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2N
where p = TTZV *S the ^)est exponent in the Sobolev embedding.
Our approximating sequence will satisfy,

with fn —• 0 strongly in H"1, (H"1 denotes the dual of HJ (fi)).

By the blow up techniques of Sacks—Uhlenbeck (see [S—U]), one can describe precisely the

concentration behavior of the given sequence via the solutions of the following problem:

(*)
- A U = |u|P~2u inRN

u e D 1 ' 2 (RN)

with D l j2(RN) = {u € Lp (RN) : |Vu| € L2 (RN)|. See [St.].

A first difficulty is that nothing is known about the changing sign solutions of (*) except their

existence (see [D]) (even their decay properties at infinity is not understood). The only known

facts concern positive solutions of (*) which are completely described as the extremal function

of the Sobolev embedding. To state our result we need to introduce some notations.

For u € Lp(Rn) u # 0, define:

v (u) = number of eigenvalues p € (0, 1], counted with their multiplicity, of the eigenvalue

problem:

- A V = ( i M*~2v inRN

v E D 1 ' 2 (RN)

Since M1*""2 € LN /2(RN) it is well known that vjn) is finite (see [Si]). In fact the

beautiful semi classical inequality of Cwickel [C], Lieb [L] and Rosenbljum [Ro] gives an

universal constant aN (depending only on N) such that,



N

Notice that if u } 0 satisfies (*) then 1/ (u) > 1. Given m > 1, define the values,
OD

II tt llp

l\ ^ a . M O solution of (*)TmJ

= S ' where S is the best constant

Clearly ^ 1 > b N 2 > ^ 3 - - S~~ '

Furthermore, it is not difficult to see that b, N = b9 N

in the Sobolev embedding (see [A]). It is an interesting open problem to determine whether or
N/2not b^ = S ' for m > 3.

Notice that, this would be the case if,

On the other hand, we are certain that (0.1) is false for N > 7 where we have:

with cN = (27r) W N the "classical" value (WXT = volume of the unit ball in R ). See [Si]

and [G-G-M] where the stronger inequality a^ < c^ is established. However a long

standing conjecture of Lieb—Thirring [L-T] asserts that (0.1) should hold for N = 3,...,6. (This

conjecture has been proved in [G-G-M] for radial potentials and N = 4). The knowledge of

the precise value of â r is important since it would led to an improved constant in the proof of

"stability" of matter by Lieb—Thirring. Estimates for the a^'s have been obtained by several

authors. See for instance [L], [L,l], [A-L], [G-G-M], [L-Y] and [M]; they also include

estimates for the higher order moments of eigenvalues of the Schrodinger operator.

As we have seen our interest on the Lieb-Thirring conjecture has different origin. In

fact, a consequence of our result will show how to use the L.—T. conjecture to obtain

compactness (see Corollary 3). It would be interesting to see if this could contribute in any

way to a better understanding of the conjecture itself. For instance, we point out, that



 



(although disappointing) our result could be used to disprove it.

Let Ax < A2 < A3 < ... < An < ... be the sequence of eigenvalues of -A in HQ(n). Given u

Lp(fi), u * 0 and s > 0 define:

i/(u, s) = number of eigenvalues fi € (0, s], counted with multiplicity, for the (weighted)

eigenvalue problem:

Set *{u, s) = 0 if no such eigenvalue exist.

To clarify the role of i/(u, s) noticed that if 0 < A < Aj and u is a nontrivial solution of

(1)^, then v(u, p - 1): = ni*(u) gives exactly the augmented Morse index of u.

We have:

Theorem 1: Let {un} c HQ(Q) be a sequence satisfying (1)^ with A # A^ ; k = 1, 2, ... If,

(i) there exist m 6 IN and {sn} C (0, + OD):

^ u n S J - m and sn ~*1;

(ii) u n - ^ u 0 weakly in

,2 W m f x K
2 > (m - i /J b N _

n —\ + OD ' C

where uQ = j<o0f 1).

