Proposition. If G : (A,P) —> (B,<2) is an E- cotopological completion, then the
following are equivalent for a source of objects B{ of B and morphisms fc : E —> QB{
in S.

(i) The source has a lift in B .
(ii) The source has an initial lift in B.
(iii) The induced source of morphisms fi'.E-* \IB{\ has a lift in A c d .
(iv) The induced source has an initial lift in A c d .

P R O O F . If morphisms fa : B —> B{ form a lift of the given source, then consider the
P- sieve of all morphisms u : PA —> E oi S with fau : GA —> B{ in B for every / ; . This
sieve includes all morphisms u : GA —> B of B; thus it is E-dense. If Bo is a final lift in B
for this sieve and g : QB' —> E satisfies fig : Bf —» B{ for every /{, then fogy, : GA —» i?j
for every /^ and every u : GA —> J9'. But then gu : GA —> JBO for every u : GA —> J5;, and
g : B' -* Bo follows. Thus Bo is the desired initial lift, and ( i )=> (ii).

(ii)=4> (iv) because the functor / preserves initial lifts, and (iv)=>(iii) trivially.
If X is a lift of the induced source, with fa : X —> IBi in A c d for each /{, then

fi : JX —* B{ for each /{, for the concrete left adjoint J of /; thus (iii)=>(i).

2.8. Concrete monomorphisms , epimorphisms and colimits. All limits in A c r

are concrete, i.e. preserved by the forgetful functor to S. Limits in A c d are corefiections
of limits in A c r , hence not necessarily concrete. Concrete limits in an E-cotopological
completion B of A are initial lifts of sources, and thus preserved and created by the full
concrete embedding B —> A c d .

Monomorphisms in an E-cotopological completion B of A are reflected by the faithful
forgetful functor of B, but not necessarily preserved. The dual of the category of HausdorfF
spaces is an example for this; see 5.2. We say that a monomorphism preserved by the
forgetful functor is concrete; we shall discuss this more fully in Section 6. The concrete full
embedding B —» A c d preserves and reflects monomoprhisms and concrete monomorphisms.

For epimorphisms and colimits, we have the following result.

Proposition. If (B, Q) is an E-cotopological completion of (A, P), then the forgetful
functor QofB preserves and reflects epimorphisms, and Q preserves and lifts colimits.



P R O O F . The faithful functor Q reflects monomorphisms and epimorphisms. If e :
B —* C is an epimorphism of B and ae — be in S, then we can factor a = ma, b = m/3,
with a and /3 forming a sink in E . This sink has a final lift in B , and ae — /3e in B for
the lifted morphisms. But then a = /3, and e is epimorphic in S.

If D is a diagram in B with a colimit cone r : D —> B, factor r = racr in S, with m
in M and cr a sink in E . Then a has a final lift X to a cone cr : D —* X in B , with
7n : X —» B in B , and with cr — sr for a morphism s : B —> X. But then ms = idjs in B ,
and m is an isomorphism. Thus the underlying sink of r is in E . If A : QD —> E is a cone
in S, factor A = mp with rn monomorphic and p a quotient cone. Then p can be lifted
to B . Thus p — rr for a morphism r , and A = mr • (Jr. If also A = g • (Jr, then gr = ras
for a unique morphism 5 of S, with s • Qr — p since m is monomorphic. But then s — r,
and £ = mr. Thus Qr is a colimit cone in S.

Conversely, if the diagram QD in S has a colimit cone a : QD —> 1? in S and we
factor the underlying sink of a as maf with cr' in E , then cr' is a cone with domain QD,
Thus af = tcr for a morphism t of S, with mi = id^. Now m is an isomorphism, and the
underlying sink of cr is in E. But then a has a final lift to a cone cr : D —» B in B , and
this final lift is clearly a colimit cone of D in B .

2.9. E-dense full sieves. We denote by fig the full P-sieve at an object E of S,
consisting of all pairs (^4,tx) with A an object of A and u : PA —> E in S. Full P-sieves
need not be E-dense; we note however that if there is an E-dense P- sieve $ at an object E
of E , then every P- sieve at E coarser than $ , and in particular S7j5, is E-dense. This is
the case for every object PA of S.

The following result shows that there is no essential loss of generality if we assume that
all P-sieves HE are E-dense.

Proposition. Objects EofS with an E- dense P-sieve at E define an M-coreflective
full sub category of S, with objects including all underlying objects of objects of A.

We denote this full subcategory of S by S c d .

P R O O F . If m : ( £ ' , $ ' ) -> (E,QE) is a coreflection for A c d , then clearly $ ' = fl^/,
and we claim that m : E' —> E is a coreflection for S c d . If g : F —> i? in S, then we have
a factorization t/v = mu' for every pair (A,v) in f l^. If fi^r is E-dense, it follows that
g = rngf for a (unique) morphism g1 : F —> E1.

3. E-cotopological hulls

3.1. Definition. By 2.6, every E-dense extension of (A,P) over S is concretely
isomorphic to a full subcategory B of A c d , containing all objects YA for objects A of A .
If we restrict ourselves to full subcategories of A c d , then morphisms / : G -> H of quotient
extensions become full subcategory embeddings. If Q is a class of E-dense P-sieves, then
a smallest E-cotopological completion of (A,P) with C contained in its class of objects is
called an E - cotopological hull of C in A c d .
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3.2. Theorem. For a concrete category A over an (E, M) category S, every collection

C of E-dense P - sieves has an E- cotopological hull If every object YA of Acd is an initial

lift of a source of morphisms fi : YA —> X{ in Acd with every Xt- in Q, then the objects of

this hull are all initial lifts of sources /» : E —> |Xi| in Ac d , with each X; in C.

