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1. INTRODUCTION.

The study of phase transitions leads in a natural way to the study of variational problems
where the total energy functional involves bulk and surface energies terms (see FONSECA [17],
[18], GURTIN [23], [24], KINDERLEHRER & VERGARA- CAFFARELLI [26]). It may aso
happen that the total energy reduces essentially to its interfacial component. As an example, for
solid crystals with sufficiently small grains HERRING [25] assumes that interfaces are sharp and
shows that the surface free energy plays a definite role in determining the shape of the crystal
approaching an equilibrium configuration of minimum energy. The surface tension considered by
HERRI Ng; was of the type

| r(ne(x))dHn_s(x) (1.1)
,E .

where E is a smooth subset of [RY, ng is the outward unit normal to its boundary and F denotes the
anisotropic free energy density per unit area. Clearly, when Fis constant the problem

P) to minimize (1.1) subject to meas(E) = constant,

reduces to the classical isoperimetric inequality. For anisotropic F, one of the first attempts to solve
(P) is dueto WULFF [38] in the early 1900's. His work was followed by that of DINGHAS [14],
who proved that, anong convex polyhedra, the Wulffset (or crystal ofF)

W, :={x e [R'|x.n<F(n), foral ne S}
is the shape having the least surface integral for the volume it contains. Later, TAYLOR [35], [36]
and [37] obtained existence and uniqueness of solution using geometric measure theory tools. All
the above mentioned results rely essentially in the application of the Brunn-Minkowski Theorem.
Recently, DACOROGNA & PFISTER [12] presented a completely different proof in QR which
does not involve the Brunn-Minkowski inequality. Their arguments are purely analytical but,
unfortunately, they cannot be extended to higher dimensions. Also, they obtain existence and
uniqueness within a class of sets strictly contained in the class C of all measurable sets (bounded
or unbounded) with finite perimeter. This is, of course, the natural class of sets for which (1.1) is
defined.

In this paper we obtain existence of solution for (P) in C. The proof follows that of
DINGHAS [14] and TAYLOR [37], athough we work within the BV theory instead of using
geometric measure theory terminology and tools. Hopefully, this proof will be more accessible to
analysts. Its key ingredients are the Brunn-Minkowski Theorem and the parametrized indicator
measures (see FONSECA [19]). These measures enable us to handling oscillating weakly
converging sequences of surfaces and continuity and lower semicontinuity properties of
functional of the type (1.1). The indicator measures (see RESHETNYAK [32]) are arefined
version of the generalized surfaces of YOUNG [39] and they were studied by ALMGREM [2] (see
also ALLARD [1]) under the name of varifolds. '



We characterize the support of indicator parametrized measures associated to minimizing
sequences for (P). This information allows us to conclude that if the Wulff set is polyhedral then
minimizing sequences cannot oscillate.

In Section 2 we review briefly some concepts of the theory of functions of bounded
variation and in Section 3 we provide a detailed analysis of the Wulff set and we study I'" and its
biconjugate function I'**,

In Section 4 we recall some of the properties of indicator measures and we show that the
Wulff set is a solution in C for the geometrical variational problem (P), generalizing TAYLOR's
[37] result to unbounded sets. Also, and for completeness, we prove in Section 5 that the Wulff set
is the only solution in the class C, up to a translation and a set of measure zero. This result was
obtained first by TAYLOR [36], using geometric measure theory techniques that involve
approximation of a set by polyhedra. Recently, an analytical proof of was given by FONSECA &
MULLER [20].

In Section 6 we provide a characterization of the support of indicator measures associated
to minimizing sequences and we use this result to conclude that in some cases (e. g. if Wrisa
polyhedron) minimizing sequences cannot develop oscillations.

Finally, in Section 7 we discuss a variational problem in nonlinear elasticity involving bulk
and interfacial energy. Lately, there has been great progress in the analysis of minimization
problems of this type. BOUCHITTE [8] and OWEN & STERNBERG [30], using singular
perturbations and the Gamma - convergence approach (see De GIORGI [13]), obtained the Wulff
set as the selected shape for a scalar-valied two-phases transition problem with infinitely many
solutions. Recently, this result was generalized to the vector-valued case by AMBROSIO,
MORTOLA & TORTORELLI [4] and AVILES & GIGA [5]l.

2. PRELIMINARIES.

We recal briefly some results of the theory of functions of bounded variation (see EVANS
& GARIEPY [15], FEDERER [16], GIUSTI [22]). Let Q C RN be an open and connected set
and define SN-1:= {x ¢ RN|||x|| = 1}.

Definition 2.1.
A function u € L1(Q) is said to be a function of bounded variation (u € BV(Q)) if

IQIVu(x)I dx :=sup { J-Qu(x) .divex)dx| ¢ e C(l, (Q; IRN), Pl o < 1} < oo,

1, See also AMBROSIO & De GIORGI [3] for a related problem.



It follows immediatly from Definition (2.1) that if ug converges to upin L'(Q) then

f VuXx)|dxsliminf f [Vue(x)| dx. (2.2)
{0 e>0 J&
It turns out that bounded sets in BV are compactin L*, precisely

Proposition 2.3.
Let QC [R" be an open bounded strongly Lipschitz domain and let C be apositive constant.
Then, the set

JUG L") f [u)|dx+ f |Vu(x)|dx<c5|

is compact in L'(Q).

A particular case of afunction of bounded variation is the characteristic function of a set of
finite perimeter.

Definition 2.4.
If A is asubset of [R" then theperimeter ofA in Qs defined by

Fterg(A):=Jk [VXa(x)|dx =sup{J divop(x) dx|cpe cJ(Q; IRY, [leplL< 1},
Q A

where X A denotes the characteristic function of A.

If A has finite perimeter in IR" then for any borel set E

IVX all@) = Hn 1 (d*A NE),
where H” denotes the N-I dimensional Hausdorff measure, 3*A is the reduced boundary of A
and ||V %a]|isthetotal variation measure of the vector-valued measure V %A - Often, we use the
notation

Hy_! L3*A (E) :=Hy_;0*A nE).
Also, there exists a ||[VXAIl -measurable map na : 3*A -> S~ such that na(x) is the outward
normal to 9* A at x,

-NAl[VXaH = VXA in £(iRY)
and thegeneralized Green-Gausstheorem holds, namely

q& div <px) dx =Jrn Sp(X). na(X) d]|VXall
=f op(X). na(X) dHAX) (2.5)
"I A
forall 9e CIRY, IRY).



Proposition 2.6.
If E has finite perimeter in £2, then for amost all R > 0
Pero(E n B(0, R)) < Perg0,R)(E) + Hna(E n 9B(0,R)).

Wewill usetheFleming-Rishel co-areaformula

f [Vu(x)| dx = f“ Pero {x € IRY u(x) >t} dt (2.7)
Ja J-00
for u e BV(£2), and also the change of variablesformula
fnu(x)[de Vi(x)|dx=1f (f, u@@dH"fe)!dy (2.8)

whereN zp, f:IRV-»[RPisalLipschitz function and u : IR" -> IR is measurable.
The next result shows that a bounded set of finite perimeter can be approached in BV by a
sequence of C*° sets with the same volume. The proof can be found in the Appendix.

Lemma 2.9.
Let EC IR" be abounded set of finite perimeter. There exists a sequence of open, bounded
setsEuC IR such that
(1)3E, e C~andEn,E C B(0, R) for someR > 0;
(i)Xgn, ->Xg inLNIR*);
(iii)Per(E,) ->Per(E);
(iv) meas(E,,) = meas(E).

3. THE WULLF SET.

In what follows F: SN"' —> [0, +°0) denotes the surface free energy of a solid. For
crystalline materials, HERRING [25] proposes some constitutive hypotheses for F based on
molecular considerations where surface energies arise from interatomic interactions of finite range.
It turns out that for ordered materias (i. e. materials with alattice structure) F is not differentiate
with respect to certain crystallographically simple directions. In this case, if we plot F radially as a
function of the direction n, this plot will present cusped minimain certain directions corresponding
to surfaces of particular simple structure with respect to the lattice (see FONSECA [17], PARRY
[31]). At each point of this polar plot construct a plane perpendicular to the radius vector at that
point. Then the volume Wp which can be reached from the origin without crossing any of the
planes is the Wulffset. Precisely, assuming that F is continuous and bounded away from zero, i.
e.

F(n) > afor somea > 0 and for al n e S*" (3.1)



we have

Definition 3.2.
The Wulff set (or crystal of I') is the set Wr := {x € RN |x.n<T'(n) for allne SN-1},

Clearly, if I'= 1 then Wr is the closed unit ball. Also, using HERRING's [25] idea it is
easy to show that for solid crystals the lack of differentiability of I" implies that its crystal is a
polyhedron. This motivates the following definition.

Definition 3.3.
I is said to be crystalline if Wr is polyhedral. Moreover we say that I is szrictly crystalline
if it is crystalline and if I'(n) > I™*(n) unless n is normal to OWT-.

In order to relax the energy (1.1), we recall some concepts of the theory of convex
functions (see ROCKAFELLAR [33])).