D

Notice that in (0.2) we have posed bN , = 0 for k > 0.

From Theorem 1 it is easy to derive a compactness result. To this purpose let T ({un}) the

set of weak limit point of {un}. That is, u € T ( {u n » if and only if there exists a



subsequence {un } of {un} such that un —» u weakly in HQ(H).

We have:

Corollary 1: Let {un} c Hj(ft) satisfy (1)^ n A t Ak, (i) and

(ii)*(ii)* lim
n -»

If, for u € T ({un}) fl j | | V u llj < c] we have:

c < || V u |g + (m - i<u)) b N > m ^ ( u ) (0.3)

(Ku) = i<u, 1))

then {un} admits on strongly convergent subsequence.

D

Remark: From Corollary 1 it is easy to obtain a well known compactness result introduced by

Th.Aubin [A] for the Yamabe problem and used by Brezis—Nirenberg [B—N] in our contest (cf.

[St]). Namely,

let {un} satisfy (1) > and (ii)* if c < S ' then {un} admits a convergent subsequence.

Indeed, for c > 0 (for c = 0 there is nothing to prove) from (1) x one easly derives:
An

r ({un}) n {|| ? u ||2 < c} c {u = o}.

In addition, (1) * also allows to take m > 1 in (i). Thus, condition (0.3) is obviously

satisfied.

Since every u € T ({un}) satisfies (1)^, we also have:

Corollary 2: Let {un} C HJ(Q) satisfy (1)A n , (i) and (ii)*.

If every solution u of (l)x with HVullo < c satisfy:

(1) c < | | V 2



Then u admits a convergent subsequence.

It is not difficult to exhibit examples showing the optimality of conditions (1) for

m = 1, 2. However, for m > 3 the values bN m are unknown and condition (1) becomes

difficult to check in concrete cases. But, if we resort to the Lieb-Thirring conjecture we can

obtain a more useful version of Corollary 1.

For A i Ak k = 1, 2, ..., we have:

Corollary 3: Let N = 3,..., 6 and assume that the Lieb-Thirring conjecture holds.

If the sequence {u } satisfies (l)x , (i) and (ii)* and for everyn /»,n

« € r ({un}) n {|| V u ||§ < c} we have,

(I)' | |V(un-u)| |2<(m-Ku))SN/2

then {u } admits a convergent subsequence.

Remark (0.1): As already pointed out Corollary 3 always holds for m = 1, 2.

On the other hand, for m > 3 a counterexample to the statement of Corollary 3 would

disprove the Lieb—Thirring conjecture.

Let also observe that situations where the hypothesis of Corollary 1 are verified, naturally occur

when studying multiplicity question for (1) %, A > 0.

We shall present an application in the last section.

We conclude with another compactness result. It relies on the comparison between the Morse

index of the "approximating" sequence and that of the solutions of (*).

To this purpose, given a nontrivial solution u of (*) define:



mflD(u) = number of eigenvalue p 6 (0, p - 1 ] , counted with multiplicity, of (*) .

We have,

Theorem 2: Let {un} c Hj!j(ft) satisfy (1)^ n(A $ Ak) and (ii)! Assume that there exists

m e IN and {sn} c R : i^un, sn) > m and sn > (p - 1 ) . If for every solution Uj i 0 of (*)

i = 1,.., k, and every solution uQ of (l)x with,

. ^ HVujBl + livuo||2 = c

we have,

1 mjiij) + m*(u0) < m (0.3)

then {u } admits a convergent subsequence.

Remark (0.2): This result could be used to find nontrivial solutions of (1) x with A = 0. As

well known problem (1) x _ 0 is very delicate and existence or nonexistence situations can

occur according to the topological property of ft (see [P] and [Ba—C]). By theorem 2,

nontrivial solutions of (1) > = Q would exist as long as one could construct an "approximating"

sequence with "large" Morse index but "small" energy.