PROOF. By 2.5 and 2.7, E-cotopological completions of A are E-dense extensions

which, regarded as full subcategories of A c d , are closed under initial lifts of sources. Inter-

sections preserve this property; thus every class C of E-dense P-sieves has an E-cotopo-

logical hull. The collection of all objects X of Acd with the initial structure for a source

of morphisms /; : X -> X; of A c d , with each X; in C, consists of objects of the

E-cotopological hull and is closed under initial lifts of sources. Thus it is the class of

all objects of the E- cotopological hull of C if it contains all objects YA.

3.3. Fibres. We recall that the fibre of an object E of S, in a concrete category B

over S, is the class of all objects X of B with underlying object |X| — E. It is considered

desirable that concrete categories should have small fibres. We investigate this property for

E-cotopological hulls.

We assume that every object YA of Acd admits an intial source of morphisms f{ :

YA —• X{, with each X{ in C. This is obviously no essential loss of generality.

For pairs (A, u) and (J?,v), with A and B objects of A and with u : PA —> E and

v : PB —> E in S for an object E of S, we put (B,v) -<e (A,u) if for every pair ( / ,X)

with X in C and / : E -> |X| in S, and with fu : YA -> X in Ac d , we also have

fv:YB ^X in Acd.

For a fixed pair (A,u) with u : PA —• E in S, the pairs (B,v) with (B,v) ~<e {A,u)

clearly form a P- sieve (22, $) . This sieve has the initial structure in Acr for the morphisms

/ : E -> |X| in S with X in Q and fu : YA -> X in Acr, but it need not be an E-sieve.

We put (A,u) -j^e (A\u') if (A,u) -<e (A',uf) and (A',u') -<<e {A,u), with u :

PA —• E and v! : PA! —> E. This clearly defines an equivalence relation, with (A,u)

~E,e {A',v!) iff the P- sieve (E, $) constructed in the preceding paragraph is the same for

(A,u) and for (A\uf).

3.4. Proposition. If the collection of equivalence classes for the relation ^E,e is

small for every object EofS, then the E- cotopological hull of Q in Acd has small fibres.

Conversely, if S is well-powered for monomorphisms in M and the Ft-cotopological hull of

C in Acd has small fibres, then the collection of equivalence classes for ^E,e is small for

every object E of S .

PROOF. For every object (2?, $) of the E-cotopological hull, the P-sieve § is a union

of equivalence classes for ~£7,e- If the collection of equivalence classes is small, it follows

that the collection of their unions, and hence the fibre of E in the E-cotopological hull,

is small.

Conversely, the equivalence classes for ~£,e correspond bijectively to the P- sieves

(J5, $) constructed in 3.3. If S is well-powered for monomorphism in M, then there is a

set-indexed family of morphism m; : Ei —> E in M such that for every P-sieve (J5, $)



of this kind there is a coarse morphism m; : (2%, <§;) —• (i?, $) , with (£;,$;) E-dense

and hence in the E-cotopological hull of C. If this E-cotopological hull has small fibres,

it follows that the collection of sieves (1?, $) is small.

3.5. Remarks. The results of Sections 2 and 3 are valid in particular for finally dense

extensions, with E the collection of all sinks in S. For this case, Theorem 2.5 shows that

E-cotopological completions are topological categories, with initial lifts for all sources, and

with forgetful functors preserving and lifting monomorphisms and strong monomorphisms,

as well as all limits and colimits. Thus the forgetful functor of a completion C preserves

all limits and colimits. If D is a diagram in C for which the underlying diagram has a

limit in S, then the initial lift of the source induced by the limit cone is a limit of D in C,

and colimits in C are obtained dually.

These properties remain valid for colimits in an E-cotopological completion B of A

if coarse P-sieves are E-dense, but limits of a diagram D in B are preserved and lifted

by the forgetful functor of B only if the source induced by a limit cone of D in S has a

lift in A c d . By 2.7, E-cotopological completions admit initial lifts only for those sources

which admit a lift in Ac d .

We observe that collections Q of E-dense P-sieves can be replaced by collections

of P- sieves, since every coreflection for Acd in Acr is a coarse monomorphism in Ac r .

Theorem 3.2 then characterizes the E-cotopological hull of the Acd- coreflections of the

P- sieves in 6. If E is the collection of all sinks in S, then the hull of C in Ac r , for a class

Q of P- sieves, has small fibres iff the collection of equivalence classes is small for every

equivalence relation ~isfe? by 3.4 with JVC the class of all isomorphisms of S. Every known

criterion for fibre smallness of topological or E-cotopological hulls follows directly from 3.4

and these observations.