Definition 3.4.
Letf: RN — [-o0, +09].
(i) The Fenchel Transform of f (or polar of f, or conjugate of f) is the function £* : RN — [-o0, 4o0]

given by
f*(y) .= sup {xy - f(x)}.

xe R
(ii) The bipolar (or biconjugate) of f is the function f¥* ; RN — [-co, +o0] defined by

P*(x) ;= sup {x.y — f*(y)}.
ye RN

(iii) If x € RN, the subgradient of f at x is the set
of(x) := {y € RN|f(x") =f(x) + y.(x' - x) for all x' € RN},

It is easy to verify that f** is the lower convex envelope of f, i. e. f** = sup {g | g is
convex and g < f}. The indicator function of a set C C [RN is defined by

0 ifxe C
Io(x) :={

+oo ifxe C.
The following results are well known.

Proposition 3.5.
(1) I is convex if and only if C is convex;



(ii) I, is called the support function of C and I (y) = sup {y.x | x € C};
(iii) if C is convex and if x € dC then

yisnormaltoCatx &y € dl(x) @y .(x'-x)<Oforallx'e C;
(iv) dI(x) is a closed convex cone and dI(x) = {0} if x € int (C) ;
(v) if C is closed and convex then alé (y)= {x € d9C |y is normal to C at x}.

Here I'* and I'** denote, respectively, the polar and bipolar functions of I’y obtained by
extending I" as a function homogeneous of degree one :

x| r("—:”) ifx#0

0 ifx=0.

ro(x) =

Proposition 3.6.
(i) Wr is convex, closed and bounded;
(i) I** = IWr ;
(iii) I"**(x) = sup {y.x | y € Wr} = support function of Wr-;
(iv) if x € dWr and if n is normal to Wr at x then x.n = I'(n) = I™**(n);
(v) the crystal of I'** is the crystal of T, i. €. W= Wrus;

(vi) 0 € int (Wp).

Proof. (i) It is clear that Wr is convex and closed. Also, if x € Wr then ||x|| = sup{x.n |
[In]l = 1} < sup {TC(n) | |n|| =1} =: M, i. e. WrCB(O,M).
(i) If x e W, thenforally #0

y y
Xy — I"o(y) =|lyll (Xm - r("y—")) <0
and as x.0 - I'y(0) = 0, I’*(x) = 0. On the other hand, if x € Wr then there exists n € SN'I such

that x.n - I'(n) > 0. Therefore, forallk e N

I'*(x) = x.(kn) - T'g(kn) =k (x.n - I'(n))
and so I'*(x) = +oo. We conclude that I'** = Iy,
(iii) By (ii) and by Proposition 3.5 (ii), I"** is the support function of Wrand I'**(x) = sup {y.x |
ye Wr}
(iv) As Wr is convex and bounded, the normal n(x) to oWr at x € dWris uniquely defined for
Hy_; a. e. x. We want to show that

x.n(x) = I'(n(x)). 3.7
As x € Wr, we know that x.n(x) < I'(n(x)). Suppose that



x.n(x) < I'(n(x)). (3.8)
By (ii) and by Proposition 3.5 (iii) we have

d I'*(x) = {n(x)}. 3.9)
We claim that there exists § > O such that
I'(m) - x.m = B for all |m|| = 1. (3.10)

Indeed, if I'(m) - x.m = O for some unit vector m, then by (3.8) and (3.9) m # n(x) and m ¢
oI'*(x). Thus, there exists x' € Wr such that
0 <m.(x'-x)1ie. I'(m) < mx'
which is impossible by definition of the set Wr. Therefore 93.10) holds and if x' € B(x, ) then
x'm = (x-x).m + x.m < ||x-x|| + I'(m) - B <T'(m)
for all m € SN-1and so B(x, B) C Wr contradicting the assumption x € dWr. We conclude that
(3.7) holds. Hence
I(n(x)) 2 I'™**(n(x)) = sup {y.n(x) | y € Wr} 2 x.n(x) = I'(n(x))

which implies that x.n = I'(n) = ['**(n).
(v) Let Wr+s be the crystal of I**, As I™** < T we have Wrs+.C W Also, by (iii) if x € W then

xn<sup {y.n|ye Wr}=I**(n),ie. x € Wrus.

(vi) Suppose that the origin is not interior to W Then there exist sequences {y, } and {n,} on
SN-1 such that ny.yy/k > I'(n). Without loss of generality, we can assume that y, — y and n,— n,
where |ly]| = 1 = ||n]|. We conclude that I'(n) = O which contradicts (3.1).

4. THE WULLF THEOREM: EXISTENCE.

Here we prove the isoperimetric inequality

C meas(E)N-DN < J(OE) 4.1)
for all measurable sets E of bounded perimeter, where J(.) is the surface energy?

JGE) = LE Tng(x)) dHy_1()

and C = J(0*Wr) meas(W)(I-NVN, The key idea of the proof is the use of the Brunn-Minkowski
inequality. This was exploited formally by DINGHAS [14] and later made precise in the context of
geometric measure theory by TAYLOR3 [37]. Here we presente the proof in a BV framework that
avoids the terminology and concepts of geometric measure theory, thus making it more accessible
to analysts.

2Here ng is the outward unit normal to the reduced boundary 3*E.

3 We generalize TAYLOR's [37] result to unbounded sets.



Brunn-Minkowski Theorem 4.2.
If A and B are nonempty sets of 1R then

meas(A + B) = (meas(A)Y™ + meas(B)"™)N.

We refer the reader to DACOROGNA & PFISTER [12], where (4.1) is obtained for a
certain class of sets in IR? whithout using the Brunn-Minkowski Theorem. However, their
argument is essentially two dimensional and it cannot be extended to higher dimensions.

Itis clear that (4.1) follows from

Theorem 4.3.
LetE C [R" be aset with finite perimeter and such that meas(E) = meas(Wp). Then

sz*Er(nE(X))' dH”U) zga*w r(nw, (X)) dHy_(X).

Indeed, assume that meas(E) = A,"meas(Wr). We recall that if £1 CIR" is an open bounded
strongly Lipschitz domain, if § is a diffeomorphism and if f: S** -» (R is a continuous function,

\ adj\/ NOAANNn(x)
hen 1@ “PO) g voeomaGol

and
adj V¢(x)nn(x)

J'm) g dHy 1) L r( = ¢(x)nn(x)”) ladj Vo &) ng Gl dEy_, ).
Thus, setting <X := Ax, by Theorem 4.3 we have '
J’a‘E Iag(y)) dHy 4(y) = LWD TMing(ea®) dHiyy(y)

= XN—IJ;;M r(n(E/W(X)) dHN—l(X)

> AN L o H(9) dHACY
r

= L*(},Wr\) r(ﬂlwr(y» dI‘IN_l(Y)

Corollary 4.4.
The dilation XWp minimizes the surface energy functional (1.1) among all sets of finite

perimeter with volume equal to A,Nmeas(Wr)-

Finally, (4.1) follows from Corollary 4.4 since



J(3E) = J([d(XWy)) = X"~ JO(W,)) = [meas(E)/meas(Wr)I®-1¥N J(9(WT))

= Cmeas(E)("-)N,

The proof of Theorem 4.3 will be divided into three parts. The first one deals with bounded
open sets E having smooth (e. g. C?) boundary. In the second step we prove the result for
bounded sets of finite perimeter and on the third step we remove the boundedness restriction. The
second and third parts rely heavily on the lower semicontinuity properties of surface energies.
These were studied in detail in FONSECA [19]. For convenience, we summarize some of the
relevant results for this work.

Let E C IRN be a bounded set with finite perimeter. Associated to V % we have the
nonnegative and finite Radon indicator measure Ag on KNxSM* defined by

<Ag F>= r F(X, -nE(X)) dHACX)
Jd*E :

foral Fe Co(IR" x KM). The slicing measures determine the factorization Ag = ‘XX<FB> rce, where

7Uds the projection of Ag into IR and *Ai} is afamily of probability measures such that
<AgF> =17 (1" F(xy) dASy)) dUdX)

In what follows, v denotes the center ofmass, i. e.

v = [,y %)

Proposition 4.5.

Let {Ec} be asequence of bounded sets of finite perimeter, with indicator measures { Ae} .
If Ac** AN = X®70m weakly * in the sense of measures and if » -> XE strongly in L. Then
E is aset of finite perimeter with indicator measure Ag :")Ji§3 TCe ancf

) J&FE F(X, nedX)) dWx) -» I Hxy) dAXy) = £y [[* Fxy dx;‘(y)_)dn,,(x)

forallFeCo(IRVXIRVY);

(@ii) dHNL 3*E = ||vj| d™. and ||vjX)||< 1 for ™ a e. X;
(i) vm=- |[vj| ng, fordH"I.d*Ea e x;
(iti)sup||lvJ| = 8*E.