So, it is an interesting problem to see for which domain ft such construction is possible.

The Proof of Theorem 1 and 2:

The proof of theorem 1 and 2 rely on a blow up argument. We have collected useful

inequalities as well as regularity properties for solutions of (*) and (*) in Appendix I and II.

The Proof of Theorem 1:

Write un = uQ + wn with wn —* 0 weakly in H^ft).



Using ( l ) A n and the fact that uQ satisfy (1)A, one easily derives the following for

+ g in

where

U0 ~ K ^ %] + Awn

Hence, using the Calculus Lemma of Appendix I, the fact that wn —* 0 weakly in HQ(n) and

UQ e Lq(ft) for every q, we derive:

i

g i—• 0 strongly in H .

Furthermore from (i) we obtain Vj € HQ(n) satisfying:

i
with ^ n € (0, s j and 1 = l,...,m.

Hence, taking a subsequence if necessary, we find v̂  6 HQ(fi) and /^ 6 [0,1] such that

Vi —* v, weakly in E
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and

- (A vj + A vj) = h I u01 *~\ in Hj(fi) (1.3)

Notice that in particular, Vj € C"(ft) n C(I7), (6ee [B-K]).

Write,

l,n 1 i,n
as above we derive that w, satisfies the following,

with gj i—> 0 strongly in H"~

From now on it is understood that we are taking subsequences when needed. Combining

results of Struwe [St.] and Brezis—Coron [Br—C], from (l)x we obtain an integer r,

sequences JR. | C R and | x . \ c fi, solutions u. of (*), j = 1, ..., r satisfying:

i

(a) II ̂  (w
n"~ ? *. ) II2

 > ° as n

where,
N-2

r 2

E || V u. ||^ and R. dist (x.

(c) H j * k the-

as n > + OD.
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Let us mention that (c) is a consequence of the regularity properties of the solutions of (*)

as derived in Appendix II, and the obvious modification of an argument of Brezis—Coron

([Br-C, theorem 2.]).

In ft- „ = Jx 6 Rn : x. + ^ € fi[ define:
J'n K j ,n

2-N

2-N

wj,l,n = R h > i , n <xj

j = l,...,r and 1 = l,...,m.

We consider w* and w* , defined in the whole Rn by setting them equal zero outsidej,n j,l,n

V
Since II V w* IL = II V w |L is uniformly bounded, we can find a subsequence, which we stillH J>n z n z

call Wj n> and Wj € D1>2(IRn):

w t — W j weakly in D1>2(RN)-

* * 1 2 N

Similarly, for (a subsequence of) w . t we find w. t 6 D ' (R ) such that,

w* -- w t , weakly in D l j 2(RN).

Moreover from (1.1) and (1.4) one easily derives:

g t n • 0 strOTgly in ( D 1 - W ;
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0 strongly in (D1 '2 (RN))*.

Now set,

Using the results of Appendix II and property (c) we shall derive the following:

if j * k => T^, — 0 weakly in D1>2(RN). (1.5)

On the other hand it is easy to check that for j = k we have, u ; v n
 = uk *or e v e r v n-

To establish (1.5) notice that | V u^ | 6 L^R ) (see Appendix II).

Let <p 6 CJ(RN), if 0 as n 1> + CD, then

N R,

0 as n > + OD.

On the other hand, if
R,

-* + OD as n > + m and R. (x. - x , )
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(take a subsequence if necessary), then for arbitrary e > 0, let 6 > 0 small enough to

guarantee:

II H ,

Thus, for n large we have:

I J ' » j ,k ,n - ' *> I < J I V u* k

{

< II ' « k II ( j I v *> I2 ) 1 / 2 + ( j I v \ I2) II v v ll2 < i + 0(1).

Finally, if | R. n (x. — x^ ) | > + GD, then we can find suitable constants Rn

(depending on supp <p): Rn > + QD as n > + OD and

0 as n > + ID.