4. Cartesian closed quotient-topological hulls

4.1. We assume from now on that S is a (quotient sink,mono) category. Then S has

finite limits, by 1.7, if S has finite products. For E the collection of all quotient sinks,

E-cotopological categories will be called quotient-topological, and the category quotient-

dense P-sieves wii be denoted by Acq . We recall from [TQT] 60.2 that Acr is cartesian

closed if (and only if) S is cartesian closed. If S has function space objects FE, then

Acr has function space objects (FE, [$,*]) for objects (£?,$) and (F, $ ) , with (A,<p) in

[$, * ] , for an object A of A and (p : PA —> FE exponentially adjoint to <p : PA X E —> F

in S , i f f ^ : Y A x (£ ,$ ) -> (F,$) in Acc r

4.2. We note that the second hypothesis of the following result is always satisfied if A

has finite products and the forgetful functor P preserves them, because then the functor

Y also preserves finite products.

Theorem. If S is cartesian closed, and finite products of objects YA in Acr are

quotient-dense, then Acq is closed under finite products in Ac r , and cartesian closed.
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In this situation, function space objects [Y,Z] in Acq are coreSections of function space

objects ZY in Ac r , and we have concrete (2.8) natural monomorphisms fiy,z • [Y, Z] —• ZY ,

with evy,z(n>y,z X idy) an evaluation in Acq for an evaluation evy,z in Ac r , for objects Y

and Z of Ac q . Conversely, if all full P-sieves are quotient-dense, and if Acq is cartesian

closed and closed under finite products in A c r , then S is cartesian closed.

PROOF. For objects (E, $) and (F, *) of Ac q , we have pullback squares

'B
 U X l d> (JB, $) x YB -^U

I id X t? id x u

Y A — — (JE,$)

with projections p and q of products, and with (A, it) in $ and (B,v) in \f. If S is

cartesian closed, then the morphisms u x id form a quotient sink by 1.7, and thus P-sieves

(E, $) x Y2? are quotient-dense if the P-sieves YA x Yi? are. In the same way, (22, $) x

(JF, *) is quotient-dense if the sieves (E, $) X YJB are.

Now Acq is a full coreflective subcategory of a cartesian closed category Ac r , closed

under products 1 x 7 in Ac r . It is well known that Acq is cartesian closed in this situ-

ation, with coreflections of function space objects in Acr as function space objects. These

coreflections are concrete natural monomorphisms fiy,z by 2.2, with fiY^^ exponentially

adjoint to <p : X x Y —• Z in Acr if (p is exponentially adjoint to (p in Ac q .

The converse follows immediately from the main result of [13], since the forgetful functor

of Acq preserves finite products, and objects (JB, QE) provide a full embedding S —> A c q ,

right adjoint to the forgetful functor.

4.3. Corollary. If S is cartesian closed and products YA X YB in Acr are quotient-

dense, then every quotient-topological completion (B,<2) of (A,P) has concrete products

BxC.

PROOF. A concrete product B X C in B is an initial lift for the source of projections

p : QB X QC -> QB and q : QB X QC -» QC. With the given assumptions, Acq has

concrete products X X Y, and it follows immediately from 2.7 that B has concrete products

B xC.

4.4. Theorem. If S is cartesian closed and finite products of P-sieves YA are

quotient-dense, then the following conditions are equivalent for a quotient-topological com-

pletion (B,Q) of (A,P).

(i) B is cartesian closed, with function space objects preserved up to isomorphism by

the full concrete embedding I : B —> A c q .

(ii) Every product functor — X C in B preserves final lifts of quotient sinks.
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(iii) The concrete left adjoint J : A c q —• B of the full concrete embedding I : B —> A c q

preserves products X X Y.
If the forgetful functor of A c q preserves monomorphisms, then these conditions are also

equivalent to:
(iv) B is cartesian closed.

P R O O F . If B has the final structure for a quotient sink of morphisms U{ : Bi —> B in B
and (i) holds, then Q preserves products, and the morphisms U{ x idc form a quotient sink.
Now consider <p : QB x QC —> QX with (p-(uiX idc) : Bi X C —> X in B for every ui. Let
rfri : B{ -> [C, X] be exponentially adjoint to tp-{ui X idc) in B, and let <p# : QB -> QXQC

be exponentially adjoint to (p in S. We have commutative diagrams

- ^ - > QB

in S, one for each i*;. It follows that (p# factors /xc,X^9 with ^uz- = t̂* : Bi —• [C, X]
in B. But then <p : B —> [C, X] in B, exponentially adjoint to <£> : B x (7 —* X, and (ii)
holds.

Every object X of A c q has the final structure for morphisms Ui : IBi —> X which form
a quotient sink, and then JX has the final structure for the morphisms U{ : Bi —* J X .
By (ii) for A c q , X X /C has the final structure for the morphisms Ui X idc which form
a quotient sink, and so J ( X X IC) has the final structure for the morphisms u; x idc
with domains Bi x C. If (ii) is valid for B, then JX X C has the final structure for the
same quotient sink; thus J(X x IC) = JX X C. Now if an object Y of A c q has the final
structure for a quotient sink of morphisms Vj : ICj —> Y, then J(X X F) has the final
structure for morphisms idx X Vj : J(X x ICj) -^ J ( X X F ) , and JX X /Y" for morphisms
idx x t?j : JX X Cy —> JX X JY. But these morphisms have the same domains, hence the
same final structure, and (iii) follows.

The step (iii)=>(i) follows immediately from the main result of [13].
(i)=>(iv) trivially. For the converse, let H(Y,Z) denote a function space object in B.