Using theindicator measures, it follows easly that (see FONSECA [19], Corollary
4.6 (ii))

Theorem 4.6.
Let E; C IR be a sequence of bounded sets with finite perimeter in KN. If (meas(Ez) +
Per(Eg)} is bounded and if » -> XginL'(JR"Y) then

E



R ne(x)) dHAX) <liminf £ F(x, ne (X)) dH g (x)
Jd*E e-»0 J3*E, €

. for al nonnegative, continuous function F such that F(x,.) is convex and homogeneous of degree
onefor al xe IRV

If in addition there exists R > 0 such that E. C B(0,R) for all e > 0O, then (see
FONSECA [17], Theorem 5.1 and Corollary 5.9) the following result provides necessary
and sufficient conditions for continuity.

Proposition 4.7%.

The following assertions are equivalent:
(i)Per(E¢)->Per(E);
(i) AL® isaDirac mass;

(i) f Fx, ne (X)) dHy X() -> f F(x, ne(x)) efflux) for dl F e CIRXIRY).

In order to prove Theorem 4.6, we obtain alower bound for the relaxed energy.

Lemma 4.8.
Let E beaC°°, open, bounded domain. Then

f \% . meas(E + £W,) - meas(E)
* % | °
jd I (nE(x3<) dHy .(x§ 2 Urn> |gf . :

Proof. Letx e 3E, e>0and let
X:=sup{t>0]|x+etng(x) e E+£EW,and tng(x) e W,}.
By Proposition 3.6 (vi), there exists p > 0 such that B(0, p) C W, andso, E CC E + eW,.
Choose 0 < 8 < ep/2. We claim that
B(x, 8) C E + eW,.
Indeed, ify = x + z, With'||Z|| <8, andif x e Eissuchthat [|x' - x|| < 8 then we have
y=x’+e(%+§) € E+eW.,.

Thus, x€ int (E + eWp) and as E + eWpis abounded set, 0 < X < +> Also, since Wp is closed
then Xng(x) e Wp and, clearly, x + e Xng(x) e 3(E + eWp). Therefore
dist(x, d(E + eW)) < [x - (x + e Aag(x))|| = e (Xag(X)). ne(x)

4, (ii) and (iii) are equivalent even when the sequence {Eg} is not uniformly bounded.

10



< e max{y. ng(x) |y € Wr}
and so, by Proposition 3.6 (iii)
LE *(ng(x)) dHy_;(x) = X max y.ng(x) dHy_;(x)

E ye Wr

J' dist(x, d(E + €W ))
OE

> lim sup dHy_; (%)

€—>0 €

meas(E + eW ) — meas(E)
2 lim inf .
e—>0 €

Proof of Theorem 4.3. (i) Let E be a C*°, open, bounded domain of RN such that
meas(E) = meas(Wr). Then by Lemma 4.8 and by the Brunn - Minkowski inequality (see

Theorem 4.2) we have
LE Tng(x)) dHy () 2 LE P (ng(x)) dHy ()

meas(E + eWp) — meas(E)

2 lim inf
€0 €
o (meas(E)'"™ +¢ meas(Wr Y"MYN _ meas(E)
2 lim inf .
€0 €

Therefore, as meas(E) = meas(Wr), by the generalized Green-Gauss Theorem (2.5) and by

Proposition 3.6 (iv) we conclude that
1+e) -1

J;  Tap() dly 4(6) > meas(Wr) im <2

=N meas(Wy) =J divx dx =J
wI‘

x.ny (x) dHy_;(x)
O*W . r

=L*wr Tlny, (x)) dHy;(0).

(i) Let E be a bounded set of RN with finite perimeter and such that meas(E) = meas(Wr). By
Lemma 2.9 there exists a sequence of C, open, bounded sets E,C RN and R > 0 such that

Ep, E C B(O,R) for alln € IN >0, meas(E,) = meas(E) = meas(Wr)
and

Xg, = Xg inLYQ) and Per(E,) - Per(E).
Thus, by Proposition 4.7 and by (i) we deduce that

[ Tt iy 00= tim [ oo 600 dbi 0

3E n— e JE n

> J;*wr Ty (x)) dHy_; ().

(iii) Suppose that E is an unbounded set of finite perimeter with meas(E) = meas(Wr). Define f(R)
:= HN.1(EN0B(0,R)). Then, by Proposition 2.6 and as

11



meas(E) =j:“f(R) dR < +~,

thereexists a sequence Rn—> +°° such that

f(Rn) -» 0and En := EnB(O,R,) is a set of finite perimeter. (4.9
Using part (i), the argument of Corollary 4.4, and (4.1)
fr(ng(x) dHAO02 f Hnc (x)) dHAOO - f 1{ .£-Wy_1(X)
J3E JFE, A JaBOR)NE  \*nJ
= f T(nyw 00) dH"OO - af(Ry)
=Ay Lw r(nwr(X))dHn_1(x)-af (Ry), (4.10)

r
where meas(E,) = A, meas(Wr)- As meas meas(E,) -> meas(E) = meas(Wr), we have 7" -> 1
and so (4.9) and (4.10) yield
f Tme(x)) dH Ax) = f T(nyw (X)) dH"X).
Na* E Ja* w, '

Next, we obtain an apriori estimate on the diameter of a set E satisfying the following
connection condition: for all £e S*-! thereexist <> < so(E.£) < si(E,£) < +00 such that GE,~(S) =
Ofor all s<so(E,"), GE,A(S) = 1forall s<Si(E"*) and GE,~ isstrictly increasing in theinterval
(so(EE), si(EE)), where

m xe ElX.%<s>

Gef(s) = e y ol

o] (4.12)

Proposition 4.12.

There exist continuous functions ci:[0, +¢&) ->[0, +<») and C2:[0, +00) —>{0, 43 with
ci(0) = O, ci isdecreasing, such that if E C [R" is a measurable set of finite perimeter with meas(E)
= meas(Wp) satisfying (4.11) and if

de*wr T(w(9) dHn 09 < £ T(NeG)) dbn () < (L +1Y) f - r(Ny(x)) dHAMX)  (4.13)

then there exists ae [R" such that meas(E \ B(a, C2(ri))) < e1(n).

Proof, (i) Suppose that E is open, dE is smooth, meas(E) = meas(Wp) and E satisfies
(4.11). Consider aunit vector e € [R" and for simplicity of notation set

f(t) := meas(E(t)) = Gg,e(t) meas(E) where E(t) :={x e E | x.e<t}.
Clearly 0 <f(t) < N ::m\eas(Wr), andf(t) =Hy_i({x e E|x.e=1t}). As
1/N

E(t) J =W,

meas

U
If(0

12



changing variables and by Theorem 4.3 we have
N-1°
fO\N
Png) dii =(S2) ™ [,y T dry
J-a*E(t) B)7 TEN-L K a*(('f(Lt)) E(t)) N-1

N-1

()7 L, vy

In a similar way, with E(t)' :={x € E | x.e 2t} = E\E(%),
w—£(0) (N-1/N
Pogg) a2 (E2X2) [ vy dety.
L*E(o, E(t) N-1 m W, w,.) N-1

Adding up these two inequalities yields

L*E Tng) dHy_; +2 j{ LN
: N1 N1
fO\ N p—f)\ N }
2 [ rewpan| (57) "+ (5572) " L
and so, by (4.13)
g'(t) 2 C* [g()N-DN 4 (1-g(t))N-I/N (1 + 1)] (4.14)

where g(t) := Eg—) and C* := 21":e)u
for 0 <s <1 and let 0 < s(M) < 1/2 be such that F(s) > 0 if and only if s(m) <s <1 -s(M). Itis
clear that

sM)—>0asmn — 0+ (4.15)
Let t; = ti(E, n, €),i =1, 2, be such that g(t;) = s(n) and g(tz) = 1 - s(n). We obtain

meas(E\ {x € RN| t; <x.e <t}) = meas(E) - [f(tp) - f(t;)]

(N-1)/N —(141)

_[ (ny,) dHy_y. Let F(s) := sOUN L (1-5)
WL

=} - 1 - 2s(m)] = 2p s(n). (4.16)
On the other hand, by (4.14)
(1)
C*(tz - tl) < g dt
t, g(t)(N—l)/N +(1- g(t))(N-l)/N —(1+7)

172 ds

- 2.[ (N-1/N (N-1/N : (4.17)
s NN (1 —¢) -(1+m)

Finally, let {ej, €2, ..., en} be the canonical orthonormal basis of RN and consider a € RN and
R>0 large enough so that )

B@,R) D{xe RN|H(E, 1, e) <xe<tr(E, M, €),i=1,.., N}L
By (4.17) we can obtain R as a continuous function C(1), independent of the set E, and by (4.16)

we deduce that
meas(E \ B(a, R)) <meas(E\{x e RN | ti(n, ¢) <x.;<t(,e;),i=1,..,N})
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N
< Z meas(E\ {x e RN | t;(m, €) <x.e; <t,(M, e)})

i=1
<2Nps(m) =: ci(n)

which, together with (4.15) concludes the proof.

