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1. INTRODUCTION.

The study of phase transitions leads in a natural way to the study of variational problems

where the total energy functional involves bulk and surface energies terms (see FONSECA [17],

[18], GURTIN [23], [24], KINDERLEHRER & VERGARA- CAFFARELLI [26]). It may also

happen that the total energy reduces essentially to its interfacial component. As an example, for

solid crystals with sufficiently small grains HERRING [25] assumes that interfaces are sharp and

shows that the surface free energy plays a definite role in determining the shape of the crystal

approaching an equilibrium configuration of minimum energy. The surface tension considered by

HERRING was of the type

r(nE(x))dHN_1(x) (1.1)i,
where E is a smooth subset of [RN, nE is the outward unit normal to its boundary and F denotes the

anisotropic free energy density per unit area. Clearly, when F is constant the problem

(P) to minimize (1.1) subject to meas(E) = constant,

reduces to the classical isoperimetric inequality. For anisotropic F, one of the first attempts to solve

(P) is due to WULFF [38] in the early 1900's. His work was followed by that of DINGHAS [14],

who proved that, among convex polyhedra, the Wulffset (or crystal ofF)

W r := {x e [RN | x.n < F(n), for all n e SN 1}

is the shape having the least surface integral for the volume it contains. Later, TAYLOR [35], [36]

and [37] obtained existence and uniqueness of solution using geometric measure theory tools. All

the above mentioned results rely essentially in the application of the Brunn-Minkowski Theorem.

Recently, DACOROGNA & PFISTER [12] presented a completely different proof in CR2 which

does not involve the Brunn-Minkowski inequality. Their arguments are purely analytical but,

unfortunately, they cannot be extended to higher dimensions. Also, they obtain existence and

uniqueness within a class of sets strictly contained in the class C of all measurable sets (bounded

or unbounded) with finite perimeter. This is, of course, the natural class of sets for which (1.1) is

defined.

In this paper we obtain existence of solution for (P) in C. The proof follows that of

DINGHAS [14] and TAYLOR [37], although we work within the BV theory instead of using

geometric measure theory terminology and tools. Hopefully, this proof will be more accessible to

analysts. Its key ingredients are the Brunn-Minkowski Theorem and the parametrized indicator

measures (see FONSECA [19]). These measures enable us to handling oscillating weakly

converging sequences of surfaces and continuity and lower semicontinuity properties of

functional of the type (1.1). The indicator measures (see RESHETNYAK [32]) are a refined

version of the generalized surfaces of YOUNG [39] and they were studied by ALMGREM [2] (see

also ALLARD [1]) under the name of varifolds.



We characterize the support of indicator parametrized measures associated to minimizing

sequences for (P). This information allows us to conclude that if the Wulff set is polyhedral then

minimizing sequences cannot oscillate.

In Section 2 we review briefly some concepts of the theory of functions of bounded

variation and in Section 3 we provide a detailed analysis of the Wulff set and we study F and its

biconjugate function F**.

In Section 4 we recall some of the properties of indicator measures and we show that the

Wulff set is a solution in C for the geometrical variational problem (P), generalizing TAYLOR'S

[37] result to unbounded sets. Also, and for completeness, we prove in Section 5 that the Wulff set

is the only solution in the class C, up to a translation and a set of measure zero. This result was

obtained first by TAYLOR [36], using geometric measure theory techniques that involve

approximation of a set by polyhedra. Recently, an analytical proof of was given by FONSECA &

MULLER [20].

In Section 6 we provide a characterization of the support of indicator measures associated

to minimizing sequences and we use this result to conclude that in some cases (e. g. if Wp is a

polyhedron) minimizing sequences cannot develop oscillations.

Finally, in Section 7 we discuss a variational problem in nonlinear elasticity involving bulk

and interfacial energy. Lately, there has been great progress in the analysis of minimization

problems of this type. BOUCHITTE [8] and OWEN & STERNBERG [30], using singular

perturbations and the Gamma - convergence approach (see De GIORGI [13]), obtained the Wulff

set as the selected shape for a scalar-valued two-phases transition problem with infinitely many

solutions. Recently, this result was generalized to the vector:valued case by AMBROSIO,

MORTOLA & TORTORELLI [4] and AVILES & GIGA [5]1.

2. PRELIMINARIES.

We recal briefly some results of the theory of functions of bounded variation (see EVANS

& GARIEPY [15], FEDERER [16], GIUSTI [22]). Let Q C [RN be an open and connected set

and define S*"1 := {x e IRN| ||x|| = 1}.

Definition 2.1.
A function u e hl(Q) is said to be a function of bounded variation (u e BV(£2)) if

J |Vu(x)| dx := sup j J u(x). div <p(x) dx | <p e c j (Q; IRN), ||q>||«, < l l < +~-

l. See also AMBROSIO & De GIORGI [3] for a related problem.



It follows immediatly from Definition (2.1) that if u£ converges to u0 in L!(Q) then

f |Vu(x)|dx<liminf f |Vue(x)| dx. (2.2)
•to e -> o J&
It turns out that bounded sets in BV are compact in L1, precisely

Proposition 2.3.
Let QC [RN be an open bounded strongly Lipschitz domain and let C be a positive constant.

Then, the set

JUG L1^)! f |u(x)|dx+ f |Vu(x)|dx<cl

is compact in L!(Q).

A particular case of a function of bounded variation is the characteristic function of a set of

finite perimeter.

Definition 2.4.
If A is a subset of [RN then the perimeter of A in Q is defined by

FterQ(A):=Jk |VXA(x)|dx = sup{J div cp(x) dx | cp e cJ(Q; IRN), ||cplL< l } ,

where X A denotes the characteristic function of A.

If A has finite perimeter in IRN then for any borel set E

where H^ denotes the N-l dimensional Hausdorff measure, 3*A is the reduced boundary of A

and ||V%A|| is the total variation measure of the vector-valued measure V%A- Often, we use the

notation
HN_! L3*A (E) := HN_1O*A n E).

Also, there exists a | |VXAII -measurable map nA : 3*A -> SN~l such that nA(x) is the outward

normal to 9* A at x,

-nA||VXAH = VXA in £'(iRN)
and the generalized Green-Gauss theorem holds, namely

J div <p(x) dx = J R N cp(x). nA(x) d||VXAll

= f cp(x). nA(x) dH^^x) (2.5)
•̂ 3* A

9e C (̂1RN; IRN).



Proposition 2.6.
If E has finite perimeter in £2, then for almost all R > 0

n B(0, R)) < PerB(o,R)(E) + HNA(E n 9B(0,R)).

We will use the Fleming-Rishel co-area formula

f |Vu(x)| dx = f PerQ {x € IRN| u(x) > t} dt (2.7)
Ja J-oo

for u e BV(£2), and also the change of variables formula

f N u(x) |det Vf(x)| dx = f ( f , u(z) dH^fe)! dy (2.8)

where N > p , f:IRN-»[RPisa Lipschitz function and u : IRN -> IR is measurable.

The next result shows that a bounded set of finite perimeter can be approached in BV by a

sequence of C°° sets with the same volume. The proof can be found in the Appendix.

Lemma 2.9.
Let EC IRN be a bounded set of finite perimeter. There exists a sequence of open, bounded

setsEuC IRN such that

( i )3E n e C~andEn,E C B(0, R) for some R > 0;
(ii)XEn - > X E inL^IR*);

(iii)Per(En) ->Per(E);

(iv) meas(En) = meas(E).

3. THE WULLF SET.

In what follows F: SN"1 —> [0, +°o) denotes the surface free energy of a solid. For

crystalline materials, HERRING [25] proposes some constitutive hypotheses for F based on

molecular considerations where surface energies arise from interatomic interactions of finite range.

It turns out that for ordered materials (i. e. materials with a lattice structure) F is not differentiate

with respect to certain crystallographically simple directions. In this case, if we plot F radially as a

function of the direction n, this plot will present cusped minima in certain directions corresponding

to surfaces of particular simple structure with respect to the lattice (see FONSECA [17], PARRY

[31]). At each point of this polar plot construct a plane perpendicular to the radius vector at that

point. Then the volume Wp which can be reached from the origin without crossing any of the

planes is the Wulffset. Precisely, assuming that F is continuous and bounded away from zero, i.

e.

F(n) > a for some a > 0 and for all n e S1*"1 (3.1)



we have

Definition 3.2.

The Wuljfset (or crystal ofr) is the set W r : = { X G K N | x.n < T(n) for all n e S*-1}.

Clearly, if T= 1 then W r is the closed unit ball. Also, using HERRING'S [25] idea it is

easy to show that for solid crystals the lack of differentiability of T implies that its crystal is a

polyhedron. This motivates the following definition.