Commutative diagrams

B(X x F, Z) —U A c q(JX, I{Y x Z) — A c q ( / X , / F x IZ)

with exponential adjunctions as vertical arrows, define natural maps py,z • IH{Y, Z) —>
[IY,IZ] in A c q , by the general construction of adjoint natural transformations, with
PY.zoc : JX -» [IYJZ] exponentially adjoint in A c q to a : JX -> IY x IZ if a :
X -> H(Y,Z) is exponentially adjoint to a : X x F — > Z in B. Now if py,z& = PY,zP
with d,/3 : X —> IH(Y, Z), then the equation remains valid for the morphisms d and 0
from JJA^ -> IH{Y,Z). But then d and /3 from JX to H(Y,Z) are adjoints of the same
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morphism JX X Y —» Z, and a = J3 follows. Thus py^ is monomorphic in Acq . The

quotient sieve of morphisms YA —• [IY,IZ] clearly factors through /?y,#; thus pyt^ is an

isomorphism if py,z 1S monomorphic in S.

For our next theorem, we need the following two lemmas.

4.5. Lemma. If a quotient-topological completion (B,Q) of (A,P) satisfies the

conditions of Theorem 4.4, and an object X of Acq has the final structure for a quotient

sink of morphisms v+ : IBi —> X, for objects B{ of B, then [X,IC] has the initial structure

for the morphisms [ui,idc] : [X,IC] -> /[#;,C] of A c q , for every object C o fB .

PROOF. Consider <p : \Y\ -> \[XJC}\ in S, with [u»,idc]£ : F -> I[Bi,C] in Acq

for each U{. If fixjc<P 1S exponentially adjoint to (p : \Y\ x |X| —> QC in S, then

W£;,ic[ui?idc]£ = (idQc)UlMX,/c^ *s exponentially adjoint to v?(idy X ui). Since F x X

has the final structure for the morphisms idy X u^, it follows that ip : Y x X —* C. The

exponential adjoint of this morphism in Acq is <£ : Y —> [X,/C]. Thus [X,IC] has the

claimed initial structure.

4.6. Lemma. For every object Y of Acq , the endofunctor [F,—] of Acq preserves

initial structures for sources.

PROOF. Assume that B has the initial structure for morphisms U{ : B —> i?z- of Ac q ,

and consider <^ : |X| -* \[Y,B]\ in S with [idY,Ui]<p : X -» [Y,Bi] in Acq for every u{.

If My,B^ is the exponential adjoint of <p : \X\ X |F | —> |JB| , then //y^Jidy, U{]<p — ̂ i'y'/^y,B^

is the exponential adjoint of u^p in S, and it follows that [idy,Uj]y> is the exponential

adjoint of unp : X X Y -» B{ in A c q . But then tp : X xY -+ B in Acq , with exponential

adjoint <p:X -+[Y,B].

4 . 7 . Theorem. If S is cartesian closed, and Unite products of P-sieves YA in

Acr are quotient-dense, then every P-sieve YA has the initial structure for morphisms

f : YA -> [YJ5,YC] in A c q , and the quotient-topological hull of the class of objects

[YB,YC] of Ac q , for objects B and C of A, is cartesian closed. If the forgetful functor from

Acq to S preserves monomorphisms, then this quotient-topological hull is the cartesian

closed quotient-topological hull of A over S .

PROOF. Let C be the quotient-topological hull of the Theorem. By assumption, the

terminal object (l,fii) of Acr is quotient-dense, and thus a terminal object of Acq , with

the final structure for a quotient sink of morphisms U{ : YAi —> (l,fii). By 4.5, every

object [(l,ft!),Y;4] is in C, with the initial structure for the morphisms [u{,id^]. This

proves the first part of the Theorem since YA is isomorphic to [(l ,!^), YA].

Again by 4.5, every function space object [X, YC] is in C. Since a product X X Y in

Acq has the initial structure for its projections, C is closed under finite products in Ac q .

Now if Y has the initial structure for morphisms U{ : Y —• [YJ?t-, YC»], then [X,Y] has the

initial structure for the morphisms [idjr,Ui] with codomains [X, [Y2?{, YCY]], by 4.6. These
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codomains are isomorphic to the objects [X X Yi?;, YC;] of C, and thus objects of C. But
then [X, Y] is an object of C whenever Y is an object of C, and C is cartesian closed.

The category C is clearly the smallest cartesian closed quotient-topological completion
C of A for which the full embedding / : C —•> A c q preserves function space objects.
By 4.4.(iv), this is also the cartesian closed quotient-topological hull of A if the forgetful
functor of A c q preserves monomorphisms.

4.8. Remarks . It is easily seen that the objects of the quotient-topological hull of the
class of function spaces [Y2?,YC] are the quotient-dense P- sieves which are power-closed
in the sense of [11]; thus 2.4 becomes Theorem 1.13 of [11] for this case.

If S is the category of sets and A has constant maps, then Acr and A c q have constant
maps, and A c q is topological over S. In this situation, the underlying set of a function
space object [X,F] in A c q is the set A c q ( X , F ) .

Similar remarks apply to Sections 5 and 6.