(ii) Suppose that E C RNis a bounded, measurable set of finite perimeter with meas(E) =
meas(Wr), satisfying (4.11). If c;(n) = meas(E) then choose any a € RN. Assume that ¢;(1) <
meas(E). By Lemma 2.9 and Proposition 4.7 there exists a sequence of smooth, open, bounded
sets E, with meas(E, ) = meas(Wr), such that E;, E C B(0, R) for some R > 0, meas(E,\E) +
meas(E\Ep) — 0 and

[, T amig 0= 1m_ [ 1 T2 0 6,0,

Moreover, it follows from the construction of the sets E; that they verify the condition (4.11) (see
Appendix). Let ' > N be such that c;(n') < meas(E). For n large enough we have (4.13) for E,
and 1’ and so, by (i) there exist a, such that

meas(Ep \ B(an, C2(n")) < c1(M). (4.18)
As E;C B(0, R), it follows that B(O,R) N B(a,, Co(M")) # D and so |jay]| £ R+ Co(n) £C =
C(M). Thus, there exists a subsequence of {a,}, {a'y} such that a}; —» a(n') with a(n") € B(0, R
+ C2(m")) and by (4.18)

meas(E \ B(a(n'), C2(n"))) < c1(M).
Letting ' — N* and due to the continuity of c; and C;, we have that for some subsequence
{a(m"}, a(M’) — a with meas(E \ B(a, Co(n))) <ci(M).
(iii) Assume that E C RN is an unbounded, measurable set of finite perimeter with meas(E) =
meas(Wp), satisfying (4.11). As in (ii), if ¢;(n) = meas(E) then choose any a € RN. Suppose that
c1(M) < meas(E) and as in the proof of Theorem 4.3 (iii), let E, := E N B(0O,Ry), where Ry — +o0
and
Hn.1(E NdB(0,R,)) — 0. By (4.1) and Theorem 4.6 we have

J [**(ng(x)) dHy_,(0) € lim j T**(ng (x)) dHy_;(x)
2*E n-> e JyE, n

sj [**(ng(x)) dHy_,(0)+ @ lim Hy_(ENB(O,R,)
IE n — oo
and so,

ja ,, DPH(a00) dHy 160 = Jim T**(ng (x)) dHy_(x).

0> e JRE,

Setting El; = E,/A,, where meas(Ep) = A,N meas(Wr), then A, — 1 and

14



Jfim J;*E I**(ng (x)) dHy_; () = % (ng (x)) dHyy_; (%)

—5 00 XN— O*E,
- j **(ng(x)) dHy_,(0).
0*E

By Proposition 3.6 (iv) and by Theorem 4.3, (4.13) still holds for E, 1 and I'**. Hence, and as in
(ii), for all ' > M such that ¢;(M") < meas(E) there exist a, such that

meas(E; \ B(ap, C2(M"))) < ¢1(M') for all n large enough.
It remains to show that ||ay|| is bounded independently of M. Indeed, let c1(n’) <k, C2(M") <K
and choose R > 0 such that

meas(E \ B(0, R)) < meas(E) - k. (4.19)
We claim that ||ay|| £R + K for n large enough. Indeed, if for some subsequence ||a,|| > R + K then
B(an, C2(")) N B0, R) = D and so

meas(E \ B(0, R)) = lim meas(E, \ B(0, R)) 2 lim sup meas(E, N B(ap, Co(")) =

= meas(E) - liminf meas(E, \ B(a,, C2(M")) 2 meas(E) - k

which contradicts (4.19).

S. THE WULFF THEOREM: UNIQUENESS.

For completeness, we prove uniqueness for the Wulff Theorem, i. e. we show that the
Wulff set or translations of it are the only solutions of the geometric variational problem
(P) minimize

- I‘(nE(x)) ‘ dHN_l(X)

among all measurable sets E C RN of finite perimeter with meas(E) = meas(Wr). DINGHAS [14]
obtained uniqueness within the class of polehedra and TAYLOR [36] extended this result using
geometrical arguments. DACOROGNA & PFISTER [12] provided a proof that is entirely
analytical but it cannot be extended to higher dimensions. Moreover, uniqueness is obtained for a
class strictly contained in the one considered in this work. The proof presented here is due to
FONSECA & MULLER [20] and, ais in TAYLOR [36] is based on the Brunn-Minkowski
Theorem and on the existence of an inverse for the Radon transform (see GEL'FAND, GRAEV &
VILENKIN [21]).

Proposition 5.1.

LetE C RN be a measurable set of finite perimeter. If E is a solution of (P) then E = E; U
Ej where E1NE; = &, meas(Ep) = 0, Hy.1(0*E3) = 0, E; is bounded and satisfies (4.11).

We divide the proof of this proposition into two lemmas.
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Lemma 5.2.
If E is asolution of (P) then E = Ei u E; where EinE, = 0, meas(E,) = 0, Hy_i(9*E,) =
0 and Ei satisfies (4.11).

Proof, If E verifies (4.11) set Ei = E and E, = 0. Otherwise E admits a partition E = Ei
u E,, where EinE, = 0 and Hy-i(9*Ein3*E,) = 0. We claim that either meas(Ei) = 0 or
meas(E,) = 0. Indeed, if meas(Ei) = 0 meas(E) and meas(E,) = (1 - 0) meas(E) for some 0 e (O,
then

fr(ne(®) dHNCY) = r(ne(x)) dHACX) + f IWGO) dHACK)  (5.3)

and asE is asolution of (P), by Corol Iary 4.4 we have

f Hny GO dHy !> f w T()dH"+ * T(n) dHy!

Jarw, W VT Jar (e Vo Jard-e M)
—1WN {N-1¥N
=(9 +(1-9) 1 Iny (x)) dHy_;(x)
“atWp '

which isimpossible since 0~ 0,1. Therefore, we may suppose that meas(E,) = 0 and so, by (5.3)
and (4.1) we conclude that Hy_i(3*E,) = 0.

Next, we show that E is bounded, up to a set of measure zero.

Lemma 5.4.
If E is a solution of (P) then meas (E\ B(0, R)) = 0 for R sufficiently large.

Proof. Setting Ti = 1/n on (4.13), by Proposition 4.12 it follows that

meas(E \ B(a,, Cx(I/n)) -> 0. (5.5)
for some bounded sequence { a,} . Indeed, let Ro be such that
meas(E \ B(0, Ro)) < meas(E)/2 (5.6)

and assume that, for some subsequence, ||a,|| > Ro + K, where K is an upper bound for { C,(I/n)}.
Then
meas(E \ B(0, R,)) " lim sup meas(E n B(a,, C,(I/n)) =
=meas(E) - liminf meas(E\ B(a,, C,(I/n)) = meas(E),
contradicting (5.6). Therefore, by (5.5) we have that for someae RN meas(E \ B(a, K)) = 0.

Proof of Proposition 5.1. Assume that E is a solution of (P). Then, by Lemmas 5.2

and 5.4 we can suppose that E satisfies (4.11) and meas(E \ B(0, R)) = 0 for R large enough.
Therefore, given £ e S™ by the Fleming-Rishel formula (2.7) we have
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=00

meas(E) =J Hy_i{{x e E | x.£ = s» ds=meas(E n B(OR))

=J " HN_]_({ XeElX.$ = S})dS

which implies that HN-1({X € E | x.£=¢5}) =0fora e. || > R. Choose Ro > R such that

Hn-1({ xeE|x.ei = £Ro0})=0 (5.7)
where {ei,..., ¢} is the canonical basis of R". Then we can write E as adigjoint union of Ei and
E2, where Ei := E n [-Ro, Ro]" is bounded and connected and meas(E2) = 0. Moreover, by (5.7)
it follows that Hy_i(3*Ei n d*E2) = 0 and so

fTeX) dHAX) = r(ne®)) dHAX) + f - IW00) dH”X).

Since meas(Ei) = meas(E) and E is asolution of (P), by (4.1) we conclude that HN-1(9*E2) =

Let A C IR be abounded, connected set and let £ e S*~'. Asin (4.11) we define
meas({x e A | x.A<s}) .. Hya({xe A[xE=s

GAJ&> ~ and &&5) = meas(A)
meas(A)

Lemma 5,8.
If A and B are strongly Lipschitz, bounded sets satisfying (4.11) and if meas(A) = meas(B)
thenforal e>0

meas(A + €B) 2 meas(A) rr U f/\ r rr 'YAﬁ(t))

where Ta£(t) := 8aE(G, A(D)).

Proof. By the Fleming-Rishel formula (2.7) we have
H
Gag®)=[_gagtah

and so, 0 = GaE < 1 and G, 1(s) = ga,”(s). Let s0 :=sup {s| Ga(s) = O} and si := sup {s |
GA~(S) = 1}. As A is bounded, open and connected, -°0 < 0 < s\ < e and gANS > 0in (o,
si). Therefore, Go£ admits aninverse Ga” : (0, 1) -> (0, si) and, setting YA/\t) := gA"CG"\,(t))
we obtain ”
G;fﬁ (1) = 1
d T v ®
We can assume, without loss of generality, that \ = e and writex = (xi, x%). Let
Ai={x*e RNi| (x,X)e A andx, = GACh}, forte (0, 1).