Definition 3.3.

F is said to be crystalline if Wp is polyhedral. Moreover we say that T is strictly crystalline

if it is crystalline and if F(n) > F**(n) unless n is normal to 3Wp.

In order to relax the energy (1.1), we recall some concepts of the theory of convex

functions (see ROCKAFELLAR [33]).

Definition 3.4.

Letf: [RN->[-oo,+oo].

(i) The Fenchel Transform off '(orpolar off or conjugate off) is the function f* : [RN —> [-<*>, +°o]
given by

f*(y) := sup {x.y - f(x)}.
x e IRN

(ii) The bipolar (or biconjugate) off is the function f** : [RN —> [-°©, +H defined by
f**(x):= sup {x.y - f*(y)}.

ye IRN

(iii) If x € [R N, the subgradient off at x is the set
3f(x) := {ye IRN | f(x') > f(x) + y . ( x ' . x ) for a n x-

It is easy to verify that f** is the lower convex envelope of f, i. e. f** = sup {g | g is
convex and g < f}. The indicator function of a set C C lRNis defined by

(0 ifxeC

IcOO:= |
l+oo i f x ^ C.

The following results are well known.

Proposition 3.5.

(i) IQ is convex if and only if C is convex;



(ii) JQ is called the support function ofC and JQ (y) = sup {y.x | x G C};

(iii) if C is convex and if x G dC then

y is normal to C at x <=> y G 9lc(x) <=> y .(x1 - x) < 0 for all xf G C ;

(iv) 3lc00 is a closed convex cone and dlc(x) = {0} if x G int (C);

(v) if C is closed and convex then BJQ (y)= {x G 9C | y is normal to C at x}.

Here F* and F** denote, respectively, the polar and bipolar functions of Fo obtained by

extending F as a function homogeneous of degree one :

7T77 I i f X ^ 0

F0(x) :=*

0 ifx = 0.

Proposition 3.6.
(i) Wp is convex, closed and bounded;
(ii)F** = I W r ;

(iii) F**(x) = sup {y.x | y G Wp} = support function of Wp ;

(iv) if x G 3Wp and if n is normal to Wp at x then x.n = F(n) = F**(n);
(v) the crystal of F** is the crystal of F, i. e. W r = Wr**;

(vi) 0 G int (Wr).

Proof, (i) It is clear that Wp is convex and closed. Also, if x G Wp then ||x|| = sup{x.n

||n|| = 1} < sup {F(n) | ||n|| =1} =: M, i. e. WrCB(0,M).

(ii)IfxG W r , t henfo ra l ly*0

and as x.O - ro(O) = 0, T*(x) = 0. On the other hand, if x £ W r then there exists n e SN-! such

that x.n - T(n) > 0. Therefore, for all k e IN

T*(x) > x.(kn) - ro(kn) = k (x.n - T(n))
and so T*(x) = +<». We conclude that T** = I w .

(iii) By (ii) and by Proposition 3.5 (ii), P** is the support function of Wpand r**(x) = sup {y.x |

y e W r } .

(iv) As Wp is convex and bounded, the normal n(x) to 3Wp at x € 9Wp is uniquely defined for

HN-I a- e- x- We want to show that
x.n(x)= F(n(x)). (3.7)

As x G Wp, we know that x.n(x) < F(n(x)). Suppose that



x.n(x) < r(n(x)). (3.8)

By (ii) and by Proposition 3.5 (iii) we have

3 T*(x) = {n(x)}. (3.9)

We claim that there exists p > 0 such that

r(m) - x.m > p for all ||m|| = 1. (3.10)

Indeed, if T(m) - x.m = 0 for some unit vector m, then by (3.8) and (3.9) m * n(x) and m £

3r*(x). Thus, there exists x1 e Wp such that

0 < m.(xf - x) i. e. F(m) < m.xf

which is impossible by definition of the set Wp. Therefore 93.10) holds and if x1 e B(x, p) then

x'.m = (x'-x).m + x.m < ||x'-x|| + T(m) - p < T(m)

for all m € S™'1 and so B(x, p) C Wp contradicting the assumption x e dWp. We conclude that

(3.7) holds. Hence

T(n(x)) > T**(n(x)) = sup {y.n(x) | y e W r } > x.n(x) = T(n(x))

which implies that x.n = T(n) = T**(n).
(v) Let W r n be the crystal of T**. As r** < T we have Wr**c W r . Also, by (iii) if x e W r then

x.n < sup {y.n | y G W r } = r**(n), L C X G Wr**.

(vi) Suppose that the origin is not interior to Wp. Then there exist sequences {yk} and {nk} on

SN-1 such that n^.y^/k > r(nk). Without loss of generality, we can assume that yk -» y and nk-> n,

where ||y|| = 1 = ||n||. We conclude that T(n) = 0 which contradicts (3.1).

4. THE WULLF THEOREM: EXISTENCE.

Here we prove the isoperimetric inequality

C meas(E)(N-D/N < j(9E) (4.1)

for all measurable sets E of bounded perimeter, where J(.) is the surface energy2

JOE) := f T(nE(x)) d H ^ x )
Jd*E

and C = J(3*Wr) meas(Wp)(1-N)/N. The key idea of the proof is the use of the Brunn-Minkowski

inequality. This was exploited formally by DINGHAS [14] and later made precise in the context of

geometric measure theory by TAYLOR3 [37]. Here we presente the proof in a BV framework that

avoids the terminology and concepts of geometric measure theory, thus making it more accessible

to analysts.

2Here nE is the outward unit normal to the reduced boundary d*E.

3.We generalize TAYLOR'S [37] result to unbounded sets.



Brunn-Minkowski Theorem 4.2.

If A and B are nonempty sets of 1RN then

meas(A + B) > (meas(A)1/N + meas(B)1/N)N.

We refer the reader to DACOROGNA & PFISTER [12], where (4.1) is obtained for a

certain class of sets in IR2 whithout using the Brunn-Minkowski Theorem. However, their

argument is essentially two dimensional and it cannot be extended to higher dimensions.

It is clear that (4.1) follows from

Theorem 4.3.

Let E C [RN be a set with finite perimeter and such that meas(E) = meas(Wp). Then

f r(nE(x)) dH^U) > f r(nw (x)) dHN_!(x).
JZ*E Ja*wr

 r

Indeed, assume that meas(E) = A,Nmeas(Wr). We recall that if £1 CIRN is an open bounded

strongly Lipschitz domain, if § is a diffeomorphism and if f: SN-1 -» CRN is a continuous function,

then n , ( Q ) «D(x) ) =
a d j V < 1 ) ( x ) n n ( x )

and

• LL
Thus, setting <|>(x) := A,x, by Theorem 4.3 we have

r(n(E/w(x))

Hnw (x)) dH^Cx)

i. e.

Corollary 4.4.

The dilation XWp minimizes the surface energy functional (1.1) among all sets of finite

perimeter with volume equal to A,Nmeas(Wr)-

Finally, (4.1) follows from Corollary 4.4 since



J(3E) > J(d(XWT)) = XN~l JO(Wr)) =
= Cmeas(E)(N-1)/N

The proof of Theorem 4.3 will be divided into three parts. The first one deals with bounded

open sets E having smooth (e. g. C2) boundary. In the second step we prove the result for

bounded sets of finite perimeter and on the third step we remove the boundedness restriction. The

second and third parts rely heavily on the lower semicontinuity properties of surface energies.

These were studied in detail in FONSECA [19]. For convenience, we summarize some of the

relevant results for this work.

Let E C IR N be a bounded set with finite perimeter. Associated to V % E we have the

nonnegative and finite Radon indicator measure AE on KNxSN1 defined by

< AE, F > = I F(x, -nE(x)) dH^Cx)
Jd*E

for all F e Co(IRN x KN). The slicing measures determine the factorization AE = Xx<8> rcE, where

7UEis the projection of AE into IRN and *A,X} is a family of probability measures such that

<AE,F> = 1 ^ ( 1 ^ F(x,y) dASy)) d7UE(x).

In what follows, v denotes the center of mass, i. e.

Proposition 4.5.
Let {Ee} be a sequence of bounded sets of finite perimeter, with indicator measures {A€}.

If Ae-** A^ = X̂ °®7Coo weakly * in the sense of measures and if ^ -> XE strongly in L1. Then

E is a set of finite perimeter with indicator measure AE = )JiS) TCE ancf

(i) Ja+E F(x, nEe(x)) d W x ) -» J ^ ^ , F(x,y) dAJx,y) = £N [j^ F(x,y )

forallFeC0(IRNxlRN);

(ii) dH^iL 3*E = | |vj | dn .̂ and ||vjx)|| < 1 for ̂  a. e. x;

(ii) vM = - | |v j | nE, for dH^I . d*E a. e. x;
(iii)sup||vJ| = 8*E.