5. Representing partial morphisms in completions

5.1. We recall that a (strong) partial morphism in a category C, with domain A and
codomain 5 , is a span A<^— >B in C with m a strong monomorphismof C. A strong
monomorphism $# : B -* B in C represents partial morphisms with codomain B if for
every part
such that
every partial morphism A^~ • —>B in C , there is a unique morphism / : A —> B in C

M
m

A X 6

is a pullback square in C. Categories with partial morphisms represented for every
codomain have been called hereditary [17] or extensionable [25]; we note that "hereditary"
often has another meaning.

In the context of the present paper, we have the following basic result.

Proposition (J. P E N O N ) . Partial morphisms in Ac r are represented if and only if
partial morphisms in S are represented, and then the forgetful functor Ac r —• S preserves
representiations of partial morphisms.

PROOF. If r# : E —• E* represents partial morphisms in S, then r# : (E, $) ->
( £ # , $ # ) represents partial morphisms in A c r if $ # consists of all pairs (A,u) with
u : m*YA -> (J5,$) in A c r , i.e. if (X,uv) G * for every v : PX -> F in S with
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mv : X —•> A in A, for a pullback

rn

PA _«_>

in S; see [TQT] 60.3. Conversely, if TE : (J5,fi^) —> (2?^,$) represents partial morphisms
in A c r , then it is easily seen that $ = ilE# , and that TE '> E —> 2?^ represents partial
morphisms in S .

5.2. Embeddings. We recall that an embedding in a concrete category C over S is
an initial lift m : X —> Y of a strong monomorphism m : \X\ —> \Y\ of S, and we say that
C has embeddings if every strong monomorphism rn : E —> |Y| of S, with Y an object
of C, has an initial lift m : X —* Y in C.

If the forgetful functor C —> S preserves epimorphisms, then embeddings in C are
strong monomorphisms. Conversely, if S has (epi, strong mono) factorizations and C has
embeddings, then all strong monomorphisms in C are embeddings. HausdorfF spaces are
an example of a concrete category over sets with embeddings, but with epimorphisms not
preserved by the forgetful functor. In this example, epimorphisms are maps / : X —» Y
with /~*(X) dense in Y, and only closed embeddings are strong monomorphisms.

If C has embeddings, then it is easily seen that pullbacks

Vl J . V

m m

in C with m : Y —• X an embedding are concrete, i.e. lifted from pullbacks in S, with
rn! : Yf —> X1 an embedding.

We note that A c r always has embeddings, and that A c q has embeddings iff X is
quotient-dense for every embedding m : X —> Y in Ac r with Y quotient-dense. We say
that A c q is closed under embeddings in Ac r if this is the case.

5.3. The second hypothesis of the following result is satisfied in particular if A has
embeddings.

Theorem. If partial morphisms in S are represented, and the domain X of every
embedding rn : X —> YA in Ac r is quotient-dense, then partial morphisms in A c q are
represented, and A c q is closed under embeddings in A c r . If these conditions are satisfied,
andifrx : X -+ X # and $x : X —> X represent partial morphisms in Ac r and in A c q , with
X quotient-dense, then rx — vx^X with vx a coreflection for X^ and A c q . Conversely,
if partial morphisms in A c q are represented, with Acq closed under embeddings in A c r , and
every coarse P - sieve HE is quotient-dense, then partial morphisms in S are represented.
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PROOF. If m : (E',m*$) —> (E, $) is an embedding, then consider pullbacks

(£ 'm*$)X

m' I™

in A c r with (A,u) £ $ . The morphisms u in these pullback squares form a quotient sink
if (JE, $) is quotient-dense, and so do their pullbacks uf by the strong monomorphism m
if partial morphisms in S are represented. The morphisms vn! : X —•» Y 4̂ in the pullback
squares are embeddings, and m*$ is quotient-dense if each X is quotient-dense and the u'
form a quotient sink.

Now let ry : F —> F # represent partial morphisms in A c r , with coreflection i/y :
F —> F # for A c q . Every morphism X —» F # with A' an object of A c q factors uniquely

through i/y. In particular, ry factors 7y = ^y^y , with t?y an embedding. If A c q is
closed under embeddings in A c r , then partial morphisms X^- • —>F in A c q are partial
morphisms in A c r with domain and codomain in A c q . Now in a diagram

/ _. idy

m

X -L Y ^> Y*
the righthand square is a pullback; thus the lefthand square is a pullback iff the outer
rectangle is one. The morphism X —• F # in the diagram determines / uniquely; it follows
that i?y represents partial morphisms in A c q if ry represents partial morphisms in A c r .

We observe for the converse that partial morphisms with codomain (£?, QE)-, i n -A-cr or
in A c q , are represented by embeddings TE : (E, £IE) —* (E^^,D^#), and then T# : E —> E&
clearly represents partial morphisms in S.

5.4. Corollary. If partial morphisms in S are represented, and the domain X of
every embedding m : X —> YA in Ac r is quotient-dense, then every quotient-topological
completion (B,Q) of (A ,P) has embeddings.

P R O O F . Since A c q has embeddings under the assumptions of 5.3, this follows immedi-
ately from the fact, proved in 2.4 and 2.5, that the full concrete embedding / : B —» Ac q

preserves and creates initial lifts for sources.

5.5. Theorem. If partial morphisms in S are represented, and X is quotient-dense
for every embedding m : X —> YA in A c r , then the following conditions are equivalent for
a quotient-topological completion G : (A,P) —> (B,<2) of ( A , P ) .