(5.9
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As |
{G"\(t) + GACO} X (A+BO C A+B,
setting z(t) := GA(t) + Ggt) by (5.9) we have

fZ(1)
meas(A +B)= | Hed#c+) +B-Lnds
1%0)

1
=J; Hy_(A; + B z'(t) dt

al A

1 1
= | "N-I<*t+8t) f—TT +—FT 1 dt.

By the Brunn-Minkowski Theorem (see Theorem 4.2)
Ha_i(A¢ + BON-' > Hy.l(A)N-i + Hy-i(B)N-i
= (YAE(t) messCA))"*" + (vBrco meas(B))™"

andso
\

meas(A + B)=f [yi"*-D(t)meas(A) + .- (t)meas(B)]™ ( r%f +,—" J di(5.10)

Itis easy to verify that
OEB/N9) = gEB E(FE)E, G:B.,A(S) = GB,A(S/E) andl YeB (1) = ¥B,£(t)/E
which, together with (5.10) imply

1 PRI LY T4 1 = hY
J H Ill mmon 1I nn + n ldt
+ — N + N AVAY N N N
meeqA + eB) meae(Azu[ i A it) +e/T TA\ Ypel) )
I .
N-1

1 N-T
= meas(A) f (14-8(—7&&—(2) ) [1+87L§(t)—)dt
1o Yae®) g £(t)

Theorem 5.11.
If Eisasolution of (P) then || %e ¢ - XwdiL* =°»where

-

|
FTTTI([ xdx-rxdxl
meas(W ;) JIw, J )

C.=

Proof. Let E be asolution of (P) and consider the translated sets E* := E - aand W := W -
b, where '

a:= IE[/\ ] - Oo—yls\f Xdx _
meas VJJJE xdxandb:= measz )W, (512)

By 'Proposition 5.1 we can suppose that E is bounded and satisfies (4.11). Hence, by Lemma 2.9
there exists a sequence of smooth, open, bounded sets E,C IR" verifying (4.11) such that E,, E'
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C B(0, R) for some R > 0, meas(E,) = meas(E'), Per(E,) -» Per(E') and meas(E,\E') +

meas(E'\E,,) -» 0. By Lemma 4.8 and Lemma 5.8 we have
( ¢ . o meas(E,, + eW) - meas(W)
J2tE, rlE,"(x)) dHy_i(x) = lim inf -

e>0 .

c .
L \N-1 ®
1+¢ _’!_w'i(t)_ N_l} (1+a Yok J-l
ot e, & Ywe (O
> meas(W,) lim inf

£+ 0. Jp £

B 1 ‘Y\V"E (t) 14(N-1) 'YEng(t)
= mcas(Wr) J; [(N_l)['YEnlg(t)) + yw.4(t) dt.

As gEq,E(s) = 0if [ > R, setting t = GEn/\(9 we obtain

dt

r*E T(ne () dHy 100 2

Ja
R 1_
(Ge eGNN\NC (s)
{(N_I.)(YW"E Ey§ J” ] 88 &

>meas(W,) _JE; Py + Yw£(Gg_z(s))

On the other hand, as measEN\E') + meas(E'\E,,) -> 0 we have |gE4 - gEMIL" -~ 0 and JiGgask -
Getlle —> 0 and so, Proposition 4.7, (5.13) and Fatou's L emma we conclude that

f r(nE.(X))dHN_l(X)Z

] Qe;" (s)ds. (5.13)

( Yw,e(Gg £(s)) NL-l g e(s)

T ee® J ’ “““‘vw-.gceg-.ac'sﬁ] %l (9 05

AsE' satisfies (4.11), Ge-4 is drictly increasing in (so(E',£), si(e',*)) C (-R, R) and so, by the
change of variables formula (2.8), by Theorem 4.3 and by Propostion 3.6 (iv) we have

N meas(W,) :Jfa*\/\/\r(nwr (x)) dHAOO :hffwT(nE'(X)) dHAMX) =

1/(N-1)
> meas(W,) ll[(N-I) (7“’"5 (t)J fﬂ] .
Jo ‘YE',§( t) 'Yw"g(t)
However (N-I)a¥®N-1) + |/a = N and equality holds only if a= 1. Thus (5.14) implies that
Yene(f) = Yw () for aimost all t € (0, 1)
which, by (5.9) yields
CE(®) = G, A )+ C for some congtant C and for almogt all t.

> meas(W,) J RI:(N-I)

1

(5.14)

Hence
GeMs+C) =Gy. N9 for dmogtall s

which, after differentiating, implies that
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gpe(s+C) =gy (s) fora.e.se R. (5.15)
We claim that C = 0. Indeed, by (5.12) and (5.15)

tee +oo
0= .L: x.& dx = .L, s gpg(s) ds = _l‘_“ (s+C) gpe(s+C)ds

+o0 +oo
= J- sgpe(s+CO) ds+ CJ gee(s +C) ds
= J‘ x.§ dx + C meas(Wp) = C meas(Wp).

w

Thus,

gee(s) = gwe(s) fora.e.s € R and forall § e s,
and so, due to the existence of the inverse of the Radon transform (see GEL FAND, GRAEV &
VILENKIN [21]) we conclude that || X g - vaq_l = 0.

6. CHARACTERIZATION OF MINIMIZING SEQUENCES.
Consider the problem
(P) minimize

J‘ I‘(nE(x)) dI‘IN_l(X)
J*E

in @ := {E C RN | E is measurable, bounded set, Per(E) < +oo, meas(E) = meas(Wr) and E
satisfies (4.11)}3. In this section we characterize the minimizing sequences in terms of the support
of the indicator measure®. This will allow us to determine if oscillations may be present and, in
particular, we show that if the Wulff set is polyhedral then there are no oscillations’.

Proposition 6.1.
If{E.} is a minimizing sequence for (P), then there exist translations E; - a¢ such that
meas((E; - ag)\Wr) + meas(Wp\(E; - ag)) = 0.

5. By Proposition 3.6, Theorem 4.3 and Theorem 5:11 we know that the solutions of (P) are translations of the

Wulff set and are also the solutions of the relaxed problem

(P**) To minimize in Q J **(ndx)) dHy ;(x).
o*E

The class of admissible sets Q is chosen taking into account Proposition 5.1.
6, See Propositions 4.5 and 4.7.
7, Thus, if in Example 5.10 in FONSECA [19] we take E to be the Wulff set of T, where I'(n) := sup {x.n | x ¢ E},

then {E,} cannot be a minimizing sequence.
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Proof. As E, are connected, by (4.12) there exist R > 0 and bg € RN such that
meas(E, \B(bg,R)) — 0. Set

= — 2
e meas(WI-) U(E ~bJAB(O,R) xdx- -[w de) 62

Consider a subsequence of {E.}. As {c¢} is bounded, there exists a subsequence (which we still
denote by {c¢}) such that c¢ — ¢ with
meas((E; - a¢g)\B(c,R)) — 0, where ag := be + cq. (6.3)

On the other hand, by Proposition 2.6 and as {Per(E¢)} is bounded, the sequence
{XEg—aer\B(c; p)} is bounded in BV(B(c; R)), and so by Proposition 2.3 we conclude that there

is a subsequence (for convenience we use the same notation) such that

XEganB(c;R) = Xk  strongly in L, for some set K. (6.4)
By (6.3) we conclude that
XE-a, > Xk  strongly in L! (6.5)

which, together with Proposition 3.6 (iv) and Theorem 4.6 implies
D) ity 10 <lim mfj **(n,(x)) dHy_, (%)

€0 Jo*E,

< liminf I'(ng(x)) dHy_;(x)
£€-0 Yo*E,

= F = F** .
jwr (nyy, (6)) dFly_ () L (ny, (X)) dHly_ ()

Finally, by Theorem 5.11 we have meas((K + k)\Wr) + meas(WpR\(K + k)) = 0, where

=m(jwr xdx—J‘dex).

By (6.2) and (6.4) k must be zero and the result follows from 6.5.

Using the same notation as in Proposition 6.1, we characterize the indicator measure of a
minimizing sequence.

Theorem 6.6.

Let {E¢} is a minimizing sequence for (P) and let A,= li@ Te be the indicator measure
associated to E; - a;. There exists a subsequence converging weakly * in the sense of measures to
A, = 7»:°®1tw, where for ., a.e.xe RN

support AL C {y € SN1|I™**(-y) =I'(-y) = -x"y forall x'e 9*Wr such that g, (x)
and .. << dHn.1 L 0*Wr << 7... '
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Proof. By Proposition 4.5 (i) the total variation of A; is equal to Per(E¢). Thus, as
{Per(E;)} is bounded, {A.} admits a weakly * convergent subsequence (still denoted by {A.}), A,
= A= 7»:°®1c“ weakly *. Also, by Proposition 3.6 and as {E.} is a minimizing sequence for
(P) we obtain

I**(—y) dA.(x,y) = lim0 o, I'**(ng(x)) dHp_; (x)

= lim ['(ng(x)) dHy_;(x)
€ — 0 Yo*E,

- LN o1 TEY) AAG,Y)

R NXSN-I

J- RN (JSN" [T () -T**(-y) 1 d(y) ) dr_(x)=0.