Using the indicator measures, it follows easily that (see FONSECA [19], Corollary
4.6 (ii))

Theorem 4.6.
Let E£ C IRN be a sequence of bounded sets with finite perimeter in KN. If (meas(E£) +

Per(E£)} is bounded and if ^ -> XE in L ! ( |RN ) then



f F(x, nE(x)) d H ^ x ) < lim inf f F(x, nE (x)) dH N ,
Jd*E e -» 0 J3*Ee

 e

for all nonnegative, continuous function F such that F(x,.) is convex and homogeneous of degree
one for all x e IRN.

If in addition there exists R > 0 such that Ee C B(0,R) for all e > 0, then (see

FONSECA [17], Theorem 5.1 and Corollary 5.9) the following result provides necessary

and sufficient conditions for continuity.

Proposition 4.74.
The following assertions are equivalent:

(i)Per(Ee)->Per(E);

(ii) A°° is a Dirac mass;

(iii) f F(x, nE (x)) dHN_x(x) -> f F(x, nE(x)) efflux) for all F e C0(IR
NxlRN).

In order to prove Theorem 4.6, we obtain a lower bound for the relaxed energy.

Lemma 4.8.
Let E be a C°°, open, bounded domain. Then

f , , Xv , x meas(E + £W r) - meas(E)
T**(nE(x)) dHN_!(x) > Urn inf • .

JdE e->o e

Proof. Let x e 3E, e > 0 and let

X := sup {t > 0 | x + e t nE(x) e E + £W r and tnE(x) e W r } .

By Proposition 3.6 (vi), there exists p > 0 such that B(0, p) C Wr and so, E C C E + eW r .

Choose 0 < 8 < ep/2. We claim that

B(x, 8) C E + eW r.

Indeed, if y = x + z, with ||z|| < 8, and if xf e E is such that ||x! - x|| < 8 then we have

) € E + eW r.

Thus, x€ int (E + eWp) and as E + eWpis a bounded set, 0 < X < +<*>. Also, since Wp is closed

then XnE(x) e Wp and, clearly, x + e XnE(x) e 3(E + eWp). Therefore

dist(x, d(E + eWr)) < ||x - (x + e AaE(x))|| = e (XaE(x)). nE(x)

4. (ii) and (iii) are equivalent even when the sequence {Eg} is not uniformly bounded.

10



< e max{y. nE(x) | y e W r}

and so, by Proposition 3.6 (iii)

f r**(nE(x)) dH ĵCx) = f max y.nE(x) d H ^
JdE JdE y e W r

dist(x,a(E +

meas(E + eWr )-meas(E)
> lim inf .

e->o e

Proof of Theorem 4.3. (i) Let E be a C°°, open, bounded domain of DR N such that

meas(E) = meas(Wr). Then by Lemma 4.8 and by the Brunn - Minkowski inequality (see

Theorem 4.2) we have

f T(nE(x)) dHN^(x)> f T**(nE(x)) dHN.j(x)
utlt ** n i*.

meas(E + eWr) - meas(E)
> lim inf

£->o e
(meas(E) +emeas(Wr ) ) -meas(E)

> lim inf .
e->o e

Therefore, as meas(E) = meas(Wr), by the generalized Green-Gauss Theorem (2.5) and by

Proposition 3.6 (iv) we conclude that
T(nE(x)) dHN_i(x) > meas(Wr) lim

f3E e-»0

= N meas(Wr) = 1 div x dx = x.nw (x) dHN-1(x)

= I T(nw (x)) dH^^x).
rr

(ii) Let E be a bounded set of (RN with finite perimeter and such that meas(E) = meas(Wr). By

Lemma 2.9 there exists a sequence of C°°, open, bounded sets EnC IRN and R > 0 such that

En, E C B(O,R) for all n e IN > 0, meas(En) = meas(E) = meas(Wr)

and
XEn ~> X E inL^Q) and Per(En)-^ Per(E).

Thus, by Proposition 4.7 and by (i) we deduce that

J r(nE(x)) d H ^ x ) = Km J r(nEn(x)) dH^Cx)

> I T(nw (x)) dHN_i(x).
J^*\JJ r

r

(iii) Suppose that E is an unbounded set of finite perimeter with meas(E) = meas(Wr). Define f(R)

:= HN.!(En3B(0,R)). Then, by Proposition 2.6 and as

11



meas(E) = j f(R) dR < +~,

there exists a sequence Rn —> +°° such that

f(Rn) -» 0 and En := EnB(O,Rn) is a set of finite perimeter. (4.9)

Using part (ii), the argument of Corollary 4.4, and (4.1)

f r(nE(x)) dH^OO > f Hnc (x)) dH^OO - f l{1£-WN_1(x)
J3*E Jd*Ea ^ JaB(O,Rn)nE \KnJ

> f T(nx w 00) dH^OO - a f(Rn)

r(nWr(x))dHN_1(x)-af(Rn), (4.10)

where meas(En) = A,n
N meas(Wr)- As meas meas(En) -> meas(E) = meas(Wr), we have 7^ -> 1

and so (4.9) and (4.10) yield

f T(nE(x)) d H ^ x ) > f T(nw (x)) dH^^x).
^a*E Ja*wr

 r

Next, we obtain an apriori estimate on the diameter of a set E satisfying the following

connection condition: for all £ e S1*-1 there exist -<*> < so(E,£) < si(E,£) < +oo such that GE,^(S) =

0 for all s < so(E,^), GE,^(S) == 1 for all s < Si(E,^) and GE,^ is strictly increasing in the interval

(so(E£), si(E£)), where

meas({xe Elx.%<s»
GE£(s) := T-r . (4.11)t>q meas(E)

Proposition 4.12.
There exist continuous functions ci:[0, +«>) ->[0, +<») and C2:[0, +oo) —>[0, +©<>) with

ci(0) = 0, ci is decreasing, such that if E C [RN is a measurable set of finite perimeter with meas(E)

= meas(Wp) satisfying (4.11) and if

f T(nWr(x)) dHN_!(x) < f T(nE(x)) dHN_!(x) < (1 + r\) f r(nw(x)) dH^^x) (4.13)
Jd*wr

 r Ja*E Ja*wr
 r

then there exists a e [RN such that meas(E \ B(a, C2(ri))) <

Proof, (i) Suppose that E is open, dE is smooth, meas(E) = meas(Wp) and E satisfies

(4.11). Consider a unit vector e € [RN and for simplicity of notation set

f(t) := meas(E(t)) = GE,e(t) meas(E) where E(t) :={x e E | x.e < t}.

Clearly 0 < f(t) < ^i :=meas(Wr), and f (t) = HN_i({x e E | x.e = t}). As

( u 1 / N
meas — E(t) I =

l f ( o 1 / N

12



changing variables and by Theorem 4.3 we have
N-r

N-l

In a similar way, with E(t)' :={x e E | x.e > t} = E \ E(t),

Adding up these two inequalities yields

f T(nE) dHN_l + 2 f T(e)
Ja*E J{xeE| x.c = t}{xeE| x.c = t}

N-l N-l

(f)N • 0 ^ ) N }•
and so, by (4.13)

g!(t) > C* [g^N-D/N + (l-g(t))(N-D/N .(1 + T,)] (4.14)

where g(t) := 2 2 . a n d C* := — I T - f T(nw ) dHN^. Let F(s) := s(N~1)/N + (l-s) (N"1) /N -(1+ri)
li 2r(e)fi Ja*wr

 r

for 0 < s <> 1 and let 0 < s(r|) < 1/2 be such that F(s) > 0 if and only if s(r|) < s < 1 - s(r|). It is

clear that

s0l) -> 0 as T| -> 0+- (4.15)

Let ti = ti(E, r|, e), i = 1, 2, be such that g(ti) = s(r\) and gfe) = 1 - s(r|). We obtain

meas(E \ { x e [RN | ti < x.e < t2}) = meas(E) - [f(t2) - f(ti)]

= »I - J I [1 -2S(TI ) ] = 2|IS(TI). (4.16)

On the other hand, by (4.14)
h g'(t)

_ f1/2 ds
" J ( N D N ( N 1 ) / N -

Finally, let {ei, e2,..., CN} be the canonical orthonormal basis of DRN and consider a e [RN and

R>0 large enough so that

B(a, R) D {x G IRN | t l(E, t|, ei) < x.ei < t2(E, j \ , cO, i = 1,..., N}.