(i) Partial morphisms in B are represented, with representations preserved up to iso-
morphism by the full concrete embedding I: B —» A c q with IG — Y.

(ii) Every pullback functor m* by an embedding m in B preserves final lifts of quotient
sinks.
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(iii) The concrete left adjoint J : A c q -+ B of the full concrete embedding I: B -> A c q

preserves embeddings.
(iv) For the concrete left adjoint J : A c q —» B of the full concrete embedding I: B —>

A c q and ever/ object BofH, the morphism tijB ' B -* JIB of 3 is an embedding.

If the forgetful functor from A c q to S preserves monomorphisms, then these conditions
are equivalent to:

(v) Partial morphisms in 3 are represented.

PROOF. For (i)=>(ii), consider pullback squares

d -^-+ C

B{ - * • B

for a quotient sink of morphisms U{ with final lift B and an embedding m : C —• B in A c q .
These pullbacks lift pullbacks in S, and the morphisms V{ form a quotient sink since partial
morphisms in S are represented. For / : \C\ —> \D\ in S with /v; : C{ —> 1? in B for
every ?;;, pullback squares

C< — I? |C| ^U \D\

D and \m

ft i X)

determine morphisms /it- : ft -» J9 in B and ^ : |.B| —• l^^l in S uniquely, with v
— gu{ for each U{. It follows that g factors g — vryt in S, with hi = tu{ for each u^. But
then t : B -> D in A c q . As *m = i?£>/ and i?/) is an embedding, we have / : C —> JD
in A c q . Thus C has the final structure for the quotient sink of morphisms V{.

Now let m : F —• X be an embedding in A c q , with X the final lift in A c q for a
quotient sink of morphisms U{ : IGA{ —» X in A c q . Then JX is the final lift in B for
the sink of morphisms U{ : GA{ —> JX in B. Pulling back the U{ by m, we get pullback
squares

/a* ^^ r
m

i X

in A c q , with a quotient sink of morphisms Vi : / f t —> F in A c q , by (ii) for A c q and 5.4.
Now J preserves final lifts of quotient sinks; thus JX and JY are the final lifts in B for
quotient sinks Ui : GAi —> JX and Vi : ft -+ JY. If Z is the initial lift in B for m and X,
then Z is the final lift for the quotient sink of morphisms V{ : Bi —> Z in B if (ii) is valid
for B. But then Z - JY, and B satisfies (iii).
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(iii)=>(iv) trivially, since JIB — B. If (iv) is valid, then we have pullback squares

IB ^ IB QB - — QB

and

UIB _*_> TB \7B\ - ^ (QE)#

in A c q and in S. But then 1//J5/1 = Z /̂B , and h = id|x| follows for X = / ! ? . Thus
id\X\ : -f«7X —> X for this X . As id|x| : X —» / J X in any case, we get IJIB — IB.
Since / preserves embeddings and pullbacks by embeddings, it follows that (i) is valid,
with partial morphisms in B represented by $/# : B —> JIB.

Finally, ( i )=>(v) trivially. Conversely, if partial morphisms in B and in A c q are
represented by ry : Y —> Y* and by i?y : Y —>• F , then there are commutative squares

IY ^U IY

in A c q . These squares are pullback squares; thus if a partial morphism (m, / ) : X -* Y
is represented by / : X —> Y** in B , then (m , / ) : IX —> /Y is represented by ayf
inA c q . Now if aya = cry/3 in A c q for morphisms X -» /I'", then this remains true
for a,/3 : IJX —> IY. It follows that a and j3 represent the same partial morphism
(rn,/) : JX —> F ; thus cry is monomorphic in A c q . If cry is monomorphic in S, then it
follows as in the proof of 4.4 that ay is an isomorphism.

5.6. For a source of morphisms U{ : X —* X; in A c q , we have pullback squares

X -*£• X - ^ X#

(1) ju« {fi.- }«f

in Ac r if partial morphisms in A c q are represented.

l e m m a . If X has the initial structure for the morphisms U{ in pullback squares (1),
then X has the initial structure for the morphisms ui.

P R O O F . Consider / : | F | -> |X | , with Uif : Y -* Xi for every u;. We have pullback
squares

771
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in S, and it follows with (1) that we have pullbacks

7 gUi y
Z * A;

m Ydx.

in Acq for every ut-, with m : Z —• Y an embedding. But then g : Z —> X in Acq, and it
follows that / : Y —• X in Acq, representing the partial morphism Y^-Z-^X.

5.7. Lemma ([1]). If Acq is closed under embeddings in Acr, and partial morphisms
in S and in Acq are represented, then for every object Y of Acq, the object Y of Acq has
the initial structure for a morphism zy :Y —> Y of Acq, with zydy — idy.

PROOF. The morphism zy is constructed by the pullback square at left in (1).

y — > y y — > y —=-> y

I I I I I
(1) ^ i ? y tfy h?y h^f-^y tfy
v ' 1 1 1 1 1

The pullbacks at right show that then dyZy — id^.

Now let Z be the initial lift of \Y\ for zy with codomain Y. Then i?y : y —> Z is
a strong monomorphism in Acq since zydy ~ idy. The partial morphism (i9y,idy) is
represented in S by Vy - \Z\ -^ \Y\&, and thus (i?y,idy) : Z —> Y is represented in Acq

by idy : Z —> y. It follows that Z = y, as claimed.