Since,

(wn " i V } h > ° as n > +

from (1.5) we conclude,

w * = Uj j = l,...,r. . (1.6)
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This together with (1.4)* yields:

w*y V y = ̂  J | U j |P - 2 w* V v 6

That is w*., is a (classical) solution for,
JJ 1

[-*w*. , =/i. |u.|P"2w* inRN

w"J , 6 D 1 ' 2 ( R N )

with 0 < /ij < 1,1 = l,...,m and j = l,...,r

(See Appendix II for the regularity properties of w^ A

Now, notice that ^ > 0 for every 1 = l,...,m. Indeed if ^ = 0,

then from (1.3) it follows that necessarily Vj = 0 (only here we use the fact that A # At Vk).

Furthermore,

1 = II V V l l = II V w , n | | - ^ J I wn |P"2 y,{B + 0(1)
with I w

n l 1 ^ w i n uniformly bounded, and /^ > 0. This is clearly impossible.

Thus, we can conclude fu € (0, 1] V1 = l,...}m.

Assume PQ = kQ < m, otherwise (0.2) is trivially satisfied. This implies that v̂  = 0 for

1 = k + l,...,m.

So, for 1 > kQ we get,

1 - II » wl,n «1 ~ «U f I % I""2 "?,n + <KD - V f I -t.nl""2 K,l,n>2 + ° ( 1 )
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> 2 *>
I

|| V wJ

Hence, going to the limit as n > + a>, for 1 > kQ we find,

so the w^ 1 cannot all vanish identically.

Furthermore, if kQ < 1, h <m and 1 ^ h then,

0 -

J I k \2 •!*, I""' ^ , l , n - ! * ,

That is,

(1.8)

for kQ < 1, h < m and 1 ^ h.

Notice that to derive (1.8) and (1.9) we have repeatly used the calculus lemma of Appendix I.

Thus, (1.7), (1.8) and (1.9) yield,
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r

In conclusion,

II2 - T II 11 IIPi m II V ( u n - u 0 ) | | | = l i m | | V w n | | 2 = I || u. ||P
-4 CD n - » 0 D J = l J F

l im
n

and

This concludes the proof.

Corollary 1, is now an immediate consequence of theorem 1. Indeed let j u > be a
JEL

subsequence of | un J and u € Hj(ft) such that un —* u weakly in HQ(n).

Since u satisfies,

lim
k -* + a

2
by theorem 1. we have that necessarily || V u Hg > c, that is un —m strongly.

The Proof of Theorem 2.

Take a subsequence if necessary and assume that un —* uQ weakly in HQ(n), for suitable

U c H (Q\
0 0̂  '*

The blow up technique seen above gives solutions Uj,...,u for (*),sequences | R. n \ C R



and

jx. ]cfi such that,
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N-2

" UO " Uj,n -

and
2 r

V u o | | 2 + . ^ II V Uj || = c.

We are done once we show that, necessarily u- = 0, V j = 1,..., r. Arguing by contradiction,

assume that u. * 0 for j = 1,..., rQ and some rQ € {l,...,r}.

From (0.3) it follows that,

= k0 < m (1.10)

In virtue of the given assumptions we can find eigenfunctions v. € HQ(Q) satisfying:

-̂ v
V T 1 and J |ux = 0 « k t j and n e II

with 0 < /*• < 1 and n e W.

Let v. 6 Hj(n) and ft- € [0,1] such that,

—- v. weakly a n d
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(take a subsequence if necessary).

Thus v- must satisfy:

- (AVj + A v ^ t p - l j M j I U c j in

As above we rule out the possibility that fi- = 0. So fi- 6 (0,1]. Thus, from (1.10) it must
J J

result: v- = 0 for kQ < j < m. A blow up argument similar to the one given above, will give

functions

wt j € D1 '2 (RN) with j = 1,..., rQ and 1 = kQ + 1,..., m such that,

rO . . rO

for kQ < 1, h < m and 1 i h.