By (4.17) we can obtain R as a continuous function C2(T|), independent of the set E, and by (4.16)

we deduce that
meas(E \ B(a, R)) < meas(E \ {x e IRN I t2(Ti, eA) < x.q < t2(rj, e^, i = 1,..., N})
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meas(E\{xe [RN It^ei) <x.ei<t2(t\,%

which, together with (4.15) concludes the proof.

(ii) Suppose that E C IRNis a bounded, measurable set of finite perimeter with meas(E) =

meas(Wr), satisfying (4.11). If ciCn) ^ meas(E) then choose any a e [RN. Assume that ciCn) <

meas(E). By Lemma 2.9 and Proposition 4.7 there exists a sequence of smooth, open, bounded

sets En with meas(En) = meas(Wr), such that En, E C B(0, R) for some R > 0, meas(En\E) +

meas(E\En) -> 0 and

f T(nE(x)) dHN^x)^ lim f T(nE (x)) dHN^(x).

Moreover, it follows from the construction of the sets En that they verify the condition (4.11) (see
Appendix). Let T|f > 1) be such that ci(n') < meas(E). For n large enough we have (4.13) for En

and T|f and so, by (i) there exist an such that

meas(En \ B(an, C2(TV))) < ciCn1). (4.18)

As EnC B(0, R), it follows that B(0,R) n B(an, C2(rf)) * 0 and so ||an|| < R + C2(TV) < C =

C(ri). Thus, there exists a subsequence of {an}, {af
n} such that a'n -» a(rj!) with a(rV) e B(0, R

+ C2(TV))andby(4.18)

meas(E \ B(a(TiO, C2(TV))) < ci(rif).

Letting T|! —> T|+ and due to the continuity of ci and C2, we have that for some subsequence

{a(r|')}, a(rif) -> a with meas(E \ B(a, C2(TI))) < CI(TI).

(iii) Assume that E C [RN is an unbounded, measurable set of finite perimeter with meas(E) =

meas(Wp), satisfying (4.11). As in (ii), if ci(T|) > meas(E) then choose any a e [RN. Suppose that

ci(n) < meas(E) and as in the proof of Theorem 4.3 (iii), let En := E n B(0,Rn), where Rn

and

HN.i(E n3B(0,Rn)) ~> 0. By (4.1) and Theorem 4.6 we have

f T**(nE(x)) d H ^ x ) < lim f T**(nE (x))
Ja*E n-> oo Jd*En

 n
E (

n

T**(nE(x)) dHN^1(x) + a lim
n > on

and so,

f T**(nE(x)) d H ^ x ) = lim f T**(nE (x))
Ja*E n-> oo Jd*En

 n

Setting E = En/A ,̂ where meas(En) = X^N meas(Wr), then Xn -> 1 and

14



lim f r**(nu*(x)) dH^Cx) = lim -J-r- f T**(nn (x))
n /v n

F**(nE(x))
*E

By Proposition 3.6 (iv) and by Theorem 4.3, (4.13) still holds for E, rj and F**. Hence, and as in

(ii), for all T]1 > TI such that ci(n') < meas(E) there exist an such that

meas(En \ B(an, C2(ri
t))) < ci(T|f) for all n large enough.

It remains to show that ||an|| is bounded independently of r\\ Indeed, let ci(r|f) < k, C2(T|') < K

and choose R > 0 such that

meas(E \ B(0, R)) < meas(E) - k. (4.19)

We claim that ||an|| < R + K for n large enough. Indeed, if for some subsequence ||an|| > R + K then

B(an, C2(TV)) n B(0, R) = 0 and so

meas(E \ B(0, R)) = Urn meas(En \ B(0, R)) > lim sup meas(En n B(an, <

= meas(E) - liminf meas(En \ B(an, C2(rj
!)) > meas(E) - k

which contradicts (4.19).

5. THE WULFF THEOREM: UNIQUENESS.

For completeness, we prove uniqueness for the Wulff Theorem, i. e. we show that the

Wulff set or translations of it are the only solutions of the geometric variational problem

(P) minimize

F(nE(x))
Ja*E

among all measurable sets E C DRN of finite perimeter with meas(E) = meas(Wp). DINGHAS [14]

obtained uniqueness within the class of polehedra and TAYLOR [36] extended this result using

geometrical arguments. DACOROGNA & PFISTER [12] provided a proof that is entirely

analytical but it cannot be extended to higher dimensions. Moreover, uniqueness is obtained for a

class strictly contained in the one considered in this work. The proof presented here is due to

FONSECA & MULLER [20] and, as in TAYLOR [36] is based on the Brunn-Minkowski

Theorem and on the existence of an inverse for the Radon transform (see GELFAND, GRAEV &

VILENKIN [21]).

Proposition 5.1.
Let E C IRN be a measurable set of finite perimeter. If E is a solution of (P) then E = Ei u

E2 where EinE 2 = 0 , meas(E2) = 0, HN-i(d*E2) = 0, Ei is bounded and satisfies (4.11).

We divide the proof of this proposition into two lemmas.
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Lemma 5.2.

If E is a solution of (P) then E = Ei u E2 where EinE 2 = 0, meas(E2) = 0, HN_i(9*E2) =

0 and Ei satisfies (4.11).

Proof, If E verifies (4.11) set Ei = E and E2 = 0. Otherwise E admits a partition E = Ei

u E2 , where E i n E 2 = 0 and HN-i(9*Ein3*E2) = 0. We claim that either meas(Ei) = 0 or

meas(E2) = 0. Indeed, if meas(Ei) = 0 meas(E) and meas(E2) = (1 - 0) meas(E) for some 0 e (0,

l)then

f r(nE(x)) dH îCx) = f r(nE(x)) dH^Cx) + f IWGO) dH^Cx) (5.3)

and as E is a solution of (P), by Corollary 4.4 we have

f H n w GO) dHN_!(x) > f 1/N T(n) d H ^ + f * T(n) dHN_!
Ja*wr

 Wr N l Ja*(e1/Nwr)
 N Ja*«i-e)1/Nwr)

) f
•'a+Wp r

which is impossible since 0 ^ 0 ,1 . Therefore, we may suppose that meas(E2) = 0 and so, by (5.3)

and (4.1) we conclude that HN_i(3*E2) = 0.

Next, we show that E is bounded, up to a set of measure zero.

Lemma 5.4.

If E is a solution of (P) then meas (E \ B(0, R)) = 0 for R sufficiently large.

Proof. Setting Ti = 1/n on (4.13), by Proposition 4.12 it follows that

meas(E \ B(an, C2(l/n)) -> 0. (5.5)

for some bounded sequence {an}. Indeed, let Ro be such that

meas(E \ B(0, Ro)) < meas(E)/2 (5.6)

and assume that, for some subsequence, ||an|| > Ro + K, where K is an upper bound for {C2(l/n)}.

Then

meas(E \ B(0, Ro)) ^ lim sup meas(E n B(an, C2(l/n)) =

= meas(E) - liminf meas(E \ B(an, C2(l/n)) = meas(E),

contradicting (5.6). Therefore, by (5.5) we have that for some a e RN meas(E \ B(a, K)) = 0.

Proof of Proposition 5.1. Assume that E is a solution of (P). Then, by Lemmas 5.2

and 5.4 we can suppose that E satisfies (4.11) and meas(E \ B(0, R)) = 0 for R large enough.

Therefore, given £ e SNA by the Fleming-Rishel formula (2.7) we have
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meas(E) = J HN_i({x e E | x.£ = s» ds = meas(E n B(O,R))

= J HN_1({xeE|x.$ = s})ds

which implies that HN-I({X € E | x.£ = s}) = 0 for a. e. |s| > R. Choose Ro > R such that

H N - i ({xeE|x .e i = ±Ro})=O (5.7)

where {ei,..., c^} is the canonical basis of RN. Then we can write E as a disjoint union of Ei and

E2, where Ei := E n [-Ro, Ro]N is bounded and connected and meas(E2) = 0. Moreover, by (5.7)

it follows that HN_i(3*Ei n d*E2) = 0 and so

f T(nE(x)) dH^x) = f r(nE(x)) dH^x) + f IW00) dH^x).