5.8. Theorem. If partial morphisms in S are represented, and X is quotient-dense for
every embedding m : X —> YA in Acr, then the quotient-topological hull of all objects YA
in Acq — which includes all objects YA — has partial morphisms represented. If the for-
getful functor from Acq to S preserves monomorphisms, then this quotient-topological hull
is the quotient-topological hull of A for completions with partial morphisms represented.

PROOF. Let C be this quotient-topological hull. If X has the initial structure in Acq

for morphisms U{ : X —> YA{, then by 5.6 and 5.7, the object X has the initial structure
for the morphisms ^ t l i , with Yi — YAi and with U{ constructed in 5.6. Thus C has
partial morphisms represented, with representations inherited from Acq. If the forgetful
functor from Acq to S preserves monomorphisms, then it follows from 5.5.(v) that C is
the quotient-topological hull of A for completions with partial morphisms represented.
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6. Completions and hulls over a quasitopos

6.1. Results for quasitopos completions and quasitopos hulls are obtained by combin-
ing results of Sections 4 and 5. We begin with the following result.

Theorem. If S is a quasitopos, finite products of P-sieves YA are quotient dense,
and the domain of every embedding m : X —> Y A in Ac r is quotient dense, then A c q is a
quasitopos, and the embedding A c q —» A c r is the inverse image part of a geometric mor-
phism. In this situation, the forgetful functor P c q : A c q —• S preserves monomorphisms,
strong monomorphisms, and finite limits.

P R O O F . Under the assumptions of the Theorem, A c q is cartesian closed, and closed
under finite products in A c r , by 4.2, and A c q has partial morphisms represented and is
closed under embeddings in A c r by 5.3. Since finite limits in Ac r are strong subobjects of
finite products, it follows that A c q is closed under finite limits in A c r , and the embedding
Ac q —* Ac r preserves finite limits. It follows that the forgetful functor Acq —> S also
preserves finite limits, and hence monomorphisms. Since Ac q has embeddings, this forgetful
functor also preserves strong monomorphisms.

6.2. Theorem. Under the assumptions of Theorem 6.1, the following conditions are
equivalent for a quotient-topological completion (B,Q) of ( A , P ) .

(i) B is a quasitopos.
(ii) Every pullback functor f* in B preserves final lifts of quotient sinks.
(iii) The concrete left adjoint J : A c q -* B of the full embedding I : B -• A c q

preserves embeddings and finite products.
If these conditions are satisfied, then the adjunction J —| / is a geometric morphism,

and the functor I preserves function space objects and representations of partial morphisms,
up to isomorphisms.

PROOF. With the observation that the forgetful functor of A c q preserves monomor-
phisms, this follows immediately from 4.4 and 5.5, using for (ii) the fact that every morphism
of A c q is the composition of an embedding and a projection of a product.

6.3. Theorem. Under the assumptions of Theorem 6.1, the quotient-topological hull
of the objects [YAyYB] in A c q , for objects A and B of A, is the quotient-topological
quasitopos hull of A.

P R O O F . Let C be the quotient-topological hull described. By 6.2, a quotient-topologi-
cal quasitopos completion of A has the same function space objects and the same repre-
sentations of partial morphisms as A c q ; thus C is contained in the quotient-topological
quasitopos hull of A.

Since t9j3 : B —* B is always an embedding, C contains all function space objects
[YA, YB], and hence all objects YA of A c q . As in the proof of 4.7, it follows from 4.5
and 4.6 that C contains all objects [X,YB] and [X,YB], and is cartesian closed.
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Now put T = [X,y] for objects X, Y of Acq. By [9], we have a commutative diagram

f x X * X i d*. T x X

(1) ev A ev

?*
with /i representing the partial morphism (dj x idy,ev), with zy given by 5.7, and with
k exponentially adjoint to zyh. It follows from this and zydy = idy that k$T = idj-.
Now T has the initial structure for fc, as in the proof of 5.7, and it follows as in the proof
of 5.8 that partial morphisms in C are represented. Thus C is the quotient-topological
quasitopos hull of A, as claimed.

6.4. Remark. It may be noted that diagram 6.3.(1) can be constructed for objects X
and Y of an arbitrary quasitopos, with the additional property that if h factors h — h'e,
with e monomorphic and epimorphic, then e is an isomorphism. This can be used for
proving that f has the initial structure in Acq for /i, and similarly that Y in 5.7 has the
initial structure for zy .

6.5. Lifting finite sources. It is well known, and easily seen, that the forgetful
functor Acr —» S preserves and creates limits. Limits in Acq are coreflections of limits
in Acr; it follows that a limit in Acq is preserved by the forgetful functor to S iff it is
preserved by the embedding Acq —> Acr, and hence iff it is concrete.

Theorem. If S has finite limits, then the following statements are logically equivalent
for the forgetful functor P c q : Acq -» S.

(i) Every finite P c q- source admits a lift in Acq .
(ii) Every finite P c q- source admits an initial lift in Acq.
(iii) Acq has concrete finite products and embeddings, and all coarse P-sieves are

quotient-dense.
(iv) Acq has concrete finite limits, and all coarse P - sieves are quotient-dense.
(v) Acq is closed under finite limits in Acr, and all coarse P- sieves are quotient-dense.