That is,

r 0
. ^

This clearly contradicts (0.2).

An Application:

We investigate changing sign solutions for (1)^ with 0 < A < Xy Our goal is to give a rather

simple proof of a result already established in [C-S-S], [Z] and [T].
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Let

I(u) =u ) = U | V u

be the "action" functional corresponding to (1) %.

That is, critical points of I give solutions of (1) x. Since I is even, we can use the theory of

Ljusternik-Schnirelman to seek critical points for I.

To this end, define:

E = | A c HQ(ft) : A is closed and symmetric (i.e. u € A = » - u € A ) L

For every A € E , denote by i (A) 6 IN the Krosnoselski genus of A (cf [St.]) and let,

<# = |h : Hjjj(fi) —4 Hjjj(fi) odd homeomorphismj.

Given k 6 W, set = I A € E : i (A fl h (S)) > k V h 6 <%\

where S = {u e Hj(fi) : ||u|| = l l .

Following Ljusternik—Schnirelman, we define,

= inf sup I
A 5 ^ A

So — GD < Cj < c2 < Cg < ..., are the natural candidates when seeking critical values for I.

However, since the functional I lacks compactness, this mil be established only for k = 1, 2.

The case k = 1 has been obtained in [B—N]. They show that there exists Uj > 0 satisfying:

T(uj) = 0 and I(uj) = Cj.
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This has been achieved by providing the estimate,

(cf. [St.]).

Notice that Cj is the smallest positive critical value for I.

That is,

c: = min | c > 0 : 3 u 6 Hj(fi) with I(u) = c and F(u) = o|.

Also notice that if u is a critical point for I and c, < I(u) < c« then u cannot change sign in

n.
Here, we use Theorem 1. to handle the case k = 2.

i
)

Let

A = ju € Hj(n) u t 0 and (I'(u), u) =

((•,•) is the standard scalar product on Hj(ft)). Given u e Lp(fl) u i 0, denote by

(/i,(u), v,(u)) the first eigenpair for the eigenvalue problem:

Under the normalization: v,(u) > 0 on ft and || V Vj(u) {( = 1, the map:

xx

is continuous and even.

This implies that if we set,
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= (u€A: f |u|P-2uV l(u) =

then,

A n F O VAeE 2 . (2.1)

Furthermore, it is not difficult to check that,

i n f l > c o (2.2)
F " l

(see [Tjfor details).

Using a deformation lemma proved by Brezis-Nirenberg (see [B-N,l] corollary 4) from (2.1)

and (2.2) one derives a sequence ju | c HQ(ft) satisfying:

(1) I(un) — c2,

(2) l|r(un)||-o
( 3 ) u n € F

(see [T] for details).

To be more precise, we should notice that although in general I does not satisfy the P.S.

condition; it does however satisfy property (27) of [B-N,l]. So the statement of corollary 4. in

[B-N,l] is still valid for I.

Alternatively, from (2.1) and (2.2) one could use a result of Ghoussoub [G] to obtain a

sequence {un} c HQ(O) satisfying (1), (2) and dist (un, F) —» 0 is n —» + ©.

In addition if N > 6, then the following estimates hold:
I 'M /O

C2 ̂  c l "*" TT v^#o/
In particular,

Notice that (2) is equivalent to (1)^ . Furthermore un € F implies
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un Hi - A || un ||| = || un||P aixd f |un |P"2 v j d g un = 0f |u

That is,

II V un ||? - A || n H2, = || u ||g = N I ( u j — N Co, (2.4)
11 n z n z n p n ^

and

i^un, 1) > 2.

If necessary, take a subsequence to find UQ 6 HQ(Q) such that

u n ~ * u 0 weakly in Hj(n).