Since meas(Ei) = meas(E) and E is a solution of (P), by (4.1) we conclude that HN-I(9*E2) = 0

Let A C IRN be a bounded, connected set and let £ e SN~l. As in (4.11) we define
meas({x e A | x.^ < s}) . . HN-1({x e A | x.£ = s»

GAJ&> ^ and g ( )
meas(A)

Lemma 5,8.
If A and B are strongly Lipschitz, bounded sets satisfying (4.11) and if meas(A) = meas(B)

then for all e > 0

r r.
Jo v
r . uf^rr r.
Jo \toJ J {

where ^

Proof. By the Fleming-Rishel formula (2.7) we have

and so, 0 < GA>£ < 1 and G f(s) = gA,^(s). Let so := sup {s | GA(^(s) = 0} and si := sup {s |

GA,^(S) = 1}. As A is bounded, open and connected, -°o < so < s\ < +«> and gA,^(s) > 0 in (so,

si). Therefore, GA£ admits an inverse GA^ : (0, 1) -> (so, si) and, setting YA,̂ (t) := gA^CG^

we obtain

We can assume, without loss of generality, that \ = ei and write x = (xi, x1). Let

At := {x1 e RN-i | (Xl, x') e A and x2 = G'.^Ct)}, for t e (0, 1).
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As

{G'^(t) + G^Ct)} x (At + BO C A + B,

setting z(t) := G^(t) + Gg^t) by (5.9) we have

fZ(l)
meas(A + B)> I HN_4

Jz(O)
^ C ^ C * ) z ^ d s

o)

= I HN-l<At + Bt) f TT + FT 1 dt.

By the Brunn-Minkowski Theorem (see Theorem 4.2)

HN_i(At + BON-1 > HN.!(At)N-i + HN-i(Bt)N-i

= (YA£(t) measCA))1 "̂1 + (YB^CO meas(B))N"!

and so

meas(A + B)>f [yi/^-1)(t)meas(A) + ^/
>

(|J-1)(t)meas(B)]N"1( — — • + —^ J dt(5.10)

It is easy to verify that

g£B,̂ (s) = g£B,£(s/£)/£, G£B,^(S) = GB,^(S/£) and

which, together with (5.10) imply

meas(A + eB) > meas(A) [ bfA^it) + e ^T"1^^"""1' " " ^ + " ^ ^ 'dt

l

f= meas(A)
Jo

Theorem 5.11.
If E is a solution of (P) then || % E + c - XWJJIL1 = °»where

c:= ATTTI x d x - x d x l
meas(Wr)^Jwr JE )

Proof. Let E be a solution of (P) and consider the translated sets E1 := E - a and W := W -

b, where
I f I fa : = T̂ TT xdxandb:= 7^T\\ x d x - (5.12)

meas(Wr)JE meas(Wr)Jwr

By Proposition 5.1 we can suppose that E is bounded and satisfies (4.11). Hence, by Lemma 2.9

there exists a sequence of smooth, open, bounded sets EnC IRN verifying (4.11) such that En, E'
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C B(0, R) for some R > 0, meas(En) = meas(E'), Per(En) -» Per(E') and meas(En\E') +

meas(E'\En) -» 0. By Lemma 4.8 and Lemma 5.8 we have
meas(En + eW) - meas(W)

(x)) dHN_i(x) > lim inf -
" e > 0 £

Ja*En e->0

- 1

> meas(Wr) lim inf
£ * 0

dt

As

yw.4(t)

= 0 if |s| > R, setting t = GEn,̂ (s) we obtain

dt.

T(nE (x)) dH
Ja*En

R

>meas(Wr) I
- R

(N-l gE>^(s)ds. (5.13)

On the other hand, as meas(En\E') + meas(E'\En) -> 0 we have ||gEn>4 - gE'̂ IlL1 -^ 0 and

—> 0 and so, Proposition 4.7, (5.13) and Fatou's Lemma we conclude that

f r(nE.(x))dHN_1(x)>

> meas(Wr) J (N-l) 1 gE.f̂ (s) ds.

As E' satisfies (4.11), GE-,4 is strictly increasing in (so(E',£), si(e',^)) C (-R, R) and so, by the

change of variables formula (2.8), by Theorem 4.3 and by Proposition 3.6 (iv) we have

N meas(Wr) = f r(nw (x)) dH^OO = f T(nE.(x)) dH^^x) >
Ja*ŵ  r h*w

: meas(Wr)
Jo

(N-l) dt. (5.14)

However (N-l) + I/a > N and equality holds only if a = 1. Thus (5.14) implies that
for almost all t € (0, 1)

which, by (5.9) yields

£ w , ^ + C for some constant C and for almost all t.

Hence
GE.^(s + C) = Gw. ^(s) for almost all s

which, after differentiating, implies that
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+ C) = gw'.^s) f° r a. e. s e IR. /<

We claim that C = 0. Indeed, by (5.12) and (5.15)

0 = x.£ dx = s gE. P(S) ds = (s + C) gE. P(S + C) ds

= I s
 SE-.E^S + O ds + CI gE.p(s + C) ds

= I x.^ dx + C meas(Wr) = C meas(Wr).

Thus,
N—1

SE',£^S)
 = 8wf,t(s) ^or a* c. s € IR and for all ^ € S ,

and so, due to the existence of the inverse of the Radon transform (see GELTAND, GRAEV &

VILENKIN [21]) we conclude that || %E - %wl[i = 0.

6. CHARACTERIZATION OF MINIMIZING SEQUENCES.

Consider the problem

(P) minimize

r(nE(x))

in Q := {E C IRN | E is measurable, bounded set, Per(E) < +00, meas(E) = meas(Wr) and E

satisfies (4.11)}5, In this section we characterize the minimizing sequences in terms of the support

of the indicator measure6. This will allow us to determine if oscillations may be present and, in

particular, we show that if the Wulff set is polyhedral then there are no oscillations7.

Proposition 6.1.
If{E£} is a minimizing sequence for (P), then there exist translations E£ - ae such that

meas((E£ - ae)\Wr) + meas(Wr\(E£ - ae» -> 0.

5 . By Proposition 3.6, Theorem 4.3 and Theorem 5;11 we know that the solutions of (P) are translations of the

Wulff set and are also the solutions of the relaxed problem

(P**) To minimize in Q | T**(n^x)) dH^Cx).

The class of admissible sets Q is chosen taking into account Proposition 5.1.

6 . See Propositions 4.5 and 4.7.
7. Thus, if in Example 5.10 in FONSECA [19] we take E to be the Wulff set of T, where T(n) := sup {x.n | x € E},

then {Ek} cannot be a minimizing sequence.
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Proof. As Ee are connected, by (4.12) there exist R > 0 and be e [RN such that

meas(E£\B(b£,R)) -> 0. Set
ce:= W r f f xdx-f xdx\ (6.2)

meas(Wr) ^(E^nBOyO Jwr )
Consider a subsequence of {Ee}. As {ce} is bounded, there exists a subsequence (which we still

denote by {ce}) such that ce -»c with

meas((EE - a€)\B(c,R)) -» 0, where ae := be + ce. (6.3)

On the other hand, by Proposition 2.6 and as {Per(Ee)} is bounded, the sequence
{ XEe-a nB(c; R)̂  *s bounded in BV(B(c; R)), and so by Proposition 2.3 we conclude that there

is a subsequence (for convenience we use the same notation) such that

X Ee-aenB(c; R) -> X K strongly in L1, for some set K. (6.4)

By (6.3) we conclude that

XEe-ae -> X K strongly in L1 (6.5)

which, together with Proposition 3.6 (iv) and Theorem 4.6 implies

f T**(nK(x)) dHN_!(x) <liminff T**(ne(x)) dH^^x)

< lim inf | T(ne(x)) dH^GO

= f T(nw(x)) dH^Cx) = f T**(nw (x)) dH^OO.
•'Wp r «Wr

 r

Finally, by Theorem 5.11 we have meas((K + k)\Wr) + meas(Wr\(K + k)) = 0, where

L
By (6.2) and (6.4) k must be zero and the result follows from 6.5.

k:= Tsrrff xdx-f xdx\
meas(Wr) Ĵ J J

Using the same notation as in Proposition 6.1, we characterize the indicator measure of a

minimizing sequence.

Theorem 6.6.

Let {E£} is a minimizing sequence for (P) and let Ae= Xe® ne be the indicator measure

associated to Ee - ae. There exists a subsequence converging weakly * in the sense of measures to

A., = A°°<8>7roo, where for K^ a. e. x e 1RN

support \~ C {y e SN-J | T**(-y) = T(-y) = -xf. y for all x'e 3*W r such that i^ (x)

and TCoo « dHN-i L 3*Wp « TCco.
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Proof. By Proposition 4.5 (i) the total variation of Ae is equal to Per(Ee). Thus, as

{Per(Ee)} is bounded, {Ae} admits a weakly * convergent subsequence (still denoted by {Ae}), Ae

—» A^ = X ®Koo weakly *. Also, by Proposition 3.6 and as {E£} is a minimizing sequence for

(P) we obtain

I N N-I r**(~y) dÂ Cx, y) = lim f r**(ne(x)) dHj^Cx)

= lim f r(n£(x))
e -> 0 JB*E

f
e -> 0 JB*Ee

i. e.