Since I" = T'**, we deduce that for ., a.e.x e RN
support A” C{y € SN'1|T*¥(y) = [\(y)}. (6.7)
Let us define the nonnegative Radon measures 1 by

<N, 0>=| 000 T**(ng _, (x)) dHy_ () forall @ e Co(R™N.
OHE~a) € f

By (6.5) and by Theorem 4.6, we have
My, < liminf N with 0, (RN) = lim ng(RN)
and so
nwl_ =1lim ng.
Therefore, if @ € Co(RN) we have
JIIRN o(x) anr(x) = EH—I—PO J‘IRN ¢(x) dn(x) = eli-glo J;*(Ee—ae) o(x) F**(nge_ae(x)) dHn_1(x)

=.[u2N o) (Lm **(y) dx;()’)) dr..(x)

dny, =y, () dHy_|3*Wr= (Lm D**(=y) dAY(y) )dnw
On the other hand, by Proposition 4.5
dHy_(L0*Wr = |Iv..]l 7., and v, == V.|| nyy
and since I'** is homogeneous of degree one, we have

PHH(—v.(x)) d.(x) =**(ny (x)) dHy_[0*Wy.= ( js"" D (—y) dA(y) )dnoo(x)

or,forn, a.e.xe RN

[F*(—y_(x)) = j

SN—l

I**(—y) dAT(y). (6.8)
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Let x'e 0*Wr be such that -v.,(x) is normal to d*W at x'. By Proposition 3.5 we have x' €
O**(-v(x)) and so, for all y € SN-1 there exists 6(-y) =0 such that
* (y) = I** (-Veo(X)) + X'.(-y + Veo(X)) + O(-y). (6.9)
As A, is a probability measure and as Veo(x) is its center of mass, (6.8) and (6.9) imply that 6(-y)
=0forA; a.e.ye SNl je.
¥ (cy) =T** (-Veo(X)) + X".(-Y + Veo(X)) (6.10)
which, together with (6.7) and Proposition 3.6 (iv), yields
support A, C {y € SNl |T**(-y) = I'(-y) = -x".y forall xX'e 9*Wr such that ’rlvr(x)
Finally, by (4.1) we have Wr D B(0,a) and so, by Proposition 3.6 (iii)
I™*(n) > o for alln € SN-1
which, together with (6.8) and as A is a probability measure, implies that
[[Vooll # O for Ttoo a. €. x € RN,
From Proposition 4.5 (ii) we conclude that
oo << dHn.; L 0¥Wr << T.

Next, we provide some examples in which minimizing sequences cannot oscillate, i. e.
Xg, — Xw, strongly in L!and Per(E;) — Per(Wy). (6.11)

Proposition 6.12.

Let I'** be strictly convex except radially?, i. e. I'**(x) = I'™**(xg) + y.(x - Xo) for some y
€ dI™**(xp) if and only if x is parallel to xq. If {E.} is an uniformly bounded minimizing sequence
then (6.11) holds.

Proof. By Proposition 2.3, Proposition 3.6 (v), Theorem 4.6 and Theorem 5.11, given
any subsequence there exists a subsequence (which we still denote by {E¢}) and a translation of
Wr (without loss of generality we may assume that it is Wr) such that

XEe - pr strongly in Ll
By Proposition 4.7 and as A is a probability measure, it suffices to show that supp A cannot
have two distinct points for 7. a. e. x. From (6.10) we have that if y, y' € support l:, then

¥ (y) =T* (-Voo(X)) + X'.(-Y + Voo(X))
which implies that y is parallel to Voo(x) and, in a similar way, y' is parallel to Veo(x). As supp A,
C SN-1, we conclude that either y = y' or y = -y'. We claim that y = y'. Indeed, if y' = -y, by
Theorem 6.6 we have

8. This is the case when I'** is identically equal to 1. Then I'** is called the area integrand and W= B(0; 1).
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T () =-xy =xy=-T* (y)
contradicting (4.1).

Proposition 6.13.
If the Wulff set is polyhedral and if {Eg} is an uniformly bounded minimizing sequence
then (6.11) holds.

Proof. As in the proof of Proposition 6.12, it suffices to show that supp A; reduces to a
point for %<*> a. e. X. Suppose that Wp hasfacesFi, ..., F, with outward unit normal respectively
ni,..., n,. By Theorem 6.6 and as 7@ « CIHN-1 L 3*Wp « TGn we must prove that if x e Fi then
supp X = {-ni}. Indeed, ify e supp A-theny e S"* and by Theorem 6.6 we have

T** («y) =Xy foralx‘e Fi -

i. e X'y is constant on Fi which implies thaty = + n” If y = ni then by Proposition 3.6 (iv)

T** (-y) =-xjy =F** (O

which isimpossible since F** is strictly positive on the unit sphere.

Remark 6.14.

The cases presented on the previous two propositions are actually distinct. In fact, if T(x) =
F**(x) = |[x|| satisfies the hypotheses of Proposition 6.12 although Wp = B(O,1) is not a
polyhedron. Conversely, if in [RZ we consider the square C := { (xi, X2) | [xi| <1 and X2 < 1} then
by Proposition 3.6 (iii)

F**(a, b) = max {axi + bx,1 (xp xz) € C} =4 + |b|
which is not strictly convex.

7. A VARIATIONAL PROBLEMS INVOLVING BULK AND
INTERFACIAL ENERGIES.

The total energy for materials that can change phase involves bulk and interfacial
contributions (see FONSECA [17], [18], GURTIN [23], [24], KINDERLEHRER & VERGARA-
CAFFARELLI [26]). Recently, variational problems for functional of this type have been
investigated by BOUCHITTE [8] and OWEN & STERNBERG [30] who, using singular
perturbations and the F - convergence approach, show that the Wulff set is the selected shape for a
scalar-valued two-phases transition problem with infinitely many solutions. Recently, this result
was generalized to the vector-valued case by AMBROSIO, MORTOLA & TORTORELLI [4] and
AVILHS & GIGA [5]. Herewe will study amodel where the Wulff set appears as the minimizing
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configuration. Associated to an elastic body immersed on a melt with zero bulk energy we consider
the energy

Ew(u) =3 W(VU(X) dx + iQu(Q) (7.1)

where Q, C IR is the reference configuration, u : £1 —» K" is adeformation of the solid, W :
M\S(NXN,+) —> [0, +€0) is the stored energy density, M"*"N denotes the set of all NxN real matrices,
M = {Fe MMM | det F>0}, and I(.) isanonlocal surface energy given by

IOA) :=inflf HnAy))dH,g;i‘(y) | Risarotationin KN1. (7.2

lya(RA) J

As before, T: SVt —> [a, +*) is continuous, a> 0, and nA(y) denotes the outward unit normal to
3Aaty.

We will prove that (7.1) admits a minimizer on a suitable class of admissible deformations
Q. Moreover, if ug is aminimizer for EqwC) then the deformed configurations ng(Q) approach a set
C geometrically similar to the Wulff set Wp, i. e. C = R(Wp - @) for somerotation R and some ae

[RY. We assume that Q, is an open bounded strongly Lipschitz domain and we define
Q :={ue W"(Q; IRY) | det Vu>0 ae in Q, Per (u(Q)) <+0o, | 4(x) dx = m and

J;t detVu(x) dx.< meas u(Q) = meas(Wréll

where me DR" is fixed and p > N. It turns out that functions of Q are almost everywhere
invertible’. Indeed,

Proposition 7.3 ([6], [27]).
Let Q C [R" be an open bounded strongly Lipschitz domain, letp >N andletue W~ Q; R") be
such that det Vu >0 a. e. Then
(1) u maps sets of measure zero into sets of measure zero;
(i) u maps measurable sets to measurabl e sets;
(iii) meas u(Q) = meas u(U);
(iv) 1 detVu(x)dx=f cad{u~'(y)} dy

whenever one of the two integrals exists;
(v) T f(y) caxdinhiy)} dy = f f(u(x)) detVu(x) dx
MA) JA

for al A measurable set and whenever one of the two integrals exists.

® For results concerning invertibility of Sobolev functions, we refer the reader to BALL [6] and MARCUS &
MIZEL [27].
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Thus, ifue WA Q; [RY) andif detVu>0 a. e. then

— nl — e
meas(u(Q)) = ,{Aa) dy ﬁ,l\.‘l;la) CarO[{ u"(y)} dy = Jla det Vu(x) dx
and so, if ue Q then
meas(W,) = meas(u(Q)) = f det Vu(x) dx (7.4)
Ja
and
uisoneto-one a e inCl, i. e. card{u’(y)}= 1 for amost al y e u(Q). (7.5)

This injectivity condition was used first by CIARLET & NECAS [9] (see also CIARLET [10Q]).

Definition 7.6. ([7])
W : ME‘XN—>>EC[,Ot<bs§>1) is said to be polyconvex ' if there exists a convex function G :
MNN x MNxN, (0, ,00) -> |R such that W(F) = G(F, adj F, detF) foral Fe M*** 1.

The following lower semicontinuity result is well known (see BALL [7]).