Assume that || uQ |P < N c2- If uQ ^ 0, then uQ is a critical point for I and c^ < I(uQ) <

c2- So necessarily,

% = K^o> ! ) = X'
since UQ cannot change sign in fl.

Thus,

N I(uQ) + l im || V (u - uQ) ||2 = N c2 < N cx + S N / 2 = N Cj + (2 - uQ) b N 2_u
n —> +QD ' 0

(we have used the fact that bj^ ̂  = S ' ), which contradicts theorem 1.

Similarly if uQ = 0, then,

lim || V (u - u n ||2 = N (^ < 2 S N / 2 = 2 b N 9

which also contradict theorem 1 since V(UQ = 0, 1) = 0.

In conclusion, || UQ |P > N Cj , Hence from (2.4) it foll

Thus, for 0 < A < Â  and N > 6, problem (1) * admits a solution u satisfying

In conclusion, || UQ |P > N Cj , Hence from (2.4) it follows that u converges strongly to U
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|H

where v.(u) is the first eigenfunction for (•)

In principle, one could apply this idea for every c^'s, k > 3. But, in order to establish stronger

multiplicity results for (1)% one faces two types of difficulties. The first one is to obtain sharp

estimates on the values bxr for m > 3. Secondly, it is not clear whether or not one can

construct eigenfunctions v^(u) of (•) which are even and continuous in u, for every k > 2.

APPENDIX I:

This first appendix is devoted to derive a useful calculus inequality.

Calculus Lemma: Let p > 2.

There exists a constant Cj > 0 (depending on p only) such that for every 0 < a < min

{p - 2, 1} we have:

(I) Ha + bl

for every a, b £ R.

Proof:

Use the homogeneity to see that (I) is equivalent to,

i u i 11P~2 , I. ip—2 i , n / i• i a i i* ip—*—a \ /T \ /
| | t + i | — A —1* | I i ^ i U l l + 1*1 ) \L)

for | t | < 1.

We have,
1

0
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To estimate the right hand side of (A.I) we distinguish two cases.

Case 1: 2 < p < 3.

since 0 < a< 1 and | t | < 1.

Case 2: p > 3.

i:t (1 + s t ) 1 ^ 3 ds | < 2 p ~ 3 111 < 2 ^ 3 | t | a

J V u • V (p = [ a(x)uy V <p € D1>2(IRN).

l &

In conclusion,

| | t + l | P - 2 - l | <CX | t | a V | t | < l . (A.2)

Furthermore, for 111 < 1 we have,

| t | P " 2 < I t l P " 2 " " (A.3)

So (I) immediately follows from (A.2) and (A.3).

APPENDIX H.

In this appendix we collect some regularity results for solutions of (*)

Proposition A: Let a e LN / 2(RN) and u € D1>2(RN) satisfy:
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Then u € Lq(RN) V q > p.

Furthermore if a e LN/2(RN) n L^R1*) is locally Holder continuous, then

u e C2(RN), | V n| e L*(RN) 2 < t < + m and u satisfy:

[- A u = a(x)u

|u(x) - 0

k | V u ( x ) | - 0

inRN

as | x |

as | x |
m

en.

H, in addition a e ^(R1^), then u e ^(

Corollary: If u € D1>2(RN) satisfies:

u- V <p-\ | u | p " 2 u ^ =

then u € Cw(ti®) n Lq(RN) for p < q < + m, |V u| 6 L*(RN) for 2 < t < + x and u satisfies:

N
- A u = | u | r "u inR

u(x) —» 0 as | x | —» + OD

I U ( x ) | - . 0 as Ixl —• + «.

Proof of Proposition:

The following argument is due to Brezis-Kato [B—K].
2 f 2s 21

Let s = jj^jj and L > 0. Define (p = min | |u | , L | u.

Observe that <p € D 1 ' 2 ^ ) , u <p € Ll{vF) and | J u ip\ < ||u||P.