Since T £ r**, we deduce that for JC^ a. e. x e (RN

support A," C {y e SN-11 r**(y) = T(y)}. (6.7)

Let us define the nonnegative Radon measures iie by

<Tie,<p> = j + (p(x) r**(nE _a£(x)) dHN.^x) for all (p 6 Co( !R
N).

By (6.5) and by Theorem 4.6, we have

T|w < liminf Tie with T^ (IRN) = limrie(DRN)

and so

Therefore, if cp G CO(DRN) we have

I M 9 (x )dr | w ( x )= lim f M cp(x) dr|£(x) = lim f <p(x) T**(nE ^ (x))

i. e.

dr\w =r**(nw (x)) dHN J3*Wr= f | ^ r**(-y)

On the other hand, by Proposition 4.5
Hlvjldn^ andvoo=- ||\

and since F** is homogeneous of degree one, we have

T**(-vJx)) drcjx) =r**(nWr(x)) dHN_1La*Wr= ^J P**(-y) dA (̂y

or, for ic^ a. e. x e IRN

r**(-vjx)) = f ̂  r**(-y) dxr(y). (6.8)
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Let x1 e 3*Wp be such that -Voo(x) is normal to 3*W at xf. By Proposition 3.5 we have xf e

9r**(-Voo(x)) and so, for all y e SNA there exists G(-y) > 0 such that

T** (-y) = F** (-Vco(x)) + xf.(-y + Voo(x)) + 9(-y). (6.9)

As \™ is a probability measure and as Voo(x) is its center of mass, (6.8) and (6.9) imply that 9(-y)

= 0for^a.e.ye S*"1, i. e.
T** (-y) = T** (-Voo(x)) + xf.(-y + Voo(x)) (6.10)

which, together with (6.7) and Proposition 3.6 (iv), yields

support X~ C {ye S*-11 F**(-y) = F(-y) = -x\ y for all x'e 3*Wr such that T^ (x)

Finally, by (4.1) we have Wp 3 B(0,a) and so, by Proposition 3.6 (iii)

r**(n)>ocforalln€ S*"1

which, together with (6.8) and as X~ is a probability measure, implies that

||Voo||*Ofor7Cooa.e. x e KN.

From Proposition 4.5 (ii) we conclude that

Koo « dHN-i L 3*W r «Tioo.

Next, we provide some examples in which minimizing sequences cannot oscillate, i. e.
1 -> Per(Wr). (6.11)

Proposition 6.12.
Let F** be strictly convex except radially8, i. e. F**(x) = F**(xo) + y.(x - xo) for some y

e 3F**(xo) if and only if x is parallel to xo. If {Ee} is an uniformly bounded minimizing sequence

then (6.11) holds.

Proof. By Proposition 2.3, Proposition 3.6 (v), Theorem 4.6 and Theorem 5.11, given

any subsequence there exists a subsequence (which we still denote by {Ee}) and a translation of

Wp (without loss of generality we may assume that it is Wf) such that

X E 6 -» Xw r strongly in L1.

By Proposition 4.7 and as A,~ is a probability measure, it suffices to show that supp A,~ cannot

have two distinct points for 7Coo a. e. x. From (6.10) we have that if y, y1 e support X~, then

F** (-y) = F** (-Voo(x)) + xf.(-y + Voo(x))

which implies that y is parallel to Voo(x) and, in a similar way, y1 is parallel to Voo(x). As supp X™

C SN-X, we conclude that either y = yf or y = -y\ We claim that y = y1. Indeed, if y' = -y, by

Theorem 6.6 we have

8. This is the case when T** is identically equal to 1. Then P** is called the area integrand and W r = B(0; 1).
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T** (-y1) = -x.y' = x.y = - T** (y)

contradicting (4.1).

Proposition 6.13.
If the Wulff set is polyhedral and if {Ee} is an uniformly bounded minimizing sequence

then (6.11) holds.

Proof. As in the proof of Proposition 6.12, it suffices to show that supp A,~ reduces to a

point for %<*> a. e. x. Suppose that Wp has faces Fi,..., Fp with outward unit normal respectively

ni,..., np. By Theorem 6.6 and as 7Coo « CIHN-I L 3*Wp « TCoo, we must prove that if x e Fi then

supp X̂ ° = {-ni}. Indeed, if y e supp A,~ then y e SN'1 and by Theorem 6.6 we have

T** (-y) = -xf.y for all x1 e Fi

i. e. xf.y is constant on Fi which implies that y = ± n^ If y = ni then by Proposition 3.6 (iv)

T** (-y) = -xjy = F** (nO

which is impossible since F** is strictly positive on the unit sphere.

Remark 6.14.
The cases presented on the previous two propositions are actually distinct. In fact, if T(x) =

F**(x) = ||x|| satisfies the hypotheses of Proposition 6.12 although Wp = B(O,1) is not a

polyhedron. Conversely, if in [R2 we consider the square C := {(xi, X2) | |xi| < 1 and IX2I < 1} then

by Proposition 3.6 (iii)

F**(a, b) = max {axi + bx21 (xb x2) e C} = |a| + |b|

which is not strictly convex.

7. A VARIATIONAL PROBLEMS INVOLVING BULK AND

INTERFACIAL ENERGIES.

The total energy for materials that can change phase involves bulk and interfacial

contributions (see FONSECA [17], [18], GURTIN [23], [24], KINDERLEHRER & VERGARA-

CAFFARELLI [26]). Recently, variational problems for functional of this type have been

investigated by BOUCHITTE [8] and OWEN & STERNBERG [30] who, using singular

perturbations and the F - convergence approach, show that the Wulff set is the selected shape for a

scalar-valued two-phases transition problem with infinitely many solutions. Recently, this result

was generalized to the vector-valued case by AMBROSIO, MORTOLA & TORTORELLI [4] and

AVILHS & GIGA [5]. Here we will study a model where the Wulff set appears as the minimizing
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configuration. Associated to an elastic body immersed on a melt with zero bulk energy we consider

the energy

Ew(u) := J W(Vu(x)) dx + iQu(Q)) (7.1)

where Q, C IRN is the reference configuration, u : £1 —» KN is a deformation of the solid, W :

M\S(NxN,+) —> [0, +©o) is the stored energy density, MNxN denotes the set of all NxN real matrices,

M+ := {F e MNxN | det F > 0}, and I(.) is a nonlocal surface energy given by

IOA) := inf 1 f H n ^ y ) ) dHN_i(y) | R is a rotation in K N 1 . (7.2)
lya(RA) J

As before, T: SN-1 —> [a, +<*>) is continuous, a > 0, and nA(y) denotes the outward unit normal to

3Aaty.

We will prove that (7.1) admits a minimizer on a suitable class of admissible deformations

Q. Moreover, if u£ is a minimizer for E£wC) then the deformed configurations n£(Q) approach a set

C geometrically similar to the Wulff set Wp, i. e. C = R(Wp - a) for some rotation R and some a e

[RN. We assume that Q, is an open bounded strongly Lipschitz domain and we define
Q := { u e W1)p(Q; IRN) | det Vu > 0 a.e. in Q, Per (u(Q)) <+oo, | u(x) dx = m and

J \ detVu(x) dx < meas u(Q) = meas(Wr)l
ft J

where me DR N is fixed and p > N. It turns out that functions of Q are almost everywhere

invertible9. Indeed,

Proposition 7.3 ([6], [27]).
Let Q C [RN be an open bounded strongly Lipschitz domain, let p > N and let u e W ^ Q ; RN) be

such that det Vu > 0 a. e. Then

(i) u maps sets of measure zero into sets of measure zero;

(ii) u maps measurable sets to measurable sets;

(iii) meas u(Q) = meas u(U);

(iv) I det Vu(x) dx = f card{u~1(y)} dy

whenever one of the two integrals exists;

(v) f f(y) caxdin^iy)} dy = f f(u(x)) detVu(x) dx
MA) JA

for all A measurable set and whenever one of the two integrals exists.

9. For results concerning invertibility of Sobolev functions, we refer the reader to BALL [6] and MARCUS &

MIZEL [27].
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Thus, if u e W ^ Q ; [RN) and if detVu>0 a. e. then

meas(u(Q)) = f dy <, I card{u"1(y)} dy = | det Vu(x) dx
Ma) Ma) , Ja

and so, if u e Q then

meas(Wr) = meas(u(Q)) = f det Vu(x) dx (7.4)
Ja

and

u is one-to-one a. e. in Cl, i. e. card{u'1(y)}= 1 for almost all y e u(Q). (7.5)

This injectivity condition was used first by CIARLET & NECAS [9] (see also CIARLET [10]).

W : M+
x —> [0, +<») is said to be polyconvex 10 if there exists a convex function G

Definition 7.6. ([7])

+
x —> [0, +<») i

X(o, +oo) -> |R such that W(F) = G(F, adj F, det F) for all F e M**** 1.