PROOF. (ii)=> (i) trivially, and if (i) is valid, then for finite Pc q- sources, initial lifts in
Acr are quotient dense, and (i) holds. (ii)=>(iii) since concrete products, embeddings and
coarse sieves in Acq are initial lifts of finite sources. Clearly (iv) <£=> (v), and (iii)=>(iv)
and (v) since concrete finite limits in Acr are objects embedded into finite products.

For a Pc q- source of morphisms fi : S -* |X{|, an initial lift in Acr is a limit of a
diagram of morphism f{ : fts —• fi|X;| a n ^ of morphisms id|x,-| : Xi ~^ |̂Ar

t|* With this
observation, (ii) follows immediately from (iv) and (v).

21



BIBLIOGRAPHY

[1] JlRl ADAMEK, Classification of concrete categories. Houston Jour, of Math. 12 (1986), 305-
326.

[2] J. ADAMEK and H. HERRLICH, Cartesian closedness, quasitopoi and topological universes.
Comm. Math. Univ. Carolinae 27 (1986), 235-257.

[3] J. ADAMEK and H. HERRLICH, A characterization of concrete quasitopoi by injectivity. Joui.
Pure Applied Algebra 68 (1990), 1-9.

[4] J. ADAMEK, H. HERRLICH, G.E. STRECKER, The structure of initial completions. Cahiers
Topologie Geom. Differ entielle 20 (1979), 333-352.

[5] J. ADAMEK, H. HERRLICH, G.E. STRECKER, Least and largest initial completions — I.
Comm. Math. Univ. Carolinae 20 (1979), 43-58.

[6] J. ADAMEK, H. HERRLICH, G.E. STRECKER, Abstract and Concrete Categories. Wyley, New
York etc. (1990).

[7] J. ADAMEK and V. KOUBEK, Cartesian closed initial completions. Topology Appl. 11 (1980),
1-16.

[8] J. ADAMEK and V. KOUBEK, Completion of concrete categories. Cahiers Topologie Geom.
Diffe'rentielle 22 (1981), 209-228.

[9] J. ADAMEK, J. REITERMAN, F. SCHWARZ, On universally topological hulls and quasitopos
hulls. Seminarberichte Fernuniversitat Hagen 34 (1989), 1-11.

[10] J. ADAMEK, J. REITERMAN, G.E. STRECKER, Realization of cartesian closed topological
hulls. Preprint, 1984.

[11] J. ADAMEK and G.E. STRECKER, Construction of cartesian closed topological hulls. Comm.
Math. Univ. Carolinae 22 (1981), 235-254.

[12] PHILIPPE ANTOINE, Etude elementaire des categories d'ensembles structures. Bull. Sci. Math.
Belgique 18 (1966), 142-166, 387-414.

[13] BRIAN DAY, A reflection theorem for closed categories. Jour. Pure Applied Algebra 2 (1972),
1-11.

[14] HORST HERRLICH, Cartesian closed topological categories. Math. Colloq. Univ. Cape Town 9
(1974) 1-13.

[15] HORST HERRLICH, Initial completions. Math. Zeitschr. 150 (1976), 101-110.

[16] HORST HERRLICH, Universal completions of concrete categories. Categorical Aspects of Topo-
logy and Analysis. Lecture Notes in Math. 915 (1982), pp. 127-135.

[17] HORST HERRLICH, Topological improvements of categories of structured sets. Topology Appl.
27 (1987), 145-155.

[18] HORST HERRLICH, On the representability of partial morphisms in Top and in related con-
structs. Categorical Algebra and its Applications. Lecture Notes in Math. 1348 (1988), 143-
153.

22



[19] HORST HERRLICH and L.D. NEL, Cartesian closed topological hulls. Pioc. Amer. Math. Soc.
62 (1977), 215-222.

[20] HORST HERRLICH and G.E. STRECKER, Cartesian closedness and injectivity. Preprint, 1981.

[21] L.D. NEL, Initially structured categories and cartesian closedness. Canad. Jour. Math. 27
(1975), 1361-1377.

[22] J. PENON, Sur les quasi-topos. Cahiers Topologie Geom. Differentielle 18 (1977), 181-218.

[23] FRIEDHELM SCHWARZ, Powers and exponential objects in initially structured categories and
applications to categories of limit spaces. Quaestiones Math. 6 (1983), 227-254.

[24] FRIEDHELM SCHWARZ, Hereditary topological categories and topological universes. Quaes-
tiones Math. 10 (1986), 197-216.

[25] FRIEDHELM SCHWARZ, Represent ability of partial morphisms in topological and monotopolog-
ical categories. Preprint, 1987.

[26] FRIEDHELM SCHWARZ, Description of the topological universe hull. Categorical Methods in
Computer Science with Aspects from Topology. Lecture Notes in Computer Science 393 (1989),
pp. 325-339.

[27] G.E. STRECKER, On cartesian closed topological hulls. Categorical Topology. Sigma Series in
Pure Math. 5, pp. 523-539. Heldermann-Verlag, Berlin (1984).

[28] OSWALD WYLER, Are there topoiin topology? Categorical Topology, Mannheim 1975. Lecture
Notes in Math. 540 (1976), pp. 699-719.

[29] OSWALD WYLER, Lecture Notes on Topoi and Quasitopoi. World Scientific Publishing Co.,
Singapore, 1991.

23



 



3 fl4fl2 01371"DSt7