Theorem 7.7.

Let Q C (R" be an open bounded strongly Lipschitz domain, let p > N and let UJe
WLP(Q:IRY). If W is apolyconvex function and if Uj -* uweakly in W-P(Q;IR"Y) then

detvui-* detVu weakly inLP™(Q), adj vui-» adj Vu weakly inI>N-i(Q. M *N)

and
W)X imint f W(Vg(x)dx.
Ja j->~ JQ
Assume that

(H) T(n) =r**(n) forall n€ S*":

NxN
(H2) the bulk energy density W : M, ~> [0, #O0) is polyconvex and satisfies the growth
condition W(F) > C, |FP + C, for some C,y C, e IR with C, > 0. Moreover, W(F) -> +00 if det
F-»0+*2.

Theorem 7.8.
Under the hypotheses (HI) and (H2) the functiona (7.1) admits aminimizer on Q.

10 For adetailed study of such functionswerefer to BALL [7] and DACOROGNA [114. Seealso MORREY [29].
11 Here adjF denotes the matrix of cofactors of F. If F is invertible then P* :@ "9“-

. This condition is taken in order to prevent interpenetration of matter and change in orientation
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Before proving this result, we study some properties of the surface energy I(.).

Proposition 7.9.

LetE C RN be a bounded set of finite perimeter with meas(E) = meas(Wr). Then
(i) (Frame indifference) I(dE) = I(Q(RE)) for all R € SON) :={R e M{:IXN| RTR=1};
(i1) There exists Rg € SO(N) such that

I(0E) := J;*(ROE) Tog g (y)) dHy_1();

(iii) I(0E) = I(0Wr) and equality holds if and only if meas(E \ R(Wr - a)) + meas(R(Wr - a)\ E) =0
for some rotation R and some a € RN;
(iv) I(dE) = . Per(E).

Proof. (i) Follows from the fact that SO(N) = SO(N)R forall R € SO(N ).
(i) Let {R;} be a minimizing sequence for I(dE). There exists a subsequence R such that R — Ry
€ SO(N) and so, by (H1) and Theorem 4.6

| S I(ng g(y)) dHy_(y) <lim inf‘L*(R;E) F(anfE(y)) dHy_;(y).

(iii) As meas(RE) = meas(E) = meas(Wr) for all R € SO(N), we conclude that
W r(nwr(x)) dHN—l(x) = I(aWr-(x)) < I(aE)
r

(iv) Given Re SON) and as I" 2 o on SN-1
) I(ngg(y)) dHn_;(y) = 0. Per(RE) = o Per(E)

Jo*(RE

and so I(dE) = o Per(E).

Proof of Theorem 7.8. Let {u;}be a minimizing sequence in Q. Due to the growth
condition of hypothesis (H2) and as the average of u; is always equal to m, we have that {u;} is
bounded in WLP(Q; RN). By Theorem 7.7 there exists a subsequence (still denoted by {u;}) and
there exists u € WLP(Q; RN) such that

u; — u weakly in WLP(Q; RN) and strongly in L*°(Q; RN), (7.10);
det Vu; — det Vu weakly in LPN(Q), (7.10),
and
f W(Vu(0) dx < liminf | W(Vu(x)) dx. (7.10)3
o) ine JO
From (7.10); it follows that
det Vu>0 a.e. and JQ det Vu(x) dx =lim J.Q det Vu,(x) dx, (7.11)
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which, together with (H2) and (7.10)3 implies that
detVu>0 a.e.in Q. (7.12)
Also, as meas(u;(2)) = meas(Wr), by Proposition 7.9 (iv) we deduce that the sequence of the

characteristic functions of the sets u;(Q2) is bounded in BV. As u is continuous, u({2) is a bounded
set and so, since u; — u strongly in L*°, we can find an open bounded smooth domain U such

that u;(€2), u(QQ) C CU for all i. Therefore
sup Xy, @BV =Sup II Xy, @flBvew) < +e°
and by (2.2) and Proposition 2.3 there exists a subsequence (still denoted by {u;}) such that
Xu( —Xa strongly in L' and Per(A) < lim inf Per(u;(Q)) < +ee. (7.13)
We claim that!3 (see CIARLET & NECAS [9])
L det Vu(x) dx < meas(u(Q)). (7.14)

Indeed, as u(QY) is compact, given & > O there exists an open set Vg such that u(Q0) C Vs and
meas(Vs\u(Q))) < 8. As y; converges uniformly to u, for i large enough we have u;(Q) C Vgand
so by (7.4) and (7.10); we deduce that

J.Q det Vu(x) dx =1lim jﬂ det Vu,(x) dx = lim meas(u;(Q))

< meas(Vg) < meas(u(Q2)) + 8.
Letting 8 — 0 we obtain (7.14) which, together (7.12), (7.4) and (7.5) implies that u is one-to-one
a.e. in Q. Therefore, by Proposition 7.3 (v) if ¢ € C(RN) then

I ¢(y) dy =j ¢(u(x)) det Vu(x) dx
u(Q) Q

=jn [0(1;%)) — 9(u(x))] det Vuy(x) dx + IQ¢(u(x)) [det Vuy(x) — det Vu(x)] dx

(y) dy. (7.15)
On the other hand, by (7.10);,,
Bim J' @) [det Vu,(x) — det Vu(x)] dx = 0
i Jo
and
lim | J;I [p(u;(x)) — p(u(x)] det Vuy(x) dx | < lim [ldet Vgl pN  [[p(uy) — @(u)]|p e
< Const. lim |j@(u;) — @(u)||p #e-N

= 0.
Hence, by (7.15) we conclude that

13 This argument is used in CIARLET & NECAS [9].
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Xy, (n) ~* Xuo) weakly * in the sense of measures

which, together with (7.13), (7.4) and (7.11) implies that
Xui (@ -» Xu@Q strongly inL*, Per (u(Q)) <-H* and meas(u(Q)) =

= meas(W,) = f det Vu(x) dx. (7.16)

Finaly, ueQ and by (7.10)3 it remains to show that
[(3u(Q)) < liminf 1(3ui(Q)).
Consider a subsequence of {ui} (still denoted by {ui}) and by Proposition 7.9 (ii) for each i
choose Ri G SO(N) such that
I(Bu—(Q))=j r(Nruto) (X)) dHy_1(X).
i ey (MR () dH_1(9
There exists a subsequence (still denoted by {Ri}) such that Ri —> Ri G SO(N) and so, by (7.16)

and Theorem 4.6 we-have _
l0U(Q)) < f T(NRygiy(x)) AHNMOO <

< liminfJA iuim (X)) dHNX(X) = liminf I(3u(Q)).
mmJ(RNQ» r(Nrivigny (X)) dHNX(X) = liminf IQu(Q))

Now suppose that
(H3) Cl is an open, bounded, strongly Lipschitz subset of IRM diffeomorphic to the unit ball
B(0,1), i. e there exists aLipschitz function h : Q, -» B(0,l) such that h is one-to one, surjective
and detVh(x) >9>0a. e xG Q.

Consider the family of perturbed problems
(Pg) minimizein Q

Ee(u) :=ef W(Vu(x)) dx +1QU(Q)).

Theorem 7.17.

If (H2) and (H3) hold and if ue is a solution for (P¢) then there exists a subsequence { u}
such that u* -* uweskly in W~ Q; IRY) and meas(ur(Q)\u(Q))+meas(u(Q)\ur(Q)) -> 0, where
u(€2) = RWp+ afor somerotation R and someaG IR",

The proof of this result relies on the fact that we can find uo G Q such that detVuo is

bounded away from zero and uo(Q) is atrandation of the Wulff set. We construct this deformation
using the Minkowski functional associated to Wp.
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Definition 7.18.
Let C be a bounded, convex subset of RN such that O € int C. The Minkowski functional
Hc of C is defined by pe(x) := inf {t > 0| x € tC}.

Proposition 7.19.
(1) 0 < pe(x) < +eo and pe(x) = 0 if and only if x = 0;
(i) pe(tx) = tue(x) for t 2 0;
(i) intC = {x € RN pc(x) <1} and C = {x € RN pe(x) <1}.
(iv) There exists ¢ > 0 such that ¢ ||x|] < pe(x) < ||x]|/o for all x and |pc(x) - Le(¥)| < ||x - yll/o for
all x, y.

Proof. The proofs of parts (i), (ii) and (iii) can be found in RUDIN [34]. We prove (iv).
Let 6 > 0 be such that B(0, ) € C C B(0, 1/6) . We claim that pc is a Lipschitz function,
precisely

Inc(x) - Le®)| < lIx - yll/o, for all x, y. (7.20)

Indeed, if y € tC for t > 0, then

X o(x—y)

b
=1-9L+7t—2"
e T

t+—|x—
5 IIx = yli
where

[Ix —yll
0= ————
ot+|x —yll

As C is convex, we conclude that
X
e C
t+ —|x—
Slx =yl

e (0, 1).

and so Hc(x) <t + ||x - y||//o. Letting t — pc(y)t we obtain (7.20), and setting y = 0 in (7.20)
yields pe(x) < ||x]l/o. On the other hand, if x € tC then ||x|| < t/6 and so o |[|x|| < pe(x).