The following lower semicontinuity result is well known (see BALL [7]).

Theorem 7.7.

Let Q C (RN be an open bounded strongly Lipschitz domain, let p > N and let UJ e

W1.P(Q;IRN). If W is a polyconvex function and if Uj -* u weakly in W1.P(Q;IRN) then

det VUJ -* det Vu weakly in LP/N(Q), adj VUJ -» adj Vu weakly in I>N-i(Q; M
N X N )

and

f W(Vu(x))dx^liminf f W(VUi(x))dx.
Ja j->~ JQ J

Assume that

(HI) T(n) = r**(n) for all n € S1*"1;
NxN

(H2) the bulk energy density W : M + ~> [0, +©o) is polyconvex and satisfies the growth

condition W(F) > Cx ||F||P + C2 for some Cl9 C2 e IR with Cx > 0. Moreover, W(F) -> +00 if det

F -» 0+12.

Theorem 7.8.

Under the hypotheses (HI) and (H2) the functional (7.1) admits a minimizer on Q.

10. For a detailed study of such functions we refer to BALL [7] and DACOROGNA [11]. See also MORREY [29].

adjF denotes the matrix of cofactors of F. If F is invertible then P1 = ^p •

12•. This condition is taken in order to prevent interpenetration of matter and change in orientation
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Before proving this result, we study some properties of the surface energy I(.).

Proposition 7.9.
Let E C 1RN be a bounded set of finite perimeter with meas(E) = meas(Wr). Then

J^xN

(i) (Frame indifference) I(3E) = I(9(RE)) for all R e SO(N) := {R e M+ | RT R = 11};
(ii) There exists Ro e SO(N) such that

I(3E):=f nnRoE(y))dHN.1(y);

(iii) I(3E) > I(3Wp) and equality holds if and only if meas(E \ R(W r - a)) + meas(R(Wr - a)\ E) =0

for some rotation R and some a e 1RN;

(iv) I(3E) > a Per(E).

Proof, (i) Follows from the fact that SO(N) = SO(N)R for all R e SO(N).
t t

(ii) Let {Rj} be a minimizing sequence for I(9E). There exists a subsequence R such that R —> Ro

€= SO(N) and so, by (HI) and Theorem 4.6

f
(iii) As meas(RE) = meas(E) = meas(Wr) for all R e SO(N), we conclude that

f r ( n w (x)) dH^Cx) = iOWpCx)) <: IQE).

(iv) Given R e SO(N) and as T > a on SN-!

I H n ^ y ) ) dHN_!(y) > a Per(RE) = a Per(E)

and so I(3E) > a Per(E).

Proof of Theorem 7.8. Let {ujbe a minimizing sequence in G, Due to the growth

condition of hypothesis (H2) and as the average of ui is always equal to m, we have that {uj is

bounded in W!»P(Q; KN). By Theorem 7.7 there exists a subsequence (still denoted by {ui» and

there exists u e W2»P(Q; IRN) such that

ui - u weakly in W ^ Q ; IRN) and strongly in L°°(a; IRN), (7.10)i

det Vui -* det Vu weakly in D>/N(Q), (7.10)2

and

f W(Vu(x))dx<liminf f W(Vuf(x)) dx. (7.10)3
JQ i-> °° JQ,

From (7.10)2 it follows that

det Vu > 0 a. e. and | det Vu(x) dx = Urn f det Vu;(x) dx, (7.11)
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which, together with (H2) and (7.10)3 implies that
de tVu>0 a. e. in£X (7.12)

Also, as meas(ui(il)) = meas(Wr), by Proposition 7.9 (iv) we deduce that the sequence of the

characteristic functions of the sets ui(£2) is bounded in BV. As u is continuous, u(Q) is a bounded

set and so, since ui —» u strongly in L°°, we can find an open bounded smooth domain U such

that Ui(£2), u(Q) C CU for all i. Therefore

sup II Xu. (dlBvdR^ =sup || XUi (dtavoj) < +~

and by (2.2) and Proposition 2.3 there exists a subsequence (still denoted by {uf}) such that

X Uita) -* % A strongly in L1 and Per(A) < lim inf Per(uj(Q)) < +«>. (7.13)

We claim that13 (see CIARLET & NECAS [9])

I det Vu(x) dx < meas(u(£2)). (7.14)

Indeed, as u(H) is compact, given 8 > 0 there exists an open set V5 such that u(H) C V5 and

meas(V5\u(H)) < 8. As Ui converges uniformly to u, for i large enough we have ui(H) C Vsand

so by (7.4) and (7.10)2 we deduce that

j det Vu(x) dx = lim J det Vu^x) dx = lim meastu^Q))

< meas(V5) < meas(u(Q)) + 8.

Letting 8 —> 0 we obtain (7.14) which, together (7.12), (7.4) and (7.5) implies that u is one-to-one

a.e. in Q. Therefore, by Proposition 7.3 (v) if (p e C(1RN) then

I <p(y)dy= I 9(^(x)) detVui(x) dx

= f [(p(ui(x)) - <p(uOO)l det Vui(x) dx + f cp(u(x)) [det VuA(x) - det Vu(x)] dx

(7.15)

On the other hand, by (7.10)i,2

lim I cp(u(x)) [det Vu;(x) - det Vu(x)] dx = 0
i JQ

and

lim I f [(p(ui(x)) - cp(u(x))] det Vut(x) dx | < lim ||det Vui||LP^
i Jft i

< Const, lim ||cp(ui) —
i

= 0.

Hence, by (7.15) we conclude that

1 3 . This argument is used in CIARLET & NECAS [9].
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X u. (n) ~"* X uto) weakly * in the sense of measures

which, together with (7.13), (7.4) and (7.11) implies that

XUi (Q) -» Xu(Q) strongly in L 1 , Per (u(Q)) < -H** and meas(u(Q)) =

= meas(Wr) = f det Vu(x) dx. (7.16)

Finally, u e Q and by (7.10)3 it remains to show that

I(3u(Q)) < liminf I(3ui(Q)).

Consider a subsequence of {ui} (still denoted by {ui}) and by Proposition 7.9 (ii) for each i

choose Ri G SO(N) such that

r(nR u t o )(x)) dHN_!(x).
11

There exists a subsequence (still denoted by {Ri}) such that Ri —> Ri G SO(N) and so, by (7.16)

and Theorem 4.6 we have
I O U ( Q ) ) < f T(nR u(fi)(x)) dHN^OO <

< lim inf J ^ r(nRiUi(n)(x)) dHN^x(x) = lim inf

Now suppose that

(H3) Cl is an open, bounded, strongly Lipschitz subset of IR N diffeomorphic to the unit ball

B(0,l), i. e. there exists a Lipschitz function h : Q, -» B(0,l) such that h is one-to one, surjective

and detVh(x) > 9 > 0 a. e. x G Q.

Consider the family of perturbed problems

(P£) minimize in Q

Ee(u) := e f W(Vu(x)) dx + I Q U ( Q ) ) .

Theorem 7.17.

If (H2) and (H3) hold and if ue is a solution for (P£) then there exists a subsequence {u^}

such that u^ -* u weakly in W ^ Q ; IRN) and meas(uT1(Q)\u(Q))+meas(u(Q)\uT1(Q)) -> 0, where

= RWp + a for some rotation R and some a G IRN.

The proof of this result relies on the fact that we can find uo G Q such that detVuo is

bounded away from zero and uo(Q) is a translation of the Wulff set. We construct this deformation

using the Minkowski functional associated to Wp.
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Definition 7.18.
Let C be a bounded, convex subset of DRN such that 0 e int C. The Minkowski functional

lie of C is defined by Mc(x) := inf {t > 0| x e tC}.

Proposition 7.19.
(i) 0 < |ic(x) < +<*> and Mc(x) = 0 if and only if x = 0;

(iii) int C = {x s [RN| ^c(x) < 1} and C = {x e IRN| jic(x) < 1}.

(iv) There exists a > 0 such that a ||x|| < |ic(x) < ||x||/a for all x and ||ic(x) - Hc(y)l ^ llx - y||/a for

all x, y.

Proof. The proofs of parts (i), (ii) and (iii) can be found in RUDIN [34]. We prove (iv).

Let a > 0 be such that B(0, a) C C C B(0, I/a) . We claim that |ic is a Lipschitz function,

precisely

l^(x) - ^c(y)l ^ llx - y||/o, for all k, y. (7.20)

Indeed, if y e tC for t > 0, then

a
where

As C is convex, we conclude that

—r^ eC

and so HcOO < t + ||x - y||/a. Letting t -» ^c(y)+ we obtain (7.20), and setting y = 0 in (7.20)

yields (icOO ^ l|x||/a. On the other hand, if x € tC then ||x|| < t/a and so a ||x|| < |ic(x).