We have:

= f v u . V ^ = [ |Vu| 2 m i n | | u | 2 s , L 2 J + 2sJ | u | 2 s | V u | 2

{|u|s<LJ
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= | | V ( u m i n { | u | s , L } ) |

That is,

J | V (u min { |u|s, L}) |2 < J a(x)uy> = J a(x)u2 min {|u|2s, L 2} <

<Kju2min{|U|2s,L2} + J|a|u2min{|u|2s,L2}<
{} { }

N-2

J | a | N / 2 ) 2 / N ( J |u min {|n|s,

< K N|P + S (} | a | N / 2 ) 2 / N || V (u min {|u| s , L} ) | | 2 (A.4)
{ }

Since a € LN/2(RN), we have:

[|alN/2—»0 asK

Choose K large enough to guarantee

{ }
From (A.4) we derive, || V (u min {|u|8, L | ) Ĥ  < 2 K ||u||£ and in particular,
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f | V ( | u | s u ) | 2 <2K||u||P V L > 0 .

Hence letting L —» + © we conclude:

V(|u| su) | €L2(RN)-

By the Sobolev embedding theorem (see [Fr]) it follows that u e L p ( s + 1 )(RN) and by

interpolation, u 6 Lq(KN) for p < q < p (s + 1)
N—2Iterate this procedure by choosing s, with s, + 1 = (s + 1) ±-K^, and s, :

sk + X = ( sk-l + x) ^T f o r k - 2<

This yields, u e Lq(RN) for q > p.

Next we show that,

u(x) = J r (x - y) a(y) u(y) dy a.e. x e RN (A.5)

N+2 _x

where r ( x - y ) = aN ^ p , and aN = [ N(N-2) f ( * S^] .
i y I T — v l 1 z L J 1 4 - I T I Z J

From (A.5) the rest of our statement will follow immediately. In fact by the

Calderon-Zygmund inequality (see [G-T th. 9.9]) we know that a u € L*(IR ) => Dj . u 6

Our assumptions allow to take t > N. Thus by the Sobolev inequality (see [Fr]) we get in

particular that u and | V u| 6 L " ^ ) ; (hence |V u| 6 L*(RN) 2 < t < + OD).

While, by the Money's estimates (see [Fr]) we have that u and | V u| ax$iocally Holder.

Thus, from the analysis of Newtonian potentials (see [GT, lemma 4.2]) we finally conclude
2 Nu € C (R ). Furthermore, for t large there exists a constant C (depending on N and t
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only) such that:

,2
C || V u||

L (

and

I | U | U*N VL (R \

where Bp is the ball of radius R.

Hence, letting R —• + a>, we conclude:

u(x)—*0and |Vu(x)| —»0 as

A boot strap argument finally gives u € Cw(tiF) if a €

So we are left to establish (A.5).

To this purpose take,

N-2
~ 2 ~

= C.T —rr-l iv N-2i

with e > 0 and the constant cN is adjusted so that

Notice that for every R > 0 we have:
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V u • V <pt = J vpT1ii(y)+ ^ J u (y ) V ^(y) • (x-y)dS =

<R} {|x-y| < R} {|x-y| = R}

N-2

2 ? N / 2 J u(y)ds (A.6)
{|x-y|< R} {|x-y| = R}

+0D

Since, dR 11 u(y) | pdS < + m, for a sequence Rn —» + w
0 { |x-y| = R }

we have,

[|u(y)|

{l*-y|=Rn}

p—^0 as n

Thus,

n

as n —» + OD, ( (TJJ = surface of the unit sphere).

This yields,

fa(y) u(y) tp (y)dy = f V n • V tp = l i m ( f V u • V <p ) =

= lim
+OD

 J t

|x-yj <Rn}



30

In other words,

Thus, letting c —• 0, we obtain (A.5).

The corollary can be easily derived by a bootstrap argument from the fact that u 6 L̂ (K ) for

every q > p and

U W J lr-vl N -2
a.e. x e K .
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