Define
M— x ifx#0
pe(x)
Fo(x) =
0 if x=0.
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Proposition 7.21.

Fcis a one-to-one Lipschitz function that maps B(0,1) onto intC and Fc(dB(0,1)) = oC.
Moreover detVFc(x) >oNa.e. x € Q.

Proof. We prove that Fc is injective. If Fo(x) = Fco(x") then either x = x'= 0 or x = Ax'
for some A > 0. By Proposition 7.19 (ii) we have
Al X Ax' = It
Bt © T pclx) pex")
and so A = 1. As pc(Fce(x)) = ||x||, we conclude that Fc(B(0,1)) C int C and Fc(dB(0,1)) CoC.
Conversely, if x € int C\ {0} then, by Proposition 7.19 (iii) pc(x) < 1 and

Ho(x)
x= FC(W x) € Fc(B(0,1)).

Thus Fc(B(0,1)) = int C and similarly, dC = Fc(dB(0,1)). We show that

[IFe(x) - Fell £ o1+ 63) [|x - y|| for all x, y. (7.22)
If x = 0 or y = O then (7.22) follows from Proposition 7.19 (iv). Suppose that x # 0 and y # 0.
Then, by Proposition 7.19 (iii)

IFcG) = Fe@ll < NIl - llylD ()u Iyl uc(x) uc(y)u
< Illxu—llylll LEe®) x Y

o Me® e

<2||x i, L, x(lic(y) 1)"

()
TR0
2 1
<(3+ ;3-) Ix =l

As ¢ is a homogeneous of gegree one Lipschitz function,
Vie(x) . x = pe(x) for almost all x
which, together with Proposition 7.19 (iii) implies that

det wc(x)=dct[ LTI ®( x IIXIIVucix))
() e )

=det{ "’;") 1 +x®( xz - VuC(X)H}
Hclx Ix® pet)
fixj \N x  Vae®)
=[] |1+x. -
(%(X))N[ . (uxn2 He(x) )]
(I
- (uc(x)) 20"
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Proposition 7.23.
Under the hypothesis (H3) there exists ahomeomorphism g : Q -»int Wp such that g isa
Lipschitz function and det Vg is bounded away from zero.

Proof. By Proposition 3.6 the Wulff set is convex, bounded and it contains a
neighborhood of the origin. Therefore, if we set C : = Wpand g := Fc ° h then g is a Lipschitz
diffeomorphism of Q, into int Wp and det Vg 2a0 a. e. x e £1.

Proof of Theorem 7.17. Let g be as in Proposition 7.23 and define
Uo(X) = g(X) +—F-rr Lo 1 goo ax.
) meas(Q)  meas(Q) J*
By Proposition 7.3 (iv) uo e Q and since |Vuoll~ " M for some M > 0 and detVuo is bounded
away from zero, from (H2) we conclude that
Jda W(Vug(x))dx<+oo0.
Suppose that u; is asolution for (P¢). Then

Ee(ug) = e\{n W(Vug(x))dx + 10ug(Q)) <Eg(uo) = Gj.n W(Vu,(x)) dx +1QW,).

and so, by Proposition 7.9 (iii) we have for sufficiently small e
f W(Vug(x)) dx < f W(Vue(x)) dx and | @Qug(Q)) < ef W(Vu(x)) dx + IOW,).

Thus, as in the proof of Theorcm 7.8, there exists a subsequence {u*} such that u™ -* u weakly
in WA IRY and strongly in L°°(£2; IRY), meas(ug(£2)\u(Q)) + messCuCXoqCQ)) —> 0,
Per(u(£2)) < e and meas(u(fli)) = meas(Wp). It remains to show that, up to a set of measure zero,
Ru(£2) is atranslation of the Wulff set for some rotation R. By Proposition 7.9 (ii), for each T|
there exists R, e SO(N) such that

1@y () = J;‘(Rﬁm Tag g, (c0(x)) dHiy_1 )

and so, with (for a subsequence) R*-* R e SO(N), by Proposition 3.6 (v), Theorem 4.6 and
Proposition 7.9 (iii) we have

P**(ng () dHy. (x) < I;“l,lgf [**(ng_y @)(x)) dHy_1(x)

-L*(xu(m) 3°(R, u, ()

Squm_)igf lou~£)) = 10W,)
- * % AN
Fi, T (000)) A7),

Thereforc, by Theorem 5.11 we conclude that u(Q) = RWp + a up to a set of measure zero.
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APPENDI X.
Here we prove Lemma 2.9. We recall the following regularity theorem for sets of finite
perimeter (see EVANS & GARIEPY [15]).

Theorem A.l.
If Per(E) < +00 then there exists a sequence { us} e C°°(Q) such that
() ue converges to %g in U(Q) ;

(ii) supportUgCE + B(0; e);
(i) A< ue<l;
(iv)Pery(E) = lim f |Vue(X)| dx.

The approximating sequence { U} -is of the form
0= ) (Xef)*@,
i=0

where {fi} forms a partition of unity for Q, and <p is a mollifier. The first part of the proof of
Lemma 2.9 follows the proof of Lemma 1 in MODICA [28].

Lemma 2.9.
Let EC IRY be abounded set of finite perimeter. There exists a sequence of open, bounded
setsEnC [R such that
(1)3E, G C°°andEn,E C B(0,R) for someR > 0;
(iDXgn ->%E inLto;
(iiiJPerCEN) ->Per(E);
(iv) meas(E,) = meas(E).

Proof. Sep 1. Here we prove the existence of a sequence A, that satisfies (i), (ii) and
(iii). Indeed, let {us} e Cr(Q) be asin Theorem A.1 and let u := %g. AS U converges to %e in
V(Q), foradla>0

meas{xe R"| | u«(x) - ux)|>a}->0
and so, let e(n) be such that

meas{x € (R | | Ugm(X) - u(x)|= Un} < Un, (A.2)
Let

ny=essinf {Per{x G IRN|UA>t} | Ih<t<(1-1/n)}.

Itis clear that there existsaset Y,, C (1/n, 1-1/n) such that forall te Y,
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Per {x & RN| ugqy(x) >t} <& + I/n (A3)
and
meas(Y,) > 0. (A4)
Let Xp, := {x € RN| Vugy,(x) = 0}. By Sard's Lemma
meas (Ugy)(Xp)) =0
and so, due to (A.4), there exists t, € Y, such that
Vugy(x) =0 (A5)
for all x such that ug,;)(x) = t,. Set
Api={xe RN| umx)>t, }. -
By (A.5) dA, € C= and by (A.2)
meas {x € A, |x ¢ E} + meas {xe€ E|x ¢ A } <meas {x € RN|u(x)=0and ux) >t} +
+meas {x € RN|u(x) = 1and ug(x) <t,}
<2 meas{x € RN| |ugp(x)-ux)|=1/n}

<2/n.
Thus
Xa, = Xg inL'(Q) (A.6)
and so, by (2.5)
Per(E) <lim inf Per(A,). (A.7)

Finally, by (A.3)
Per(Ap) <&, +1/n < 1/n+Per{xe RN| Jugyx) >t}
for all t € (1/n, 1-1/n), which together with the Fleming-Rishel formula (2.7) implies that

2 1 2 1-1/n N
Per(An)(l——)S— (1 ——-)+J Per{x e R |ugy >t} dt
n n n 1/n

1 2
¢ 1 (1-2)+ ] oo

n
and so, by Theorem A.1 (iv)

lim sup Per(A,) < Per(E). (A.8)
By (A.7) and (A.8) we conclude that

lim Per(A,) = Per(E).
Step 2. Define

1
E,:=A, A, where A,= (%%)N
Clearly {E,} satisfy (i) and (iv), and by (A.6)

A, > L (A.9)
Thus, as Per(E,) = A,;N-1Per(A,) with lim Per(A,) = Per(E), we deduce (iii), namely

lim Per(E,) = Per(E). '
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It remains to show (ii). Since E is bounded, by (iii), (iv) and Theorem A.1 (ii), there exists an
open, bounded, strongly Lipschitz domain Q C RN such that

E, E CC Qand { || X gllv(e} is bounded.
By Proposition 2.3, there exists a subsequence (that for convenience we still denote by X g,) such

that
XEn — X in LI(Q), for some subset A < Q. (A.10)

We claim that X g = X 5 a. e. Indeed, let ¢ € Co(RN). Then by (A.6) and (A.9)
lim _[ o(x) dx = lim xf,‘j o0hy) dy = limJ- (y) dy +lim j [pOyy) — o()] dy
n JE n A, n JA o JA,

- J'E(p(y) dy (A.11)

since, by Lebesgue's dominated convergence theorem and by (A.6),
fim| JA., [00.0y) — 9] dy| < lim UE 190wy — 9] dy + 2 ol [meas(A\E) + meas(E\An)]]
n

=0.
Therefore, by (A.11)
XEn X X g weakly * in the sense of measures

which, together with (A.10) yields (ii).
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