Define

Fc(x):=<

• IN

0

- X ifx*0

ifx = O.
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Proposition 7.21.
Fcis a one-to-one Lipschitz function that maps B(0,l) onto intC and Fc(9B(0,l)) = 3C.

Moreover detVFc(x) > aN a. e. x e Q.

Proof. We prove that F c is injective. If Fc(x) = Fc(x
l) then either x = xf = 0 or x = Xx'

for some X > 0. By Proposition 7.19 (ii) we have
11x11 • P*'ll . . 11x11 ,

and so X = 1. As Hc(Fc(x)) = ||x||, we conclude that FC(B(O,1)) C int C and Fc(9B(0,l)) C3C.
Conversely, if x e int C \ {0} then, by Proposition 7.19 (iii) Hc(x) < 1 and

Thus Fc(B(0,l)) = int C and similarly, dC = Fc(9B(0,l)). We show that
l|FC(x) - Fc(y)|| < (2o-i + <r*) ||x - y|| for all x, y. (7.22)

Ifx = 0ory = 0 then (7.22) follows from Proposition 7.19 (iv). Suppose that x * 0 and y * 0.
Then, by Proposition 7.19 (iii)

IPcCx) - Fc(y)|| < iKHxii - IMD:4TII+Hyll I I T T ^ - - j^y l

My)"
rlllx||-||ylll ,

a a

^llx-yll

^i~+ -4-nix-

As He is a homogeneous of gegree one Lipschitz function,

V^c(x). x = Hc(x) for almost all x

which, together with Proposition 7.19 (iii) implies that

" IWI « . J xdetVFc(x) =

= detj W

=fj^fr1+x.
llxll2
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Proposition 7.23.
Under the hypothesis (H3) there exists a homeomorphism g : Q -»int Wp such that g is a

Lipschitz function and det Vg is bounded away from zero.

Proof. By Proposition 3.6 the Wulff set is convex, bounded and it contains a

neighborhood of the origin. Therefore, if we set C : = Wpand g := Fc ° h then g is a Lipschitz

diffeomorphism of Q, into int Wp and det Vg > aN0 a. e. x e £1.

Proof of Theorem 7.17. Let g be as in Proposition 7.23 and define

U0(x) := g(x) + r-rr —r g(x) dx.
u meas(Q) meas(Q) J^

By Proposition 7.3 (iv) uo e Q and since ||Vuoll~ ^ M for some M > 0 and detVuo is bounded

away from zero, from (H2) we conclude that

J W(Vu0(x))dx<+oo.
Suppose that u£ is a solution for (P£). Then

E£(u£) = eJ W(Vu£(x))dx + lOu£(Q))<E£(u0) = 6J W(Vuo(x)) dx -t- lQW r) .

and so, by Proposition 7.9 (iii) we have for sufficiently small e

f W(Vu£(x)) dx < f W(Vuo(x)) dx and I@u£(Q)) < e f W(Vuo(x)) dx + lOWr).

Thus, as in the proof of Theorcm 7.8, there exists a subsequence {u^} such that u^ -* u weakly

in W 1 ^ ^ ; IRN) and strongly in L°°(£2; IRN), meas(uq(£2)\u(Q)) + measCuC^XoqCQ)) —> 0,

Per(u(£2)) < +«> and meas(u(fli)) = meas(Wp). It remains to show that, up to a set of measure zero,

Ru(£2) is a translation of the Wulff set for some rotation R. By Proposition 7.9 (ii), for each T|

there exists Rn e SO(N) such that

and so, with (for a subsequence) R^-* R e SO(N), by Proposition 3.6 (v), Theorem 4.6 and

Proposition 7.9 (iii) we have

lim inf I O U ^ C ) ) = lOW r)

= f r**(nw(x)) dH^^x).
Jd*wr

 r

Thereforc, by Theorem 5.11 we conclude that u(Q) = RWp + a up to a set of measure zero.
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APPENDIX.
Here we prove Lemma 2.9. We recall the following regularity theorem for sets of finite

perimeter (see EVANS & GARIEPY [15]).

Theorem A.I.
If Pera(E) < +00 then there exists a sequence {ue} e C°°(Q) such that

(i) ue converges to %E in U(Q) ;

(ii) supportUgCE + B(0; e ) ;

( i i i ) 0 < u e < l ;

(iv)Pern(E) = lim f |Vue(x)| dx.

The approximating sequence {ue} is of the form

i = 0

where {fi} forms a partition of unity for Q, and <p is a mollifier. The first part of the proof of

Lemma 2.9 follows the proof of Lemma 1 in MODICA [28].

Lemma 2.9.
Let EC IRN be a bounded set of finite perimeter. There exists a sequence of open, bounded

sets EnC [RN such that

( i )3E n G C°°andEn,E C B(0,R) for some R > 0;

(ii)XEn ->%E i n L t o ;

(iiiJPerCEn) ->Per(E);

(iv) meas(En) = meas(E).

Proof. Step 1. Here we prove the existence of a sequence An that satisfies (i), (ii) and

(iii). Indeed, let {ue} e Cr(Q) be as in Theorem A.1 and let u := %E. As ue converges to %E in

V(Q), for all a > 0

meas{xe R N | | ue(x) - u(x)| > a }-> 0

and so, let e(n) be such that

meas{x e (RN | | ue(n)(x) - u(x)| > 1/n } < 1/n. (A.2)

Let

^n := ess inf {Per{x G IRN| U^ > t} | 1/n < t < (1-1/n)}.

It is clear that there exists a set Yn C (1/n, 1-1/n) such that for all t e Yn
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Per {x € IRN | ue(n)(x) > t } < £n + 1/n (A.3)

and
meas(Yn) > 0. (A.4)

Let Xn := {x e (RN | Vu£(n)(x) = 0}. By Sard's Lemma
meas ( u ^ X ^ ) = 0

and so, due to (A.4), there exists ^ e Yn such that
Vue(n)(x)*0 (A.5)

for all x such that uE(n)(x) = t,,. Set

A n : = { x e IRN| Ue(n)(x) >ta}. *

By (A.5) dA0 e C~ and by (A.2)
meas {x e An | x g E} + meas {x e E |x e An} <meas { x e IRN | u(x) = 0andu£(n)(x) > t̂ } +

+ meas { x e (RN| u(x) = 1 andu£(n)(x) < t^

<2meas{xe 1RN| | u ^ x ) - u(x)| > 1/n }

< 2/n.

Thus
1 (A.6)

and so, by (2.5)
Per(E) < lim inf Per(An). (A.7)

Finally, by (A3)
Per(An) < %Q + 1/n < 1/n + Per {x e IRN | | ue(n)(x) > t }

for all t e (1/n, 1-1/n), which together with the Fleming-Rishel formula (2.7) implies that

PerfA.) (l - 1 ) £ I (l - 1 ) + J ^ Per{x € KN | uM > t} dt

and so, by Theorem A.I (iv)
lim sup Per(An) < Per(E). (A.8)

By (A.7) and (A.8) we conclude that
lim Per(An) = Per(E).

Step 2. Define
1

E n : = ^ A n where Xn = (

Clearly { E j satisfy (i) and (iv), and by (A.6)

*„ -> 1. (A.9)

Thus, as Per(En) = XnN1Per(An) with lim Per(An) = Per(E), we deduce (iii), namely
lim Per(En) = Per(E).
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It remains to show (ii). Since E is bounded, by (iii), (iv) and Theorem A.I (ii), there exists an
open, bounded, strongly Lipschitz domain Q, C [RN such that

En, E C C Q and { || XEJIBV(Q)} *S bounded.

By Proposition 2.3, there exists a subsequence (that for convenience we still denote by XEII) s u c h

that
XED -> %A in L^Q), for some subset A c Q. (A. 10)

We claim that X E = % A a- e- Indeed, let (p e C0(IR
N). Then by (A.6) and (A.9)

(p(x) dx = lim Xn I ^ (^y) dy = lim I (p(y) dy + lim I [cp^y) ~ 9(y)] dy

E ^ •'A- ^ *A_ ^ •'A

= Jcp(y)dy (A.11)

since, by Lebesgue's dominated convergence theorem and by (A.6),

lim| [(p(A,ny) - (p(y)] dy| < lim IcpC^y) - (p(y)| dy + 2 \\q\l. [meas(An\E) + meas(E\An)]
n JAn n UE J

= 0.

Therefore, by (A. 11)
X E •** X E weakly * in the sense of measures

which, together with (A. 10) yields (ii).
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